Опрос
|
реклама
Быстрый переход
«Джеймс Уэбб» заметил в юных галактиках необъяснимо много углеродной пыли
20.07.2023 [09:56],
Геннадий Детинич
Космическая обсерватория «Джеймс Уэбб» продолжает срывать покровы и расширять границы знаний. Новое наблюдение показало, что на заре Вселенной было необъяснимо много углерода, который, согласно нашим гипотезам, не мог там появиться в фиксируемых объёмах. Благодаря новым открытиям учёные получают новые данные для уточнения теорий эволюции звёзд, галактик и Вселенной. ![]() Редкая звезда типа Вольфа — Райе, которая «пылит» не хуже сверхновых. Источник изображения: NASA, ESA, CSA, STScI, Webb ERO Как сообщили учёные Кембриджского университета (Великобритания) в своей статье в журнале Nature, углеродная пыль в больших объёмах обнаружена в галактиках на рубеже 800 млн лет после Большого взрыва. Углерод и другие тяжёлые атомы (по представлению астрофизиков, кроме водорода и гелия тяжёлые все элементы) рождаются только в горниле звёзд и в виде пыли могут быть представлены преимущественно в одном случае — когда звезда превратится в сверхновую и развеет свою оболочку по окружающей Вселенной. Исходя из этого, на отметке 800 млн лет не должно было быть углерода и всего остального в заметных объёмах, поскольку звёзды просто не успели бы проэволюционировать до нужных кондиций и процессов. Наблюдения «Уэбба» опровергли устоявшееся в научной среде мнение. Спектральные линии углерода абсолютно чётко прослеживаются во многих галактиках вблизи временной границы на уровне одного миллиарда лет после Большого взрыва. Это означает, что похожие химические процессы шли повсеместно и с одинаковой скоростью, и явно не так, как мы предполагали. Эти данные внесут значительные коррективы в модели эволюции звёзд и в наше понимание этих процессов. «Наше обнаружение углеродистой пыли на красных смещениях 4–7 позволяет существенно ограничить модели и сценарии производства пыли в ранней Вселенной», — пишет группа специалистов под руководством космолога Йориса Витстока (Joris Witstok) из Кембриджского университета (Великобритания). Впрочем, для обнаруженной странности с углеродом есть объяснение. Согласно одной из гипотез, первые звёзды во Вселенной были сверхмассивными. Такие звёзды эволюционируют намного быстрее, чем звёзды меньшей массы. Это также объясняет, почему мы до сих пор не видели ни одной из первых звёзд (они относятся к так называемому III населению). Все они превратились в сверхновые очень и очень рано и, следовательно, могли создать углерод и другие металлы в то время, куда наши инструменты ещё не могут заглянуть. Среди редких ультрахолодных коричневых карликов с радиоизлучением обнаружен самый холодный
15.07.2023 [11:29],
Геннадий Детинич
Учёные из Австралии обнаружили редкого ультрахолодного коричневого карлика, излучающего радиоволны. Во Вселенной таких меньше десятка на сотню. И он оказался самым холодным за всю историю наблюдения за подобными карликовыми звёздами. На его поверхности холоднее, чем в огне обычного костра на Земле. ![]() Солнце, маленькая обычная звезда, коричневый карлик, Юпитер, Земля. Источник изображения: University of Sydney Звезда с каталожным номером T8 Dwarf WISE J062309.94-045624.6 находится на расстоянии около 37 световых лет от Земли. Она была открыта в 2011 году астрономами из Калифорнийского технологического института (США). Температура на её поверхности всего 425 °C, что даже ниже, чем на поверхности Венеры, и более чем в 10 раз меньше, чем на поверхности Солнца. Коричневые карлики являются промежуточным звеном между самыми маленькими звёздами с термоядерными реакциями и газовыми планетами-гигантами, такими как Юпитер. У коричневых карликов термоядерные реакции не идут, поэтому они тусклые в видимом диапазоне и в целом излучают мало энергии. Радиус данной звезды составляет от 0,65 до 0,95 радиуса Юпитера. Её масса изучена недостаточно хорошо, но звезда массивнее Юпитера как минимум в четыре раза, но не более чем в 44 раза. Солнце, например, в 1000 раз массивнее Юпитера. «Очень редко можно встретить ультрахолодные звёзды типа коричневого карлика, дающие радиоизлучение. Это связано с тем, что их динамика обычно не создаёт магнитных полей, генерирующих радиоизлучение, которое можно обнаружить с Земли, — сказал ведущий автор исследования, опубликованного в журнале The Astrophysical Journal Letters. — Обнаружение этого коричневого карлика, излучающего радиоволны при столь низкой температуре, является интересным открытием». Наши знания об эволюции звёзд очевидно не полные. Уточнять их могут только открытия, которые выходят за рамки известных явлений. Открытие активного в радиодиапазоне коричневого карлика с самой низкой в истории наблюдений температурой поверхности как раз относится к таким явлениям. И оно гарантированно обогатит земную науку новыми данными, которые сделают Вселенную немного понятнее для нас. Открытые «Уэббом» древнейшие галактики на деле могут оказаться звёздами из тёмной материи — таких человечество ещё не видело
