Опрос
|
реклама
Быстрый переход
Разработана технология записи данных в существующую ДНК
26.10.2024 [16:39],
Павел Котов
Китайские учёные разработали новый метод хранения данных в ДНК, способный произвести революцию в этой узкой области. Группа исследователей Пекинского университета и трёх других научных учреждений опубликовала работу, посвящённую применению метилирования ДНК для выборочной мутации «эпи-битов» на уже существующих цепочках ДНК. Это значительно ускоряет процесс записи данных, но применять технологию на практике пока рано. Запись информации в ДНК позволяет добиться невероятно высокой плотности данных — до 215 Пбайт на 1 грамм, но процессы записи и чтения пока и очень дороги, и очень медленны. Традиционно размещение данных в ДНК означает создание последовательностей с нуля, а китайские учёные предлагают записывать информацию в уже существующие нити, что в теории поможет сэкономить время и средства. Метод «эпи-битов» основан на естественном процессе, который называется «метилированием ДНК» — он имитирует эволюцию, которую претерпевают нити ДНК в течение жизни. Учёные создали из нуклеиновых кислот 700 «подвижных типов» ДНК. Этот метод может реализовываться вручную или автоматически: в ходе тестирования исследователи сначала напечатали, а затем вызвали изображения размером 18 833 бита и 252 504 бита (31,5 кбайт) в автоматическом режиме со скоростью 350 битов за реакцию. Для записи и хранения используется система штрих-кодов, помогающая отметить, где находятся фрагменты данных, чтобы их можно было извлечь с заданным уровнем скорости и точности. Запись информации в ДНК вручную — относительно несложный процесс даже для неспециалистов: 60 добровольцев без опыта работы в биолаборатории при помощи сервиса хранения данных iDNAdrive вручную закодировали 5000 битов текстовых данных. Предложенный китайскими учёными метод хранения данных в ДНК использует сильные стороны этой технологии — высокие плотность и стабильность — и добавляет к ним программируемость и масштабируемость. Но применять её на практике ещё рано: сейчас запись информации производится на скорости около 40 бит/с — примерно в 30 млн раз медленнее, чем на традиционный жёсткий диск. Зато стоимость оказалась примерно в десять раз ниже, чем создание последовательности с нуля — достаточно купить условные «ручку и чернила». На рынке цены пока заоблачные — французский стартап Biomemory взимает €1000 за запись 1 кбайт на карту памяти с ДНК. Учёные создали основу для будущих ДНК-компьютеров, которые одновременно хранят и обрабатывают данные
17.09.2024 [16:04],
Геннадий Детинич
Запись информации в ДНК обещает кардинально повысить плотность цифровых архивов, а способность этих молекул воспроизводить последовательности нуклеотидных оснований сравнима с редактированием и исполнением кода. До недавних пор учёным удавалось либо одно, либо другое, что далеко от идеала — создания биокомпьютеров для одновременного хранения и обработки информации. Учёные из США утверждают, что у них появилось решение. По словам исследователей из Университета Северной Каролины (NC) и Университета Джонса Хопкинса (Johns Hopkins University), они создали буквально предшественника всех ДНК-компьютеров будущего — систему, которая обеспечивает полный набор вычислительных функций с использованием цепочек нуклеиновых кислот, таких как хранение, считывание, стирание, перемещение и перезапись данных, а также управление этими функциями, как это делает обычный программируемый компьютер. «Считалось, что, хотя хранение данных в ДНК может быть полезным для долгосрочного хранения информации, было бы трудно или невозможно разработать ДНК-технологию, которая охватывала бы весь спектр операций, присущих традиционным электронным устройствам, — поясняют авторы работы. — Мы продемонстрировали, что эти технологии, основанные на ДНК, жизнеспособны, потому что мы их создали». В основе разработки лежит технология упорядоченного или даже иерархического распределения ДНК, тогда как обычно учёные работали с ДНК, свободно плавающими в растворах. Для этого учёные создали разветвлённую «волокнистую» структуру из такого полимера, как дендриколлоид диаметром 50 мкм. ДНК как бы вплетались в древовидную структуру нитей полимера, что позволяло, например, упростить стирание и перезапись заданных участков подобно работе с жёстким диском. При этом чтение не разрушало информацию (ДНК), так как она извлекалась из основы с помощью воспроизведения нужных участков в РНК — естественной функции, миллиарды лет присущей механизму дупликации с использованием ДНК. Одним из важнейших открытий стал найденный учёными способ отличать ДНК от основания (от волокон, в которые вплетены эти молекулы). Далее учёные показали, что с этими данными (с нуклеотидными основаниями) можно производить вычисления, как на обычном компьютере. Искусственное старение образцов показало, что при температуре 4 °C информация может сохраняться до 6000 лет, а при заморозке до -18 °C — до 2 млн лет. В одном кубическом сантиметре предложенная основа — дендриколлоид — сможет хранить до 10 Пбайт данных. Это хорошая заявка на расширение ёмкостей для длительного хранения архивов, которые смогут пережить не одну цивилизацию на Земле. Учёные облачили ДНК в искусственный янтарь — получилось сверхплотное и долговечное хранилище данных
