Сегодня 03 марта 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → зрение
Быстрый переход

Выходцы из Google представили революционный робот-пылесос Matic, который совсем не похож на других

Бывшие инженеры Google Nest представили Matic — полностью автономный робот-пылесос с новым подходом к уборке. Он использует для навигации пять камер, а не датчики и лидары, как его собратья. Он менее подвержен типичным проблемам роботов-пылесосов, таким как ковры с высоким ворсом, кабели и ограниченное пространство, поскольку действительно «видит» куда движется. Новинке не требуется подключение к интернету, поэтому пользовательские данные в полной безопасности.

 Источник изображений: Flutter

Источник изображений: Flutter

Matic находится в разработке уже шесть лет — с тех пор, как Мехул Нариявала (Mehul Nariyawala) и Навнит Далал (Navneet Dala) покинули Google Nest, чтобы использовать свой совместный опыт в стартапе Flutter для создания по-настоящему автономного домашнего робота-уборщика. В Google разработчики занимались проектированием камеры Nest Cam IQ и умного дверного звонка Nest Hello.

Главной отличительной особенностью нового робота-пылесоса является то, что Matic создаёт трёхмерную карту дома, которая в сочетании с компьютерным зрением позволяет ему маневрировать подобно беспилотному автомобилю. Matic отличается от ставших привычными круглых роботов-пылесосов. Его квадратный приземистый белый корпус с большими колёсами и выдвигающейся насадкой делает его более похожим на мультяшного Wall-E, чем на реальный робот-пылесос Roomba. Разработчики утверждают, что он умеет «имитировать человеческое восприятие и самообучение с помощью камер и нейронных сетей, которые обеспечивают распознавание изображений, принятие решений и 3D-картографирование».

Matic может проводить как влажную, так и сухую уборку. Благодаря машинному зрению он самостоятельно идентифицирует различные типы полов и переключается в соответствующий режим. По словам создателей, ИИ обеспечивает роботу-пылесосу более высокий уровень преодоления препятствий, позволяя ему идентифицировать практически любой объект. Разработчики уверяют, что Matic может опознавать гораздо больше предметов, чем конкуренты. Робот успешно отличает мусор от других предметов, например, кружек или детских игрушек, и объезжает последние.

Ещё одна уникальная особенность Matic — управление жестами. У него также имеется встроенный динамик и микрофоны, поэтому пылесос в состоянии выполнять такие команды, как «Matic, приберись на кухне» или «Matic, помой ванную». Он также может самостоятельно находить места, требующие уборки, каждые несколько часов отправляясь на поиски грязи. «Со временем он узнает ваши предпочтения, например, после ужина убраться на кухне», — утверждают разработчики.

Matic располагает встроенным резервуаром для воды ёмкостью 600 мл и одноразовым пакетом для мусора объёмом один литр. Утилизация сделана максимально простой и беспроблемной. При заполнении контейнера для мусора, Matic паркуется у мусорного ведра и отправляет сообщение об этом. Вынимать мусор придётся человеку самостоятельно, как и наполнять робота водой. В процессе уборки и жидкость, и грязь попадают в один и тот же пакет, впитывающий жидкость, который после заполнения просто выбрасывается в мусорное ведро.

Два больших передних колеса позволяют Matic преодолевать ковры с высоким ворсом и переходы между комнатами, не застревая, а насадка для мытья полов представляет собой роликовую швабру с функцией самоочистки. При этом робот сам определяет, где нужно пылесосить, а где пол лучше помыть. Производитель заявляет, что уровень шума нового пылесоса не превышает 55 дБ, а качество очистки находится на уровне лучших представителей полноразмерных пылесосов.

Отсутствие необходимости подключения к интернету — большой плюс с точки зрения конфиденциальности, ведь большинство современных роботов-пылесосов не выполняют картографирование без подключения к облаку, а значит потенциально могут передавать персональные данные владельца. Минус в том, что интеграция в системы умного дома без подключения к интернету невозможна. Планов по поддержке Amazon Alexa или Google Home у разработчиков пока нет, хотя они изучают возможность интеграции стандарта умного дома Matter.

Благодаря опыту бывших инженеров Tesla, работающих в Matic, и финансовой поддержке соучредителя Nest Мэтта Роджерса (Matt Rogers), основателя Twitter Джека Дорси (Jack Dorsey) и бывшего директора GitHub Ната Фридмана (Nat Friedman), потенциал у компании определённо есть. Время покажет, станет ли Matic гигантским шагом вперёд в домашней робототехнике.

