Сегодня 28 сентября 2023
18+
MWC 2018 2018 Computex IFA 2018
Теги → звезда
Быстрый переход

Рискованный манёвр позволил разгадать 65-летний секрет невероятно высокой температуры короны Солнца

Учёные приблизились к тому, чтобы понять причины невероятно высокой температуры атмосферы Солнца, достигающей миллиона градусов, что в 150 раз превышает температуру поверхности звезды. Благодаря уникальному сотрудничеству космических аппаратов Solar Orbiter и Parker Solar Probe, а также необычному манёвру последнего, учёные получили данные, способные пролить свет на эту загадку космических масштабов возрастом 65 лет.

 Источник изображения: ESA / NASA

Источник изображения: ESA / NASA

Солнечная корона — внешний, самый разреженный и горячий слой атмосферы Солнца, состоящий из плазмы, давно интригует учёных своей аномальной температурой, достигающей миллиона градусов по Цельсию. Это в 150 раз больше, чем температура поверхности самой звезды. Такое явление казалось нелогичным, ведь чем дальше от источника тепла, тем холоднее должно быть.

Для разгадки этой тайны учёные обратили внимание на процесс турбулентности, который, как предполагается, играет ключевую роль в нагреве короны Солнца. Этот процесс можно сравнить с перемешиванием кофе в чашке: в результате турбулентных движений энергия переходит от больших масштабов к меньшим, вплоть до взаимодействия с отдельными частицами, в основном протонами, нагревая их. Это взаимодействие усиливается благодаря магнитным полям, присутствующим в короне, которые могут служить дополнительным источником энергии для нагрева плазмы.

Для детального изучения этого явления были задействованы космические аппараты Solar Orbiter и Parker Solar Probe. Первый из них, работая в тандеме с Parker Solar Probe, осуществлял как дистанционное зондирование, так и непосредственные измерения вблизи Солнца, позволяя учёным получить более полную картину происходящих процессов.

Ключевым моментом исследования стал манёвр Solar Orbiter, который включал в себя поворот на 45 градусов и отклонение от первоначального курса. Это позволило аппарату сфокусироваться на определённой области и синхронизировать работу с Parker Solar Probe для совместного сбора данных. Даниэле Теллони (Daniele Telloni) из Итальянского национального института астрофизики (INAF) отметил, что такой манёвр представлял некоторый риск, но благодаря ему учёные смогли получить уникальные данные.

Сравнив новые измерения с теоретическими предсказаниями, сделанными физиками, изучающими Солнце в течение многих лет, Теллони сообщил, что физики почти наверняка были правы в определении турбулентности как способа передачи энергии.

Результаты исследования позволили сделать значительный шаг вперёд в понимании процессов, происходящих в солнечной короне. «Эта работа открывает совершенно новое измерение в данном исследовании», — подчёркивает Гари Занк (Gary Zank) из Университета Алабамы в Хантсвилле, США.

Теперь учёные имеют возможность не только подтвердить давнюю теорию о роли турбулентности в нагреве короны, но и детально изучить механизмы этого процесса. Это открытие, безусловно, станет вехой в истории астрофизики, открывая новые горизонты для будущих исследований. «Данная работа представляет собой значительный шаг вперёд в решении проблемы нагрева короны», — отметил Даниэль Мюллер (Daniel Müller), учёный проекта.

Сверхмассивная чёрная дыра поглотила звезду втрое больше Солнца и выплюнула остатки

Группа американских учёных, возможно, нашла доказательства, что сверхмассивная чёрная дыра в другой галактике поглотила достаточно крупную звезду с массой в три солнечных и выбросила её остатки в окружающее пространство. По этим остаткам как раз и удалось определить массу погибшей звезды.

 Источник изображения: chandra.si.edu

Источник изображения: chandra.si.edu

Событие, получившее название ASASSN-14li, наблюдалось в 2014 году, а произошло оно в центре галактики PGC 043234, расположенной на расстоянии 290 млн световых лет от Земли. Для подробного наблюдения за событием использовались рентгеновские обсерватории «Чандра» (Chandra) и XMM-Newton, данные с которых помогли изучить его более подробно. Анализ произведённых после поглощения звезды выбросов позволил учёным утверждать, что она когда-то имела массу, в три раза превышающую массу Солнца.

Подобные инциденты называются событиями приливного разрушения. Когда подошедшая слишком близко звезда оказывается во власти гравитационного поля сверхмассивной чёрной дыры, её обломки нагреваются, и возникает вспышка, охватывающая оптический, ультрафиолетовый и рентгеновский диапазоны. Учёные измерили длины волн этого излучения и установили концентрации элементов в окружающем чёрную дыру аккреционном диске — по соотношению азота и углерода удалось оценить массу звезды.

Полученные результаты не согласуются с опубликованной в 2017 году работой, посвящённой исследованию события ASASSN-14li — тогда учёные сделали вывод, что масса этой звезды составляла всего 0,6 солнечной. Были и другие исследования, авторы которых даже предполагали, что окружающее сверхмассивную чёрную дыру вещество вообще не имело отношения к какой-либо звезде, а возникло в результате серии извержений, порождённых самой чёрной дырой.