13.07.2023 [13:53],
Геннадий Детинич
Первый год наблюдений космической обсерватории «Джеймс Уэбб» принёс множество открытий, включая обнаружение самых древних галактик, появившихся на самой заре нашей Вселенной, когда ей было всего 300 млн лет. Группа учёных поставила под сомнение это открытие, заявив, что эти объекты могут быть звёздами из тёмной материи — первыми, которые человечество увидело в свои инструменты. ![]() Источник изображения: Pixabay Наши знания о Вселенной очень и очень неполны. Значительную часть из них представляют теоретические модели. Наблюдения, особенно с помощью самого современного оборудования, позволяют подтвердить или опровергнуть ту или иную теорию. Космическая обсерватория им. Джеймса Уэбба стала таким инструментом, который позволил заглянуть в эпоху детства и юности Вселенной. Инфракрасные датчики «Уэбба» способны уловить свет, который летел к нам свыше 13 млрд лет, и поэтому ушёл в инфракрасный диапазон — длина волны банально растянулась во время этого эпического полёта и стала невидима в оптическом диапазоне. Инструменты «Уэбба» обнаружили три объекта возрастом от 300 до 400 млн лет после Большого взрыва — это JADES-GS-z13-0, JADES-GS-z12-0 и JADES-GS-z11-0. Спектральный анализ излучения этих объектов показал, что им действительно столько лет, как на это указывает величина их красного смещения. Фактически, это одни из самых молодых галактик во Вселенной, масса которых находится в районе 100 млн солнечных масс. Однако учёные Космин Илие (Cosmin Ilie) и Джиллиан Паулин (Jillian Paulin) из Колгейтского университета и Кэтрин Фриз (Katherine Freese) из Техасского университета в Остине поставили под сомнение это открытие и опубликовали научную работу, в которой обосновали альтернативную версию идентификации этих объектов. Согласно математическому моделированию учёных, все три открытых объекта — это звёзды из тёмной материи. Для гипотетических звёзд III-го населения (таковые пока не наблюдались) масса в 100 млн солнечных масс была бы нормой. Наука предполагает, что первые звёзды в нашей Вселенной должны отличаться от наблюдаемых нами звёзд, и в этом свете объекты JADES-GS-z13-0, JADES-GS-z12-0 и JADES-GS-z11-0 вполне могут оказаться звёздами, а не галактиками. Первыми звёздами. Вещество этих звёзд также может отличаться от вещества в наблюдаемых звёздах. В нашей Вселенной мы видим в звёздах процесс термоядерной реакции, когда водород превращается в гелий. В первых звёздах веществом может быть тёмная материя. Вместо реакции синтеза такие звёзды горят в процессе реакции аннигиляции частиц и античастиц тёмного вещества. Теория это допускает, хотя мы пока не имеем понятия, что такое эта тёмная материя, кроме разве что почти полной уверенности, что это действительно частицы, а не поле, например. К сожалению, чувствительности «Уэбба» не хватает, чтобы обнаружить линии гелия в столь отдалённых от нас по времени объектах. В таком случае мы могли бы точно узнать, идут ли в них термоядерные реакции или нет, и сказать, «тёмные» звёзды это или обычные молодые галактики. Остаётся надеяться на моделирование, которое, кстати, очень удачно может объяснить и появление сверхмассивных чёрных дыр (звезда в 100 млн масс Солнца может сразу коллапсировать в сверхмассивную чёрную дыру), и наличие неуловимого звёздного населения III, и присутствие тёмной материи и много чего ещё, на что официально признанная астрофизическая теория развития Вселенной пока не может дать убедительного ответа. Учёные нашли «обнажённые» звёзды — недостающее звено в эволюции перед взрывом килоновой
12.07.2023 [17:19],
Павел Котов