Робот-пылесос Matic оценён производителем в $1800. На этапе предварительного заказа его можно приобрести у производителя по цене $1495, что включает годовое членство в Matic стоимостью $180. Начало поставок запланировано на март 2024 года

Китайцы разработали процессор для машинного зрения, который в 3000 раз быстрее и в 4 млн раз эффективнее современного GPU

Учёные из китайского университета Цинхуа разработали полностью аналоговый фотоэлектронный чип ACCEL, который обещает совершить революцию в задачах высокоскоростного машинного зрения. Чип, сочетающий электронные и оптические технологии, способен продемонстрировать беспрецедентную энергоэффективность и высочайшую скорость вычислений для задач машинного зрения. В этой сфере новый чип радикально превосходит современные графические процессоры.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Традиционные процессоры обладают ограниченной скоростью вычислений и потребляют колоссальное количество энергии при решении задач машинного зрения, таких как распознавание изображений для автономного вождения, робототехники и медицинской диагностики. Эти задачи требуют обработки изображений с высоким разрешением, точной классификации и сверхнизкой задержки.

Чип ACCEL реализует преимущества развивающейся области фотонных вычислений, которые используют свет для обработки информации. Интегрируя дифракционные оптические аналоговые вычисления (OAC) и электронные аналоговые вычисления (EAC) в одном чипе, ACCEL достигает замечательной энергоэффективности и скорости вычислений.

Метод OAC использует управление световыми волнами посредством дифракции для кодирования и обработки информации. При помощи интерференционных паттернов, создаваемых светом, вычисления производятся аналоговым способом, обрабатывая данные непрерывно, а не дискретными цифровыми шагами. Метод EAC использует электронные компоненты для манипулирования непрерывными физическими величинами. Вместо работы с цифровыми сигналами в виде нулей и единиц, EAC использует постоянно меняющиеся аналоговые сигналы.

 Архитектура ACCEL / Источник изображения: Tsinghua University

Архитектура ACCEL / Источник изображения: Tsinghua University

Оба метода дают преимущества для определённых видов вычислений и способствуют разработке задач высокоскоростного зрения.

ACCEL при обработке изображений не требует АЦП для преобразования изображения, напрямую используя для вычислений фототоки, индуцированные светом, что приводит к значительному сокращению задержек. ACCEL достигает системной энергоэффективности 74,8 пета-операций в секунду на ватт, что более чем на три порядка выше, чем у современных графических процессоров. Скорость вычислений достигает 4,6 пета-операций в секунду, при этом более 99 % вычислений выполняются оптически.

Благодаря интеграции оптоэлектронных вычислений и адаптивного обучения ACCEL достигает конкурентоспособной точности классификации объектов в различных задачах. Новый чип продемонстрировал точность 85,5 %, 82,0 % и 92,6 % для задач Fashion-MNIST, 3-классовой классификации ImageNet и задач распознавания покадрового видео соответственно. Примечательно, что ACCEL демонстрирует высокую надёжность даже в условиях низкой освещённости, что делает его пригодным для портативных устройств, автономного вождения и промышленных применения.

 Сравнение скорости и энергоэффективности ACCEL с традиционными методами / Источник изображения: Tsinghua University

Сравнение скорости и энергоэффективности ACCEL с традиционными методами / Источник изображения: Tsinghua University

Сверхнизкое энергопотребление нового чипа значительно снижает тепловыделение, открывая путь дальнейшему совершенствованию и миниатюризации. В отличие от традиционных оптоэлектронных цифровых вычислительных систем, ACCEL гибко сочетает дифракционные оптические вычисления и электронные аналоговые вычисления, а его архитектура обеспечивает масштабируемость, нелинейность и высокую адаптируемость.

В исследовании, опубликованном в журнале Nature, исследователи заявили: «Разработка вычислительной системы, основанной на совершенно новом принципе, является огромной задачей. Однако ещё более важно успешно реализовать эту вычислительную архитектуру следующего поколения в реальные приложения, отвечающие важнейшим потребностям общества».

В рецензии на исследование, опубликованной в журнале Nature's Research Briefing, эксперты высказали убеждение, что «ACCEL может позволить этим архитектурам сыграть роль в нашей повседневной жизни гораздо раньше, чем ожидалось».

Всё новое — это, несомненно, хорошо забытое старое. Самым первым аналоговым вычислительным устройством является хорошо знакомая старшему поколению логарифмическая линейка.

 Источник изображения: myruler.ru

Источник изображения: myruler.ru

Другим известным примером аналоговых вычислительных устройств является настольная аналоговая вычислительная машина МН-7, разработанная в далёком 1955 году. Она успешно решала обыкновенные дифференциальные уравнения до 6-го порядка. Не менее успешно при помощи подобных машин создавались математические модели физических процессов, что использовалось при решении задач АСУ ТП.

 Источник изображения: computerra.ru

Источник изображения: computerra.ru

В аналоговой вычислительной машине (АВМ) мгновенному значению исходной переменной величины ставится в соответствие мгновенное значение другой величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции, как правило, соответствует физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе (например, закон Ома).