Обнаружена аномальная звезда, которая намерена стать самым сильным магнитом во Вселенной

Магнетарами становятся примерно 10 % нейтронных звёзд и учёные пока не понимают механизмов превращения сверхновой в такой сверхнамагниченный компактный объект, как магнетар. Новое открытие даёт намёк на предпосылки для рождения магнетара. Подсказкой стало обнаружение звезды с необычно сильным магнитным полем, мощность которого превышает все известные науке модельные значения.

 Магнетар в представлнии художника. Источник изображения: L. Calçada/European Southern Observatory

Магнетар в представлении художника. Источник изображения: L. Calçada/European Southern Observatory

Предметом исследования стала массивная звезда в двойной системе HD 45166, которая удалена от нас на 3000 световых лет. Право наблюдать за HD 45166 добился астроном Томер Шенар (Tomer Shenar) из Университета Амстердама (Нидерланды). Главная звезда системы имеет все признаки так называемой звезды Вольфа-Райе — это тип звёзд, для которых характерны очень высокие температуры и светимости и, как правило, они находятся на поздних стадиях своей эволюции, а также содержат мало водорода и богаты гелием. Но звезда в системе HD 45166 имела одно существенное отличие от типичных звёзд Вольфа-Райе — её масса была значительно меньше ожидаемой.

Эта аномалия заставила учёного добиваться доступа к самым передовым астрономическим инструментам. Он считал, что звезда ведёт себя подобно звёздам Вольфа-Райе и при этом намного менее массивна по причине сильного магнитного поля, которые раньше не регистрировались у таких звёзд. И действительно, сила магнитного поля у главной звезды HD 45166 оказалась запредельная для таких объектов — она достигала 43 тыс. Гс (гаусс). Для сравнения, сила магнитного поля Земли всего 0,5 Гс.

«По сути, это объект, который не соответствует нашим моделям и теориям», — сказал Шенар в интервью CNN.

Учёный считает, что смог обнаружить звезду, которой суждено превратиться в магнетар. Произойдёт это примерно через один миллион лет, когда звезда пройдёт стадию сверхновой и сбросит оболочку, а её ядро сожмётся до нейтронной звезды. По крайней мере, это может быть один из сценариев рождения магнетаров, добавляет учёный.

Другой вопрос: как такое могло произойти, что звезда хорошо изученного типа приобрела настолько запредельное для неё магнитное поле? По мнению исследователя, которое он представил в виде статьи в журнале Science, изначально система HD 45166 содержала три звезды, и одна из них была поглощена главной звездой. Тяжёлое ядро поглощённой звезды теоретически способно на такие проявления, как сильный магнетизм. Так это или нет, но астрономы теперь могут поискать в небе потенциально новый тип «массивных гелиевых магнитных» звёзд, чтобы закрепить или опровергнуть открытие «зародышей» магнетаров.

Учёные обнаружили юпитер, который с одной стороны горячее Солнца

Международная группа учёных обнаружила на расстоянии 1400 световых лет от Земли двойную звёздную систему белого и коричневого карликов. Она поможет в изучении ультрагорячих юпитеров — газовых гигантов, расположенных достаточно близко от своих массивных звёзд.

 Источник изображений: caltech.edu

Источник изображений: caltech.edu

Расположенный в системе коричневый карлик имеет температуру 7700 °C, что выше тех 5500 °C, которые отмечаются на поверхности Солнца. Но такой высокий показатель не является «заслугой» самого объекта: коричневый карлик вращается очень близко к своему компаньону — белому карлику WD 0032-317, который подвергает его излучению. Ночная сторона коричневого карлика, обращённая от компаньона, почти на 5700 °C холоднее.

Эта уникальная система поможет учёным больше узнать об экзопланетах, находящихся на небольшом расстоянии от своих звёзд. Интенсивное ультрафиолетовое излучение может лишить такие планеты атмосферы и даже твёрдого вещества. Этот процесс пока изучен слабо, но уникальная система белого и коричневого карлика, которую намного проще наблюдать, во многом повторяет закономерности, свойственные парам звёзд и ульрагорячих юпитеров.

Первоначально систему WD 0032–317 обнаружили в начале двухтысячных в рамках проекта по изучению белых карликов, и на тот момент решили, что таких звёзд в ней две. Белый карлик — это звезда, которая достигла финального этапа своей жизни: расширившись до красного гиганта, она исчерпала запасы топлива, сбросила внешние слои и осталась с горячим инертным ядром. При последующем изучении данных стало ясно, что второй объект относится к классу коричневых карликов.

Коричневые карлики — это уже не планеты, но ещё не звёзды. Они как минимум в 13 раз массивнее Юпитера, но недостаточно массивны, чтобы вырабатывать тепло и давление для превращения водорода в гелий. Это своего рода несостоявшиеся звёзды. Коричневый карлик в этой системе — один из крупнейших среди известных, поскольку его масса составляет от 75 до 88 масс Юпитера. Ошибка в классификации была допущена потому, что при первоначальном наблюдении коричневый карлик был повернут к телескопу стороной, обращённой к белому карлику. При последующем наблюдении к телескопу была обращена ночная сторона объекта.

Астрономов интересует реакция атмосфер горячих юпитеров на интенсивное излучение звезды в той же системе — доходит до того, что молекулы в атмосфере начинают распадаться. Но такие планеты трудно обнаруживать и наблюдать. Этому мешает излучение звёзд-хозяев и их склонность к звёздным бурям: масса планеты измеряется по красному и синему смещениям звёзд, порождаемым гравитационным воздействием планеты. Но это затруднительно сделать, когда звезда быстро вращается и производит вспышки. В некоторой степени их аналогами как раз являются системы из белых и коричневых карликов: первые меньше большинства звёзд, но всё ещё могут выделять достаточно тепла, чтобы сжигать своих компаньонов; а вторые имеют примерно те же размеры, что горячие юпитеры.