Международная группа учёных рассказала об обнаружении нового класса звёзд, представляющих собой недостающее звено в эволюции двойных систем, в конце жизни которых происходит столкновение нейтронных звёзд. ![]() Источник изображений: uni-heidelberg.de Считается, что при сопровождающем такое столкновение взрыве — килоновой — возникают условия для формирования элементов тяжелее железа: серебра, золота и платины, которые не могут возникать в звёздных ядрах. Поэтому слияния нейтронных звёзд жизненно важны для распространения тяжёлых элементов во Вселенной. Недостающим звеном эволюции килоновых являются входящие в двойные системы звёзды, внешние слои водорода которых поглощаются звездой-компаньоном. «Пострадавшая» при этом процессе звезда остаётся с обнажёнными плотными горячими слоями гелия, образовавшегося в результате синтеза водорода. Астрономам уже известно о существовании малых и, напротив, массивных обнажённых звёздах (звёздах Вольфа — Райе), но они либо слишком малы, либо слишком велики, чтобы оказаться в системах, производящих килоновые. Ранее не удавалось обнаружить гелиевые звёзды с массой от двух до восьми солнечных. Из-за этого даже выдвигалась гипотеза о «разрыве масс гелиевых звёзд» и возникали вопросы, могут ли модели жизненного цикла массивных звёзд быть ошибочными. Теперь же международной группе учёных под руководством доцента Университета Торонто Марии Друт (Maria Drout) удалось обнаружить 25 возможных примеров объектов, представляющих это недостающее звено эволюции. Обнажённые гелиевые звезды промежуточной массы начинают жизненный цикл как гиганты с массой от 8 до 25 солнечных. Они находятся в двойных системах с компаньонами, которые постепенно захватывают их внешние слои. Когда у такой звезды заканчивается топливо для ядерного синтеза, она производит взрыв — сверхновую, при котором выбрасывается относительно небольшое количество вещества, но остаётся ядро в виде нейтронной звезды. В этот момент они меняются местами в паре, и уже новая нейтронная звезда начинает поглощать своего компаньона, который тоже в какой-то момент производит сверхновую. ![]() Эволюция двойных систем с обнажёнными звёздами Образуется двойная система нейтронных звёзд, состоящая из пары тесно связанных «мертвецов», излучающих при вращении вокруг друг друга гравитационные волны. Эти гравитационные волны уносят с собой момент импульса двойной системы, нейтронные звёзды закручиваются по спирали всё быстрее, пока они не столкнутся и не произведут килоновую. Но для обнаруженных учёными объектов этот сценарий располагается ещё в отдалённом будущем. Астрономы предполагают, что есть причина, по которой обнаружить обнажённые звёзды промежуточной массы так трудно. Свет, излучаемый ими в видимом диапазоне, перебивается светом сжигающих водород компаньонов. Чтобы обойти это ограничение, исследователи начали искать их в ультрафиолетовом диапазоне, и поиски начали с расположенных неподалёку от Млечного Пути карликовых галактик — Большого и Малого Магеллановых Облаков. В результате удалось обнаружить 25 объектов, которые произведут сверхновые и пары нейтронных звёзд с последующим слиянием. Одна из таких звёзд сильно отличается от того, что ожидали увидеть учёные: она пока ещё не полностью растеряла внешний водородный слой, и если подобный механизм характерен для других объектов промежуточной массы, то они могут казаться намного больше и холоднее, чем есть на самом деле. Это значит, что звёзды нового класса, возможно, всё время прятались у всех на виду. В центре нашей галактики обнаружены странные объекты — им дали название объектов G
24.06.2023 [11:02],
Геннадий Детинич
Три года назад в центре нашей галактики астрономы обнаружили четыре необычных объекта, которые выглядели как гигантские облака газа и пыли, но вели себя как звёзды. Первые два объекта с такими же свойствами были открыты там же около 20 лет назад. Вместе их стали называть «объектами G». Многолетний сбор данных позволил сделать обоснованное предположение о природе загадочных образований. ![]() Объекты G в представлении художника. Источник изображения: Jack Ciurlo/UCLA В журнале Nature вышла статья, в которой астрономы объяснили вероятную природу объектов G. Первые два из них были открыты в начале нулевых годов и получили названия G1 и G2. Объекты G3, G4, G5 и G6 были обнаружены в 2020 году. Все они «обитают» в центре нашей галактики Млечный Путь и вращаются вокруг сверхмассивной звезды Стрелец А* (Sgr A*). Впрочем, орбиты первых двух объектов сильно отличаются от орбит четырёх других — они ближе к круговым, тогда как остальные объекты движутся по сильно вытянутым орбитам с периодом до 1600 лет, а минимальный орбитальный период объектов G при этом составляет 170 лет. За первые годы наблюдений сложилось впечатление, что объекты G — это гигантские облака из пыли и газа до 100 а.