14.06.2024 [17:53],
Павел Котов
ДНК — значительно более плотный носитель данных, чем что-либо, что создали люди, но проблема в том, что этот носитель крайне хрупкий. Для её решения учёные решили воспользоваться ещё одним достижением природы и создали искусственный янтарь, способный защитить хранящиеся в ДНК данные в течение длительного времени. Один грамм ДНК способен хранить до 215 Пбайт (215 млн гигабайт) данных — объёма с обувную коробку хватило бы на весь интернет. Это побудило учёных начать экспериментировать с записью данных в ДНК и их последующим считыванием, но необходимо обеспечить и их сохранность. Поэтому исследователи Массачусетского технологического института (США) создали своего рода искусственный янтарь, способный обеспечить защиту ДНК в течение длительного времени, а также последующее считывание данных. Это термореактивный материал — при нагревании он становится стекловидным твёрдым веществом, а при необходимости разрушается под воздействием химических соединений. Учёные создали смесь мономеров, которые формируют сферические комплексы ДНК внутри и имеют водоотталкивающий слой снаружи — он нужен, потому что влага может повредить ДНК. Смесь нагревается и образует стекловидный блок, а ДНК с сохранёнными данными остаётся внутри. Когда возникает потребность считать эти данные, искусственный янтарь подвергается воздействию цистеамина — вещества, который его разрушает. После этого применяется детергент (моющее средство) под названием SDS, который отделяет ДНК, не повреждая её. Технологии присвоили название T-REX (Thermoset-REinforced Xeropreservation). На испытаниях учёные успешно применили технологию T-REX для хранения последовательностей ДНК различной длины при температурах до 75 °C. На тестовые последовательности они записали изданную Авраамом Линкольном «Прокламацию об освобождении рабов», логотип Массачусетского технологического института и музыкальную тему из фильма «Парк юрского периода» (Jurassic Park). Когда ДНК извлекли и секвенировали, ошибок обнаружено не было. Сейчас на процесс T-REX требуются несколько часов, и учёные говорят, что его можно оптимизировать. Едва ли накопители на основе ДНК когда-нибудь появятся в потребительских компьютерах, но для долгосрочного архивного хранения данных она может оказаться полезной. Проводящая анализы ДНК компания 23andMe признала утечку данных 6,9 млн клиентов
05.12.2023 [11:44],
Павел Котов
Компания 23andMe, которая проводит анализы ДНК, сообщила, что в результате недавнего взлома произошла утечка данных, принадлежащих 6,9 млн пользователей. Инцидент коснулся 5,5 млн пользователей с активной функцией DNA Relatives (сопоставление людей со схожими ДНК) и 1,4 млн с профилями генеалогического древа. Компания раскрыла информацию об инциденте в заявлении Комиссии по ценным бумагам и биржам (SEC) США, а также в официальном блоге. Злоумышленники, по версии 23andMe, получили доступ к информации, воспользовавшись методом подстановки данных: люди часто пользуются одинаковыми логинами и паролями на разных сервисах, из-за чего компрометация данных на одном открывает доступ к другим. В результате хакерам удалось войти в 0,1 % (14 000) учётных записей в системе компании. Сделав это, они воспользовались функцией DNA Relatives, предполагающей сопоставление ДНК вероятных родственников, и получили дополнительную информацию нескольких миллионов других профилей. Первые сведения об инциденте были преданы огласке в октябре, когда 23andMe подтвердила, что данные её пользователей выставили на продажу в даркнете. Впоследствии компания заявила, что проверяет сообщения о публикации 4 млн генетических профилей жителей Великобритании, а также «самых богатых людей, проживающих в США и Западной Европе». В базе утечки 5,5 млн пользователей DNA Relatives оказались их отображаемые в системе имена, вероятные связи с другими людьми, число пользователей с совпадениями в ДНК, сведения о происхождении, указанные самими пользователями местоположения, места рождения предков, фамилии, изображения профиля и многое другое. Ещё 1,4 млн пользователей имели доступ к профилям генеалогического древа — из этой базы были похищены их отображаемые имена, родственные связи, годы рождения и указанные этими пользователями местоположения. Во второй базе, однако, не было степеней совпадения ДНК. В 23andMe сообщили, что продолжают уведомлять пострадавших от утечки пользователей. Компания стала предупреждать клиентов о необходимости сменить пароли и принудительно внедрять двухфакторную авторизацию, которая ранее была необязательной. Китайские учёные представили базу для создания универсальных компьютеров на ДНК