Система WD 0032–317 также интересна с позиции изучения эволюции звёзд. Температура белого карлика пока достаточно высока — она указывает, что в таком статусе звезда пребывает «всего» около миллиона лет. При массе 0,4 от массы Солнца такой звезде потребовалось бы слишком много времени, чтобы стать белым карликом — больше возраста самой Вселенной. Учёные предполагают, что раньше два объекта находились в одной газовой оболочке, и в какой-то момент газовый гигант поглотил своего компаньона. Коричневый карлик, в свою очередь, вероятно, помог главной звезде утратить часть своей массы и ускорил её превращение в белого карлика.

Астрономы запечатлели зарождение газового гиганта у молодой звезды

Потрясающее изображение скопления материи вокруг звезды V960 Mon, светящегося ярко-голубым цветом в центре золотых «крыльев» из газа и пыли, было создано совместными наблюдениями с Очень Большого Телескопа (VLT) и Атакамской большой антенной решётки миллиметрового диапазона (ALMA). Изучение пылевых сгустков вокруг звезды V960 Mon, расположенной в 5000 световых лет от Солнца, в созвездии Единорога, покажет, как рождаются газовые планеты-гиганты, подобные Юпитеру.

 Источник изображений: ESO/ALMA/Weber

Источник изображений: ESO/ALMA/Weber

Астрономы впервые обратили внимание на молодую звезду в 2014 году, когда она неожиданно увеличила яркость примерно в 20 раз по сравнению с обычной величиной. Наблюдения с помощью инструмента VLT Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) были проведены вскоре после этой вспышки, благодаря чему учёным удалось получить изображения звёздной системы с беспрецедентным уровнем детализации. «Это открытие действительно захватывающее, поскольку оно знаменует собой самое первое обнаружение скоплений вокруг молодой звезды, которые потенциально могут породить планеты-гиганты», — говорится в заявлении наблюдателя Алисы Зурло (Alice Zurlo) из чилийского университета Диего Порталеса.

Исследования показали, что газопылевое облако вокруг V960 Mon, образует серию сложных спиральных рукавов, которые простираются на расстояния, превышающие размер Солнечной системы. Это открытие было подтверждено с помощью ALMA. В то время как VLT и SPHERE предоставили детализированные изображения поверхности сгустков пыли и газа, ALMA смогла «заглянуть» глубже, раскрывая астрономам внутреннюю структуру системы и механизм формирования газового гиганта.

«При использовании ALMA стало очевидно, что спиральные рукава подвергаются фрагментации, что приводит к образованию сгустков с массами, подобными массам планет», — сказал Зурло. «Наша группа искала признаки формирования планет более десяти лет, и мы очень взволнованы этим невероятным открытием», — поддержал его исследователь чилийского университета Сантьяго Себастьян Перес (Sebastián Pérez).

Астрономы называют два способа формирования газовых планет-гигантов. Первый — аккреция, процесс приращения массы небесного тела путём гравитационного притяжения материи из окружающего пространства. Второй — гравитационная неустойчивость, при которой сверхплотные участки протопланетного диска из газа и пыли вокруг звезды коллапсируют.

Объединённые изображения, полученные с помощью ALMA и SPHERE, дали астрономам первые свидетельства наблюдения механизма формирования газового гиганта. «Никто никогда до сегодняшнего дня не проводил реального наблюдения гравитационной нестабильности, происходящей в планетарных масштабах», — заявил руководитель чилийского исследовательского университета Сантьяго Филипп Вебер (Philipp Weber).

 Слева - изображение с VLT, справа - с ALMA

Слева — изображение с VLT, справа — с ALMA

Команда чилийских астрономов намерена продолжить изучение процесса формирования этой планетарной системы при помощи Чрезвычайно Большого Телескопа (ELT), который в настоящее время строится в районе пустыни Атакама на севере Чили. Новый телескоп поможет раскрыть «секреты» V960 Mon, скрытые от VLT и ALMA, включая химический состав газопылевых облаков вокруг звезды.

Астероид заставил заглючить нейтронную звезду в нашей галактике — у неё нарушилась скорость вращения

Расположенная в 30 тыс. световых годах от центра Млечного Пути нейтронная звезда (магнетар) SGR 1935+2154 некоторое время назад резко «заглючила» — изменила скорость своего вращения, что сопровождалось быстрым радиовсплеском. Группа китайских учёных предложила объяснение зафиксированных сбоев: аномалии могут быть вызваны падением астероида, который был притянут гравитационным полем звезды и разорван на части.

 Источник изображения: nasa.gov

Источник изображения: nasa.gov

Как и все нейтронные звёзды, магнетары появляются, когда у массивной звезды заканчивается топливо для термоядерного синтеза, удерживающего её от коллапса под действием собственной гравитации. После взрыва сверхновой внутреннее ядро сжимается, порождая звёздный остаток с массой Солнца и размерами среднего земного города. В результате силовые линии магнитного поля умирающей звезды сближаются, порождая мощнейшие магнитные поля среди всех объектов Вселенной. Поэтому такие нейтронные звёзды называют магнетарами.