Особенности представления исходных величин и построения алгоритмов предопределяют большую скорость работы АВМ и простоту программирования, но ограничивают область применения и точность получаемого результата. АВМ отличается малой универсальностью (алгоритмическая ограниченность) — при решении задач другого класса необходимо перестраивать структуру машины и число решающих элементов.

А теперь мы становимся свидетелями того, как в мире, казалось бы, победивших цифровых технологий, вновь начинают находить применение аналоговые вычисления, вышедшие на новый уровень развития.

Учёные создали полотно из мягких микролинз с изменяемым фокусом — поверхности смогут обрести зрение

Сводная группа физиков и химиков создала материал, который обладает рядом уникальных характеристик. Это своего рода сплав гидрогеля и силикона, который может управляемо и быстро изменять свои размеры и физические характеристики. Одним из применений нового материала может быть машинное зрение с простой фокусировкой массивов мягких линз вплоть до размещения глаз по поверхности кожи роботов.

 Источник изображения: Craig Chandler, University of Nebraska–Lincoln

Источник изображения: Craig Chandler, University of Nebraska–Lincoln

Главной проблемой при создании адаптивного материала на основе гидрогеля и силикона стало отторжение одного от другого. Разработки долго не могли найти способ прочно привязать гидрогель к силиконовой основе. Физикам пришлось звать на помощь химиков. Междисциплинарная команда учёных смогла подобрать рецепт для правильного смешения ингредиентов и условий полимеризации, чтобы полимерные цепочки гидрогеля стали продолжением полимерных цепочек силикона, для чего подошли определенные соединения лития и последующая обработка ультрафиолетом.

На основе нового материала были созданы массивы микролинз, подобно фасеточным глазам насекомых. Способность материала линз менять свои свойства оказалась удобной для реализации системы фокусировки. Что интересно, в процессе фокусировки линзы практически не меняли свою форму. Изменение фокусного расстояния происходило в процессе изменения плотности линз, что меняло угол преломления света. Добиться же изменения плотности материала гидрогелевых линз оказалось достаточно просто — для этого их нагрели до температуры около 80 °C с помощью жидкости, проходящей через капилляры в линзах.

На выходе учёные получили массивы микролинз с регулируемой фокусировкой на гибкой подложке. Такими массивами можно будет покрывать кожу мягких роботов, чтобы помочь им ориентироваться в пространстве без сложной системы бинокулярного зрения. Роботам не придётся вертеть головой. Они будут видеть кожей на 360°. Автомобилям с автопилотом это тоже пригодится, чтобы лучше воспринимать дорожную обстановку.

Но и это не всё. Подобный адаптируемый материал можно будет использовать в биологии для культивирования множества видов живых тканей. Тем более, что гидрогелевая основа сегодня является базовой для подобных работ. Наконец, в перспективе можно будет создавать предметы на вырост, которые росли бы и меняли свою форму вместе с ростом их владельцев. Этому может быть множество применений, многие из которых пока даже не приходят на ум. Но это увлекательное будущее, уверены изобретатели.

Блокирующие синий свет «компьютерные» очки не несут никакой пользы, показало исследование

В погоне за здоровым зрением и крепким сном маркетологи, врачи и пациенты бросились рекламировать, прописывать и носить очки с блокирующими синий свет стёклами. Группа учёных из Австралии и Великобритании взялась оценить эту практику на основе свежих научных работ. Оказалось, что нет достоверных данных о пользе синих фильтров для глаз, здоровья и сна пациентов.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Исследователи из Университета Мельбурна совместно с коллегами из Университета Монаша и Лондонского городского университета подвергли анализу 17 опубликованных исследований из 6 стран, посвящённых использованию очков, блокирующих синий свет. Рандомизированные контролируемые исследования включали от 5 до 156 участников и проводились в течение периода времени от одного дня до пяти недель.

В результате проведенной работы учёные пришли к выводу, что очки, блокирующие синий свет, могут не соответствовать заявлениям рекламодателей и кабинетов оптометрии. Как следствие учёные призывают специалистов и потребителей дважды подумать о выборе очков с фильтрующими стёклами. Как минимум, это будут выброшенные деньги. В опубликованных данных исследователи не нашли убедительных данных о влиянии фильтров синего света в очках на общее состояние глаз, качество сна или зрительную работоспособность.

«Результаты нашего обзора, основанного на современных, наиболее достоверных данных, показывают, что доказательства этих утверждений [о пользе фильтров синего света] неубедительны и неопределенны, — рассказала ведущий автор исследования Лаура Дауни (Laura Downie). — Наши результаты не поддерживают назначение фильтрующих синий свет линз населению в целом. Эти результаты важны для широкого круга заинтересованных сторон, включая специалистов по офтальмологии, пациентов, исследователей и общественность».