19.09.2023 [11:35],
Геннадий Детинич
Несмотря на все достижения в области работы с ДНК — шаблоном и инструментом для воспроизведения и развития живых организмов на Земле — попытки использовать этот же механизм для выполнения математических алгоритмов пока не могут считаться достаточно успешными. В то же время логика на ДНК способна на колоссальный параллелизм, что позволит умножить мощность компьютеров, в чём далеко продвинулись китайские учёные. Наука далеко шагнула в области записи данных на ДНК. Это базовая опция дезоксирибонуклеиновой кислоты. Запись и хранение данных относительно нетребовательны к скорости работы платформы, которая зависит от скорости протекания биохимических реакций. Другое дело вычислительные цепи, скорость работы которых должна быть максимальной. В принципе, параллелизм частично решает эту проблему. Но до последнего времени электронные цепи на ДНК, с которыми работали учёные, не могли похвастаться универсальностью — они выполняли лишь ограниченный круг алгоритмов. Группа исследователей из Китая разработала интегральную схему ДНК, которая способна выполнять множество разнообразных операций. По словам учёных, реконфигурируемый базовый элемент (электронная цепь) с 24 адресуемыми двухканальными затворами может быть представлен в виде 100 млрд вариаций цепей, каждая из которых сможет выполнять собственную подпрограмму. Из этого следует, что на основе этого решения можно спроектировать процессор общего назначения для запуска любых программ. В своей работе, которая была опубликована в журнале Nature, исследователи показали, как с помощью трёхслойной матрицы из цепей на базе их ДНК-чипа можно обеспечивать простейшие математические операции. Представленная платформа легко масштабируется, что позволяет рассчитывать на создание в будущем очень мощных процессоров. Для решения вопроса масштабирования учёные проделали другую работу. Ведь для прохождения сигнала в цепях из ДНК потребуется передача биохимических данных в заданном направлении и без затухания. И чем длиннее будет этот путь (масштаб), тем выше будет вероятность потери «сигнала» — фрагмента ДНК или концентрации фрагментов ДНК. В качестве «сигнала» китайские учёные испытали олигонуклеотиды — короткие фрагменты ДНК, которые уже используются как детекторы и носители ДНК-информации. В своих экспериментах китайцы показали, что типовые одноцепочечные олигонуклеотиды хорошо работают в качестве унифицированного сигнала для передачи, что позволяет надёжно интегрировать крупномасштабные цепи с минимальной утечкой и высокой точностью для вычислений общего назначения. «Способность интегрировать крупномасштабные сети DPGA [ДНК БИС] без явного ослабления сигнала знаменует собой ключевой шаг на пути к ДНК-вычислениям общего назначения», — заявляют исследователи. В качестве примера учёные создали схему, решающую квадратные уравнения, которая собрана с использованием трёх слоев каскадных ЦВМ, состоящих из 30 логических вентилей и содержащих около 500 нитей ДНК. Более того, интеграция DPGA с аналого-цифровым преобразователем позволит классифицировать микро-РНК, связанные с заболеваниями. Иными словами, предложенная платформа сможет не только работать как обычный компьютер, но также будет способна на мгновенную диагностику вирусных и других заболеваний. И ещё большой вопрос, которая из этих возможностей окажется наиболее полезной. Для хранения данных на ДНК предложены крошечные капсулы — это снизит уровень ошибок и защитит от потерь информации
09.05.2023 [10:05],
Геннадий Детинич
Природа придумала поразительное по плотности хранения данных решение — ДНК. Всю информацию из интернета, включая бесконечные фотографии котиков, можно записать на ДНК в объёме коробки для котика средних размеров. Учёные давно пытаются повторить этот трюк и у них даже есть успехи. Используя для кодирования данных на ДНК только четыре природных азотистых основания в объёме коробки для обуви можно записать 215 Пбайт данных. Но если синтезировать искусственные азотистые основания и довести их до 11 базовых кодов, то объём хранимых в «коробке» данных можно удвоить! При должном подходе эта информация может храниться миллионы лет в отличие от данных на жёстких дисках и SSD. Когда-нибудь это произойдёт, но пока исследователи решают ряд связанных с записью на ДНК проблем, в частности, это проблема разрушения данных при многократном обращении