Иногда магнетары производят быстрые радиовсплески — первый из них был обнаружен в 2007 году, и его природа тогда была неясна. В 2020 году была установлена связь между быстрыми радиовсплесками и нейтронной звездой SGR 1935+2154 — природу этой связи попытались объяснить китайские исследователи. Нейтронные звезды могут быть окружены остатками своих планетарных систем, и среди этих обломков могут оказаться астероиды. Когда астероид притягивается гравитацией магнетара и разрушается, импульс этого космического камня по законам физики не может исчезнуть бесследно — он сообщается нейтронной звезде. Если астероид движется в направлении вращения нейтронной звезды, то при их столкновении последняя ускоряет вращение («сбой» или «глюк»); в противоположном случае оно замедляется («антисбой» или «антиглюк»).

Остатки разрушенного гравитацией астероида попадают в ловушку интенсивного магнитного поля магнетара, в результате чего силовые линии изменяют конфигурацию, прерываются и снова соединяются, на последнем этапе производя быстрый радиовсплеск. В конце концов остатки космического камня попадают на поверхность нейтронной звезды, производя взрыв чудовищной силы: подсчитано, что падающий на нейтронную звезду объект массой с один зефир выделяет энергию, эквивалентную детонации тысячи водородных бомб.

Это значит, что ударяющееся о поверхность нейтронной звезды вещество астероида создаёт мощные энергетические вспышки на разных частотах спектра, и эти вспышки могут обнаруживаться астрономами. Исходя из этого посыла, учёные смогут и дальше фиксировать столкновения астероидов с магнетарами, укрепляя тем самым связь между нейтронными звёздами и быстрыми радиовсплесками.

NASA опубликовало снимок спиральной галактики UGC 11860, пережившей недавний взрыв сверхновой

NASA опубликовало фото отдалённой галактики, сделанное космическим телескопом «Хаббл» — она пережила относительно недавний взрыв сверхновой. Галактика UGC 11860 находится в 184 млн световых лет от Земли в созвездии Пегаса.

 Источник изображения: NASA

Источник изображения: NASA

Речь идёт о спиральной галактике, похожей на наш собственный Млечный путь — на снимке отчётливо заметны рукава, исходящие из яркого ядра галактики и свивающиеся в спиралеобразную структуру.

Судя по фото, опубликованному NASA, UGC 11860 находится в довольно стабильном состоянии, и как сообщает Space.com, «спокойно плывёт» в космосе. Тем не менее, по данным космического агентства, в недавнем прошлом она пережила «невообразимо мощный звёздный взрыв».

Когда жизнь массивной звезды подходит к концу, она погибает в «эффектном» взрыве, превращаясь в сверхновую. На этом этапе звезда становится чрезвычайно яркой, выбрасывая в окружающий космос огромное количество материи и формирует расширяющиеся оболочки из газа и пыли, по остаткам которых не в последнюю очередь и можно отследить недавний взрыв.

Как заявляют в NASA, высокоэнергетические процессы при взрыве отвечают за формирование разнообразных химических элементов, от кремния до никеля. Это, в частности, позволяет многое понять о происхождении многих химических элементов на Земле.

Наблюдения UGC 11860 проводились ещё в 2014 году с использованием камеры «Хаббла» Wide Field Camera 3, но снимок опубликован NASA только теперь. Данные с «Хаббла» позволили астрономам подробно изучить последствия звёздного взрыва и сохранившиеся в галактике остатки сверхновой после него.

Учёные нашли «обнажённые» звёзды — недостающее звено в эволюции перед взрывом килоновой

Международная группа учёных рассказала об обнаружении нового класса звёзд, представляющих собой недостающее звено в эволюции двойных систем, в конце жизни которых происходит столкновение нейтронных звёзд.

 Источник изображений: uni-heidelberg.de

Источник изображений: uni-heidelberg.de

Считается, что при сопровождающем такое столкновение взрыве — килоновой — возникают условия для формирования элементов тяжелее железа: серебра, золота и платины, которые не могут возникать в звёздных ядрах. Поэтому слияния нейтронных звёзд жизненно важны для распространения тяжёлых элементов во Вселенной. Недостающим звеном эволюции килоновых являются входящие в двойные системы звёзды, внешние слои водорода которых поглощаются звездой-компаньоном. «Пострадавшая» при этом процессе звезда остаётся с обнажёнными плотными горячими слоями гелия, образовавшегося в результате синтеза водорода.

Астрономам уже известно о существовании малых и, напротив, массивных обнажённых звёздах (звёздах Вольфа — Райе), но они либо слишком малы, либо слишком велики, чтобы оказаться в системах, производящих килоновые. Ранее не удавалось обнаружить гелиевые звёзды с массой от двух до восьми солнечных. Из-за этого даже выдвигалась гипотеза о «разрыве масс гелиевых звёзд» и возникали вопросы, могут ли модели жизненного цикла массивных звёзд быть ошибочными. Теперь же международной группе учёных под руководством доцента Университета Торонто Марии Друт (Maria Drout) удалось обнаружить 25 возможных примеров объектов, представляющих это недостающее звено эволюции.