е. в поперечнике. Однако максимальное сближение объекта G2 с чёрной дырой в 2014 и последующий уход от неё показали, что «облако» повело себя как компактный объект. Если бы это был молекулярный газ (водород), чёрная дыра полностью поглотила бы его с соответствующим выбросом энергии после аккреции. Но этого не произошло. При сближении с чёрной дырой объект стал вытянутой формы, а после удаления вновь приобрёл прежний вид. По сумме полученных данных астрономы предположили, что объект G2 может быть продуктом слияния двух массивных звёзд в ранее двойной системе. Двойные звёзды могли врезаться друг в друга в процессе эволюции системы, а также под влиянием гравитации сверхмассивной чёрной дыры. Собственно обнаружение шести объектов с похожим поведением в окрестностях Стрельца А* как бы намекает о большой вероятности подобного развитии событий. Столкновение двух массивных звёзд теоретически способно создать одно ядро — звезду — окружённое колоссальным пузырём из газа и пыли. ![]() Орбиты известных объектов G. Источник изображения: Anna Ciurlo/Tuan Do/UCLA Galactic Center Group В центре галактики обычно массивное звёздное население и двойных звёздных систем там тоже довольно много, чтобы подобные столкновения случались довольно часто и, особенно, в присутствии сверхмассивной чёрной дыры, гравитация которой провоцировала бы такие события. Поэтому неудивительно, что астрономы обнаружили «деревья в лесу при наблюдении за лесом», правда, таких «деревьев» они раньше не видели, а может просто не замечали по незнанию. Возможно многие из наблюдаемых нами звёзд родились не в процессе обычной эволюции от зародыша протозвезды, а возникли в процессе гибели двойных звёздных систем после слияния звёздных пар. Первые шесть обнаруженных объектов G могут стать толчком к изменениям в теории эволюции звёзд и это важно, поскольку все наши базовые знания о Вселенной строятся на математических моделях и если они в чём-то неверны, то это скажется в области фундаментальной физики и, так или иначе, затронет многие области науки и техники. Звёзды из вторсырья: найдена галактика, которая создаёт светила из того, что выбросила другая галактика
19.06.2023 [22:44],
Матвей Филькин
На Земле все привыкли к переработке отходов, однако никто не представлял, что такое может происходить в космосе. Международная группа учёных под руководством астрономов Шиву Чжан (Shiwu Zhang) и Чжэн Цай (Zheng Cai) из Университета Цинхуа в Китае нашла доказательства того, что огромная галактика внутри ещё большей туманности под названием MAMMOTH-1 собирает материал из пространства вокруг неё, чтобы породить новые звезды. ![]() Источник изображения: NASA Материал туманности содержит элементы, образованные вспышками сверхновых звёзд, которые, как считается, произошли внутри галактик. Это означает, что галактика, которую исследовательская группа называет G-2, в настоящее время формирует звезды из материала, который ранее был выброшен в межгалактическое пространство либо самой галактикой, либо другой близлежащей. «Моделирование показало, что рециркуляция газа — повторное образование газа, который ранее был выброшен из галактики — может поддерживать звёздообразование в ранней Вселенной», — говорится в исследовании, опубликованном в прошлом месяце в журнале Science. В туманности MAMMOTH-1 в изобилии присутствует сырье для звёздообразования, а наблюдения с телескопов «Subaru» и «Keck II» показали, что из туманности в одну из галактик внутри неё проистекают три газообразных потока. MAMMOTH-1 — это особенно огромная туманность, которая оправдывает своё название. Потоки газа из этой туманности простираются на поразительные 100 килопарсек (325 000 световых лет). Эти потоки могут обеспечить любую галактику всем необходимым для рождения нового поколения звёзд. Исследовательская группа создала кинематические модели галактик и туманности, чтобы увидеть, как именно движутся газообразные потоки. Оказалось, что потоки закручиваются по спирали внутрь галактики, что, по их мнению, является ещё одним доказательством наличия огромного количества материала, который может быть переработан в новые звезды. Наблюдения на телескопах Subaru и Keck II показали, что эти потоки светились эмиссионными линиями, указывающими на присутствие водорода и гелия, чего и следовало ожидать. Но в них также присутствовало