к ним и, как следствие, нарастание ошибок и потеря данных. В новой статье в журнале Nature группа исследователей предложила интересную методику защиты и маркировки информационного ДНК-носителя, которая защищает носитель от разрушения в процессе чтения, а также облегчает сортировку ДНК-файлов и ведёт к созданию роботизированных библиотек. Сегодня в базовом процессе работы с записанной на ДНК информацией всё происходит следующим образом: в «суп» из ДНК-носителей подаётся затравка — праймер — которая запускает реакцию ПЦР (полимеразная цепная реакция) с реплицированием нужного «файла». Каждый «файл» — это записанная нить ДНК, помеченная определённым образом, и праймер цепляется к ней и запускает процесс тиражирования. Современным инструментам по расшифровке ДНК нужны миллионы одинаковых последовательностей, чтобы надёжно расшифровать один «файл». Каждое такое «чтение» вносит ошибки и, в конечном итоге, разрушает информацию. Наконец, становится трудно работать с несколькими «файлами» одновременно. Чтобы избежать всего этого учёные придумали заключать файл-ДНК в полимерную капсулу, но не просто так, а только при нагреве до температуры выше 50 °C. Процесс ПЦР запускается при меньшей температуре, затем при нагреве исходный «файл» прячется в капсулу и дальше всё идёт без него. Это позволяет защитить исходные данные в процессе чтения (реплицирования), а также даёт возможность присвоить каждому «файлу» свою метку — в данном случае это флюоресценция разных оттенков. Свечение даёт возможность роботизировать каталогизацию и последующий отбор файлов — это путь к созданию библиотек. Для чтения реплицированных ДНК систему достаточно остудить и выделить из неё всё, что воспроизвелось в процессе ПЦР. Исходный ДНК-носитель в таком случае остаётся незатронутым в процесс ПЦР и не вносит в свою структуру ошибки, а цветовая метка, по которой его можно сортировать, остаётся при нём. По словам исследователей, предложенная методика позволяет считывать до 25 файлов одновременно, и теряет только 0,3 % файла после трёх считываний, а не 35 %, как при использовании существующих методов. «Теперь остается только ждать, когда стоимость синтеза ДНК снизится еще больше, — сказал Том де Гриф (Tom de Greef), ведущий автор исследования. — Тогда техника будет готова к применению». Шекспировского «Гамлета» закодировали в ДНК и показали быстрый поиск по ключевым словам
13.12.2022 [12:35],
Геннадий Детинич
Ведущий разработчик систем хранения информации на базе ДНК — компания Catalog Technologies — сообщил об «историческом прорыве». Компания показала возможность быстрого параллельного поиска по данным, зашифрованным в ДНК. Работа с ДНК не отличается скоростью, но Catalog смогла найти возможность ускорить эти процессы. В перспективе это обещает привести к появлению беспрецедентных по плотности записи носителей информации, в миллионы раз лучше современных аналогов. Компания Catalog разрабатывает систему записи и считывания данных на ДНК из синтетических нуклеотидов. В природе биологическая информация записывается всего четырьмя нуклеотидами. Если себя этим не ограничивать, то можно в два, три и даже больше раз увеличить «разрядность» кодирования данных, а это, прежде всего, рост плотности записи. Таким образом, в одном грамме раствора из ДНК можно хранить до 200 Пбайт информации, с чем современные методы записи совершенно не сравнятся. В Catalog провели эксперимент, в котором показали способность записывать относительно большой массив данных в ДНК и проводить в нём поиск по ключевым словам. Так, большой отрывок из Шекспировского «Гамлета» размером в 17 тыс. слов был записан в ДНК на опытной установке компании. Никакой предварительной обработке данные не подвергались, включая индексацию. На запись и поиск по ключевым словам ушли считанные минуты, о чём раньше даже не мечтали. Система нашла все вхождения искомого слова. Поскольку химические процессы, в результате которых происходят реакции с ДНК, по своей сути параллельны, то нет разницы, какой по объёму массив данных будет обрабатываться: 17 тыс., 170 тыс. или 17 млн. В новом году, например, компания обещает запустить поиск на массиве из более 100 млн зашифрованных в ДНК слов. Подобные возможности, помимо многократного увеличения плотности записи, обеспечат потребности нейросетей и ИИ при обработке больших массивов информации. Сегодня установка Catalog Shannon не отличается компактностью — размерами она как «кухня для обычной семьи». Поиск тоже не блещет скоростью: 17 тыс. слов в среднем по 5 символов каждое — это всего лишь 472 байт/с. Но это только начало. Придёт время, когда записывать данные на ДНК и считывать их будут маленькие чипы. Вместе с компанией Catalog это время приближает её партнёр — компания Seagate. Но это уже другая история. |