Обнажённые гелиевые звезды промежуточной массы начинают жизненный цикл как гиганты с массой от 8 до 25 солнечных. Они находятся в двойных системах с компаньонами, которые постепенно захватывают их внешние слои. Когда у такой звезды заканчивается топливо для ядерного синтеза, она производит взрыв — сверхновую, при котором выбрасывается относительно небольшое количество вещества, но остаётся ядро в виде нейтронной звезды. В этот момент они меняются местами в паре, и уже новая нейтронная звезда начинает поглощать своего компаньона, который тоже в какой-то момент производит сверхновую.

 Эволюция двойных систем с обнажёнными звёздами

Эволюция двойных систем с обнажёнными звёздами

Образуется двойная система нейтронных звёзд, состоящая из пары тесно связанных «мертвецов», излучающих при вращении вокруг друг друга гравитационные волны. Эти гравитационные волны уносят с собой момент импульса двойной системы, нейтронные звёзды закручиваются по спирали всё быстрее, пока они не столкнутся и не произведут килоновую. Но для обнаруженных учёными объектов этот сценарий располагается ещё в отдалённом будущем.

Астрономы предполагают, что есть причина, по которой обнаружить обнажённые звёзды промежуточной массы так трудно. Свет, излучаемый ими в видимом диапазоне, перебивается светом сжигающих водород компаньонов. Чтобы обойти это ограничение, исследователи начали искать их в ультрафиолетовом диапазоне, и поиски начали с расположенных неподалёку от Млечного Пути карликовых галактик — Большого и Малого Магеллановых Облаков. В результате удалось обнаружить 25 объектов, которые произведут сверхновые и пары нейтронных звёзд с последующим слиянием.

Одна из таких звёзд сильно отличается от того, что ожидали увидеть учёные: она пока ещё не полностью растеряла внешний водородный слой, и если подобный механизм характерен для других объектов промежуточной массы, то они могут казаться намного больше и холоднее, чем есть на самом деле. Это значит, что звёзды нового класса, возможно, всё время прятались у всех на виду.

На заре формирования Солнечная система пережила взрыв близкой сверхновой — стечение обстоятельств помогло ей уцелеть

Как считают учёные, взрыв близкой сверхновой рядом с Солнцем на заре формирования нашей звезды мог поставить точку в истории формирования нашей звёздной системы — если бы не облако молекулярного газа, выступившего в роли своеобразного щита.

 Иллюстрация. Источник изображения: NASA

Иллюстрация. Источник изображения: NASA

Учёные пришли к такому мнению после изучения изотопов элементов, обнаруженных в метеоритах. Обычно такие объекты являются фрагментами астероидов, сформировавшихся из материалов, находившихся рядом, когда формировалась звезда и другие планеты. Таким образом, метеориты являются своеобразными остатками, позволяющими исследователям реконструировать эволюцию Солнечной системы.

Изучение радиоактивных изотопов алюминия в образцах метеоритов позволило установить, что около 4,6 млрд лет назад в системе появился дополнительный радиоактивный алюминий — лучшим объяснением этому, по мнению учёных, является «впрыск» материала от взорвавшейся рядом сверхновой.

По данным исследователей Национальной астрономической обсерватории Японии, находившаяся во «младенчестве» Солнечная система, вероятно, действительно пережила такой взрыв, а окружавший её «кокон» защитил от полного уничтожения. Взрывы сверхновых обычно случаются, когда у массивных умирающих звёзд заканчивается топливо для ядерного синтеза и их ядра больше не могут противостоять гравитационному коллапсу. Это и приводит к взрыву, благодаря которому в космос выбрасываются элементы, накапливавшиеся во время жизни звезды. Материалы становятся кирпичиками следующего поколения звёзд — но достаточно мощный взрыв может негативно повлиять на находящуюся рядом звезду и зарождающуюся планетную систему.

Поскольку звёзды обычно рождаются в гигантских облаках молекулярного газа, по мнению учёных, у взорвавшейся сверхновой ушло около 300 тыс. лет, чтобы «взломать» плотную защиту, окружавшую Солнечную систему. Метеориты, богатые радиоактивными изотопами, в своё время откололись от астероидов, родившихся в первые 100 тыс. лет существования Солнечной системы, когда она всё ещё находилась в плотном газовом «коконе», который защищал её от жёсткой радиации — радиация могла негативно сказаться на формировании планет вроде Земли. Новые результаты свидетельствуют о том, что плотные «нити», сформировавшиеся из окружавшего систему газа, могли задержать и доставить в регион, близкий к Солнцу, и радиоактивные изотопы. Ожидается, что открытие станет критически важным для понимания процесса формирования и эволюции звёзд и их планетарных систем.

Например, подобные «нити» могут играть важную роль в защите молодой Солнечной системы от жёсткой радиации соседних звёзд, которая могла бы «испарить» протозвёздный диск, что повлияло бы на его конечный размер, в результате это обязательно сказалось бы на формировании планет в диске.

Гигантская планета попала в дисковый ад звезды и вызвала вспышку в триллион раз ярче мощнейшей солнечной

Учёные Лестерского университета (Великобритания), кажется, разгадали тайну того, почему протозвезда FU Ori в 1200 световых годах от Земли 85 лет назад внезапно увеличила свою яркость и до сих пор её не снизила. Виной вспышка, которая в триллион раз мощнее самой мощной вспышки на Солнце, могло быть разрушение гигантской планеты о расположенный вокруг звезды протопланетный диск из сверхгорячего газа и пыли, и последующее поглощение звездой вещества.