значительное количество углерода. Присутствие углерода показывает, что облако содержит более тяжёлые элементы, которые, скорее всего, произошли от давно погибших звёзд. В ходе наблюдений за MAMMOTH-1 было обнаружено ещё кое-что: два потока газа, направляющиеся к притягивающей их галактике, исходят из одного и того же квазара. Квазары образуются, когда сверхмассивные черные дыры в центре галактик поглощают достаточно материала, чтобы испустить струи вещества и радиоактивное излучение. Эти струи могут выбрасывать материал из галактики целиком. Исследователи определили, что этот квазар, скорее всего, расположен не в той же галактике, которая притягивает материал. Таким образом, похоже, что это случай, когда одна галактика перерабатывает материал, выброшенный другой. Обнаружена самая быстрая звезда Млечного пути — она движется на скорости в четыре раз выше галактической
15.06.2023 [14:06],
Геннадий Детинич
Около 20 лет назад в нашей галактике впервые была обнаружена одна из так называемых «убегающих» звёзд, скорость которых превышает галактическое притяжение. Это заставит такие звёзды рано или поздно покинуть галактику. Впоследствии астрономы обнаружили ещё несколько таких звёзд и продолжают находить новые. Среди четырёх новых открытий найдены два рекордсмена и один абсолютный чемпион, который движется на скорости в четыре раз выше галактической. ![]() Источник изображения: Pixabay Сегодня доминирует теория, что убегающие звёзды возникают после термоядерного взрыва белого карлика — это класс сверхновых Ia. Обычные сверхновые возникают после коллапса более массивных звёзд на закате их эволюции, тогда как сверхновые типа Ia появляются после накопления белым карликом критической массы. Эту массу белый карлик ворует у звезды-партнёра по двойной системе. Если это лёгкий водород, то термоядерный взрыв происходит как обычно, но если вторая звезда по системе такой же белый карлик, то от него можно получить в основном более тяжёлый гелий и тогда происходит двойной термоядерный взрыв. Сначала термоядерная реакция возникает в оболочке, а затем происходит вторичная детонация ядра звезды. Это процесс называется Dynamically Driven Double-Degenerate Double-Detonation или D6. «Убегающие» звёзды, как считается, появляются в результате двойной детонации белых карликов. Двойной термоядерный взрыв придаёт второй звезде в паре достаточное ускорение, чтобы та в итоге вышла за пределы галактики. Предполагалось, что в нашей галактике Млечный путь около 1000 таких звёзд. Часть из них могли приблудиться из других галактик, благо их скорости это позволяют. Но точно определить количество летящих в межзвёздном пространстве блуждающих звёзд было сложно. Свежие данные европейского астрометрического спутника «Гайя» (Gaia) позволили обнаружить четыре новых гиперскоростных звезды, две из которых оказались рекордсменами. Это J1235, движущаяся на относительной скорости 1694 км/с, и J0927 — летящая относительно Солнца на огромной скорости 2285 км/с. Новое открытие с учётом ранее обнаруженных звёзд-беглецов в количестве 10 штук, позволило уточнить модель появления таких объектов и ещё прочнее связать их со сверхновыми типа Ia, что, в свою очередь, позволило по-новому рассчитать скорость рождения таких звезд. Скорость их появления оказалась хорошо согласованной со скоростью рождения сверхновых типа Ia. Поскольку сверхновые этого типа хорошо видны в телескопы и, более того, они являются «стандартными маяками» для определения расстояний в галактике, можно рассчитать, сколько всего в нашей галактике носится звёзд с безумной скоростью. Расчёты показывают, что таких звёзд может быть миллионы, просто значительная часть из них — это слабосветящиеся объекты, и они пока не обнаружены. На этом фоне возникают опасения, что одна из таких пока необнаруженных звёзд может внезапно оказаться на пути Солнечной системы с весьма неприятными последствиями для Земли и нас с вами. «Если значительная часть сверхновых типа Ia порождает звезду D6, то галактика [Млечный Путь], вероятно, запустила в межгалактическое пространство более 10 млн таких звезд, — пишут исследователи. — Интересным следствием этого является то, что должно существовать большое количество слабых, близких [к нам] звезд D6, запущенных из галактик по всему объёму пространства включая тот, в который входит Солнечная система». Исследование было представлено в журнале Open Journal of Astrophysics и доступно на сайте arXiv. |