 Источник изображений: eurekalert.org

Источник изображений: eurekalert.org

Согласно результатам проведённого исследователями моделирования, к растущей звезде могла слишком близко подойти планета в десять раз крупнее Юпитера. Это привело к «экстремальному испарению» супер-юпитера — планета сгорела в перегретом супе из вещества, вращающегося вокруг звезды, а часть вещества планеты звезда поглотила. Авторы работы охарактеризовали этот процесс как «дисковый ад» для молодых планет. Протопланетные диски считаются чем-то вроде яслей планет, и теперь становится ясно, что в этих яслях царят отнюдь не тишина и покой. Это суровые области, в которых множество, если не большинство молодых планет сжигается или даже поглощается своими звёздами.

 Поглощение планеты на начальной стадии. Источник изображения: eurekalert.org

Поглощение планеты на начальной стадии.

В предложенной учёными модели в протопланетном диске системы FU Ori образовалась область гравитационной нестабильности и порождённый ею сгусток вещества по размеру больше Юпитера, но с гораздо меньшей плотностью. Этот объект с высокой скоростью приблизился к звезде и на расстоянии около 15 млн км от неё столкнулся с протопланетным диском, настолько горячим, что он сжёг внешние слои атмосферы молодой планеты. Гравитационное воздействие FU Ori породило экстремальные приливные силы, которые растянули планету в одном направлении и сплющили в другом — этот процесс называют «эффектом лапши» или «спагеттификацией».

 Поглощение планеты на конечной стадии — в нижней части обозначен её остаток

Поглощение планеты на конечной стадии — в нижней части обозначен её остаток

Всё это обеспечило звезду, вокруг которой вращается протопланетный диск, свежим веществом, которым можно «полакомиться». Возникла мощная вспышка, а звезда стала светиться ярче. Учёные считают, что это не единичный прецедент — аналогичные процессы могут протекать и в других формирующихся звёздных системах, но FU Ori отличают как продолжительность вспышки, так и её яркость, которая в триллион раз превысила любую из солнечных.

Астрономы обнаружили звезду, которая превращается в алмаз размером с планету

Недавно астрономами были обнаружены признаки того, что белый карлик, расположенный приблизительно в 104 световых годах от Земли, медленно «кристаллизуется» в алмаз размером с планету. Открытие частично подтверждает существующие теории об окончательной судьбе большинства звёзд.

 Источник изображения:  Daniele Levis Pelusi/unsplash.com

Источник изображения: Daniele Levis Pelusi/unsplash.com

Данные телескопа Gaia Европейского космического агентства (ESA) позволяют предположить, что белый карлик гравитационно связан с системой из трёх звёзд — HD 190412. Наблюдения свидетельствуют, что его ядро находится в процессе кристаллизации, что может мешать установить реальный возраст звезды. Хотя прочие светила из этого «квартета» насчитывают приблизительно по 7,3 млрд лет, белый карлик, возможно, намного моложе, его возраст предположительно составляет около 4,2 млрд лет. Результаты исследования, проведённого учёными из Австралии, Канады, Великобритании и США, доступны в базе arXiv, но пока не получили рецензий, поэтому читателям стоит воспринимать информацию с осторожностью.

Белый карлик представляет собой позднюю стадию жизненного цикла звезды — она превращается в подобное небесное тело после того, как сожгла весь водород. На этом этапе у звёзд с массами от низкой до умеренной в результате термоядерных реакций сбрасываются внешние оболочки и остаётся чрезвычайно плотное ядро, которое, собственно, и является белым карликом, масса звезды может умещаться в объёме, эквивалентном объёму Земли. Когда окончательно сжигают топливо более массивные звёзды, они могут коллапсировать в чёрные дыры.

Изначально температура белых карликов чрезвычайно высока, но постепенно они остывают и кристаллизуются, поскольку новые источники энергии отсутствуют. В итоге такие звёзды, предположительно, станут холодными и тёмными объектами — чёрными карликами, по составу и структурно похожими на алмазы. Согласно теориям учёных, на подобный процесс уйдёт намного больше 13,8 млрд лет, прошедших со времён Большого взрыва, поэтому, вероятно, чёрных карликов пока во вселенной не существует. Тем не менее, подобная судьба, как ожидается, в итоге ожидает около 97 % звёзд Млечного пути, включая Солнце.

Согласно существующим теориям, по мере приближения тепловой смерти Вселенной последними останутся только чёрные дыры и чёрные карлики, остальные звёзды и галактики к тому времени уже исчезнут. Обнаружение звезды в процессе кристаллизации так близко к Солнечной системе поможет астрономам лучше понять происходящие процессы и насколько такие звёзды распространены вообще. Пока считается, что из 100 ближайших звёзд меньше 10 — белые карлики, поэтому находка имеет большую ценность для наблюдений.

Также не так давно открыта планета, вращающаяся вокруг двух звёзд — как Татуин из «Звёздных войн», и пока астрономам известно только 12 циркумбинарных систем.

Открыта планета, вращающаяся вокруг двух звёзд — как Татуин из «Звёздных войн»

Международная группа астрономов открыла вторую в истории многопланетную циркумбинарную звёздных систему, что даёт поклонникам «Звёздных войн» надежду на то, что однажды они смогут отправиться на планету, похожую на Татуин. Недавно обнаруженная планета BEBOP-1c присоединяется к TOI-1338b, обнаруженной в той же системе в 2020 году. Пока астрономам известно только 12 циркумбинарных систем, и это вторая система, в которой находится более одной планеты.

 Источник изображения: hothardware.com

Источник изображения: hothardware.com

Циркумбинарная система состоит как минимум из одной планеты, которая вращается вокруг двух звёзд вместо одной. Планеты, вращающиеся вокруг этих двойных солнечных систем, были обнаружены с использованием нескольких различных методов. Например, TOI-1338b была обнаружена транзитным методом, когда планета проходила перед более яркой из двух звёзд, вокруг которых вращается. BEBOP-1c, с другой стороны, была обнаружена с использованием доплеровского метода, также известного как метод колебания или метод радиальной скорости.

Это метод, который использовался для исследования первой экзопланеты. Команда использовала самые современные инструменты, установленные на двух телескопах в пустыне Атакама в Чили. Хотя команде не удалось измерить массу TOI-1338b с помощью этого метода, им удалось обнаружить BEBOP-1c. Планета имеет период обращения 215 дней и массу в 65 раз больше, чем Земля. Она была названа в честь проекта по сбору астрономических данных Binaries Escorted By Orbiting Planets (BEBOP).

Поскольку в случае циркумбинарной геометрии обе звезды вращаются вокруг друг друга, они действуют как гигантская лопасть, которая возмущает ближайшее к ним пространство и препятствует формированию планет, за исключением областей, которые находятся в спокойном состоянии и находятся далеко от звезды.

На данный момент учёным не удалось определить размер BEBOP-1c, но они продолжают исследования методом транзита с целью установить её массу. Что касается ранее открытой планеты TOI-1338b, астрономам удалось установить её предельную массу и плотность. По словам учёных, плотность планеты невысока и сопоставима с «бисквитным тортом», что делает её оптимальной для дальнейших исследований с помощью космического телескопа «Джеймс Уэбб».

Учёные впервые засекли, как звезда поглотила близлежащую планету — в будущем Землю ждёт то же самое

Астрономы впервые смогли наблюдать процесс поглощения планеты солнцеподобной звездой. Это позволит пролить свет на то, что именно случится с Землёй через несколько миллиардов лет, когда умирающее Солнце расширится, буквально пожирая нашу планету.

 Иллюстрация. Источник изображения: International Gemini Observatory

Иллюстрация. Источник изображения: International Gemini Observatory

Изучая звёзды на разных стадиях их эволюции, учёные давно установили, что Солнце и подобные ему звёзды, «умирая», проходят стадию «красных гигантов», увеличиваясь в 100‒1000 раз в сравнении с исходным диаметром, попутно поглощая находящиеся на их орбитах планеты. Хотя исследователи давно установили, как будут протекать события, до недавних пор было невозможно обнаружить какие-либо реальные свидетельства таких сценариев. Как сообщили журналистам представители Массачусетского технологического института (MIT), ранее учёные часто обнаруживали звёзды незадолго до поглощения ими планет или вскоре после, но увидеть сам процесс поглощения так и не удавалось.

В ходе исследования всплеска излучения, получившего название ZTF SLRN-2020 и произошедшего в 12 тыс. световых лет от Земли, звезда всего за неделю увеличила яркость в 100 раз. Дальнейшие исследования зарегистрированного в 2020 году явления показали, что данный источник в процессе своей активности сформировал большое количество «холодной» пыли. Хотя ранее считалось, что вспышка могла произойти в результате слияния с другой звездой, дополнительные исследования с помощью инфракрасного телескопа NEOWISE показали, что изначальный выброс энергии был в тысячу раз меньше, чем обычно бывает при слияниях звёзд.

Другими словами, тело, поглощённое звездой, было в 1000 раз меньше, чем любая из звёзд, наблюдавшихся ранее в процессе слияния. Например, масса Юпитера как раз составляет около одной тысячной массы Солнца. Учёные пришли к выводу, что речь шла именно о поглощении планеты. Анализ данных показал, что масса «выброшенного» в ходе события водорода составила 33 земных массы, а пыли — 0,33 земных массы. Расчёты позволили учёным утверждать, что масса наблюдавшейся звезды составляла 0,8‒1,5 солнечной, а масса планеты — 1‒10 масс Юпитера. Ожидается, что Землю постигнет та же судьба, когда солнце станет красным гигантом примерно через 5 млрд лет. Впрочем, вспышка в этом случае для отдалённого наблюдателя будет не такой яркой.

Что точно происходило с планетой в наблюдавшемся случае, пока неизвестно. Тем не менее, теперь учёные представляют себе, как именно выглядит планетарное поглощение, и смогут выявлять похожие события в будущем. Подробное описание исследования опубликовано в докладе в журнале Nature.

На днях появилась информация о том, что японским астрономам под руководством Шуна Иноуэ (Shun Inoue) из Киотского университета удалось поймать сильнейшую за всю историю наблюдений вспышку на звезде.

Астрономы впервые зафиксировали блицар, но это не точно

Анализируя данные, полученные обсерваториями LIGO и VIRGO, которые изучают гравитационные волны, а также проектом CHIME (Canadian Hydrogen Intensity Mapping Experiment), исследователи, вероятно, нашли доказательства первого в истории наблюдения блицара.

 Источник изображения: Aman Pal / unsplash.com

Источник изображения: Aman Pal / unsplash.com

Блицар — считающееся гипотетическим астрономическое событие, вызванное коллапсом чрезмерно массивной нейтронной звезды в чёрную дыру. Событие происходит в результате случившегося ранее слияния двух нейтронных звёзд — они порождают нестабильную промежуточную нейтронную звезду, которая вращается настолько быстро, что только центробежные силы удерживают её от немедленного превращения в чёрную дыру. Однако сильные магнитные поля со временем замедляют её вращение, она всё-таки становится чёрной дырой и уходит за горизонт событий. В результате этого коллапса космическая «динамо-машина» уничтожается, и энергия магнитных полей высвобождается в виде быстрого радиовсплеска в широком диапазоне — это и есть блицар.

Учёные предположили, что такое событие, возможно, уже было зафиксировано ранее. Повторяющиеся быстрые радиовсплески обычно связываются с магнетарами — нейтронными звёздами с чрезвычайно сильными магнитными полями. Но если событие носит единичный характер, можно предположить, что породившие его условия уничтожили источник. Поэтому было решено объединить данные обсерваторий LIGO и VIRGO, наблюдающих гравитационные волны, и проекта CHIME, который эффективно фиксирует быстрые радиовсплески. Данные отфильтровали по относительно простому принципу: искомое событие должно было произойти в одной области неба примерно в одно время, причём гравитационная активность должна была быть зафиксирована раньше, чем радиоизлучение. Из 21 слияния нейтронных звёзд, обнаруженного в гравитационных волнах, одно совпало с быстрым радиовсплеском. Причём событие GW190425 (гравитационные волны) произошло за 2,5 часа до FRB 20190425A (быстрый радиовсплеск).

К сожалению, изучающих гравитационные волны обсерваторий пока недостаточно много, и учёные пока не берутся заявлять с полной уверенностью, что это был блицар — они утверждают, что быстрый радиовсплеск с 70-процентной вероятностью произошёл в области слияния нейтронных звёзд. Вероятность случайного совпадения двух этих событий оценивается как 0,004. По данным детекторов гравитационных волн, до слияния нейтронные звезды имели 1,35 и 2,0 масс Солнца, а после него образовался объект в 3,2 массы Солнца. При этом невращающаяся нейтронная звезда должна быть не тяжелее, чем 2,6–3,0 массы Солнца, чтобы не коллапсировать в чёрную дыру. Дальнейшее изучение подобных объектов и событий поможет уточнить теоретические значения этих величин.

«Джеймс Уэбб» запечатлел звезду, которая готовится стать сверхновой

NASA поделилось изображением звезды WR 124, которое получил космический телескоп «Джеймс Уэбб» (JWST). Светило располагается в созвездии Стрельца на расстоянии 15 тыс. световых лет от Земли. Наиболее интересной особенностью данной звезды является то, что она находится в процессе, предшествующем превращению в сверхновую.

 Источник изображения: nasa.gov

Источник изображения: nasa.gov

Первое изображение звезды WR 124 телескоп получил в июне 2022 года — этот редкий объект находится в фазе Вольфа — Райе. Такие звезды становятся одними из наиболее крупных и ярких звёзд в ночном небе, и после данной фазы у массивных звёзд следует взрыв сверхновой. По оценкам учёных, масса WR 124 в 30 раз превышает солнечную массу, и к настоящему моменту её потери вещества в десять раз превышают массу Солнца. Со временем выбрасываемый звёздами Вольфа — Райе газ остывает и образует космическую пыль.

Космическая пыль, которая успешно наблюдается в инфракрасном диапазоне, интересует астрономов по ряду причин, и в первую очередь потому, что это важный строительный блок для объектов Вселенной. Он может укрывать формирующиеся звезды и образовывать планеты. На данный момент учёные не располагают убедительной теорией, способной объяснить количество присутствующей во Вселенной космической пыли — её больше, чем предсказывает теория, — и есть вероятность, что новые данные «Джеймса Уэбба» помогут в решении этой задачи.

Пока изучающие космическую пыль астрономы не обладали достаточным объёмом данных, чтобы исследовать особенности её образования в средах вроде WR 124, а также понять, достаточны ли размеры её частиц и её общий объём, чтобы «выжить» при взрыве сверхновой, сохранив статус строительного материала. Результаты прямых наблюдений объекта помогут в дальнейших исследованиях вопроса, пояснили в NASA.

window-new
Soft
Hard
Тренды 🔥
США бессрочно разрешат корейским производителям памяти поставлять оборудование в Китай 55 мин.
Южный полюс Луны остался непокорённым, заявили китайские учёные — индийский луноход совершил посадку слишком далеко от него 3 ч.
Память Micron типа HBM3E впечатлила клиентов, NVIDIA готовится её сертифицировать 3 ч.
Выручка Micron обрушилась в два раза в ушедшем фискальном году, но компания уже встала на путь восстановления 4 ч.
Intel начнёт выпускать чипы по техпроцессу Intel 4 в Ирландии на этой неделе 6 ч.
Oracle запустила bare-metal инстансы с NVIDIA H100 9 ч.
InnoGrit представила первый китайский SSD-контроллер стандарта PCIe 5.0 — он уже массово производится 9 ч.
Meta представила смарт-очки Ray-Ban Meta Smart Glasses с 12-Мп камерой, 32 Гбайт памяти и ценой $299 9 ч.
Новая статья: Обзор игрового ноутбука MSI Katana 17 B13VGK-471RU: я — твой Клинок Фронтира 11 ч.
Шведские власти окончательно закрыли Ericsson дорогу в Россию 12 ч.