Вероятно, для более детального изучения вопроса необходимо провести более длительное и более глубокое исследование, но даже имеющихся данных достаточно, чтобы воспринимать идею фильтрации синего света сомнительной.

«Количество синего света, получаемого нашими глазами от искусственных источников, таких как экраны компьютеров, составляет примерно тысячную долю от того, что мы получаем от естественного дневного света, — поясняют авторы. — Следует также иметь в виду, что линзы, фильтрующие синий свет, обычно отфильтровывают около 10–25 % синего света, в зависимости от конкретного продукта. Для фильтрации большего количества синего света линзы должны иметь явный янтарный оттенок, что существенно повлияет на восприятие цвета».

Электросамокаты российской Whoosh получат компьютерное зрение и новые экраны

Отечественный оператор кикшеринга и разработчик решений для средств индивидуальной мобильности Whoosh сообщил о запуске пилотной программы по тестированию электросамокатов с большим информационным дисплеем и модулем компьютерного зрения.

 Источник изображения: Eduardo Alvarado / unsplash.com

Источник изображения: Eduardo Alvarado / unsplash.com

Новые технологии испытают на новых электросамокатах Ninebot — программа будет запущена в этом году в Москве. Дашборд, то есть экран, будет устанавливаться на руле самоката и заменит смартфон. Информация на износостойком и влагоустойчивом дисплее будет оставаться видимой в любых погодных условиях: маршрут и навигационные данные поездки, помощь по эксплуатации и парковке самоката.

Технологии компьютерного зрения нужны для анализа работы кикшеринга. Система будет собирать обезличенные данные о поездках, различные сценарии реакций на внешние условия, а также статистику о поездках, включая наиболее популярные маршруты и информацию о дорожном покрытии. Самокат предупредит о необходимости снизить скорость или спешиться, если пользователь приближается к пешеходному переходу, а также даст советы по приоритетным маршрутам.

«Эти разработки — ещё один большой шаг в развитии микромобильного транспорта, который поможет нам лучше понимать пользователя и работать с безопасностью поездок, комфортом использования сервиса. Мы запускаем пилотную эксплуатацию на базе самой современной модели самоката, чтобы проанализировать, как технологии покажут себя в разных городских условиях», — прокомментировал инициативу основатель и генеральный директор Whoosh Дмитрий Чуйко.

Исследователи Meta✴ создали искусственную зрительную кору мозга, чтобы дать роботам зрение

Исследователи ИИ компании Meta сегодня объявили о нескольких ключевых разработках, связанных с адаптивной координацией навыков и репликацией зрительной коры, которые позволят роботам с ИИ автономно функционировать в реальном мире. Эти разработки являются крупным шагом вперёд в создании универсального «воплощённого ИИ», способного взаимодействовать с реальным миром без вмешательства человека.

 Источник изображений: *** AI

Источник изображений: Meta AI

Зрительная кора — область мозга, которая позволяет организмам использовать зрение для совершения действий. Таким образом, искусственная зрительная кора является ключевым требованием для любого робота, которому необходимо выполнять задачи на основе того, что он видит перед собой. Искусственная зрительная кора VC-1 обучена на наборе данных Ego4D, который содержит тысячи часов видео с носимых камер участников исследования по всему миру, выполняющих повседневные действия, такие как приготовление пищи, уборка, спорт и ремесла.

Однако зрительная кора — это лишь один из элементов воплощённого ИИ. Чтобы робот мог работать полностью автономно в реальном мире, он должен быть способен манипулировать объектами реального мира — перемещаться к объекту, поднимать его, переносить в другое место и размещать объект — и делать все это на основе того, что он видит и слышит.

Чтобы решить эту проблему, эксперты по ИИ Meta в сотрудничестве с исследователями из Технологического института Джорджии разработали новую технологию ASC (Adaptive Skill Coordination — Адаптивная координация навыков), где обучение происходит в симуляциях, а затем эти навыки передаются реальному роботу. Meta продемонстрировала эффективность ASC в сотрудничестве с Boston Dynamics. ASC была интегрирована с робопсом Spot, который обладает надёжными возможностями распознавания, навигации и манипулирования, хотя и требует значительного вмешательства человека.

Исследователи ставили перед собой цель создать модель ИИ, которая сможет воспринимать мир с помощью бортовых датчиков через API Boston Dynamics. Сначала ASC была обучена в симуляторе Habitat с использованием наборов данных HM3D и ReplicaCAD, содержащих 3D-модели более тысячи домов. Затем виртуального робота Spot научили передвигаться по незнакомому дому, подбирать предметы, переносить их и класть в нужное место. Позже эти знания были переданы реальным роботам Spot, которые автоматически выполняли те же задачи, основываясь на полученном представлении о помещениях.

«Мы использовали две совершенно разные среды реального мира, в которых Spot попросили переставить различные объекты — полностью меблированную квартиру площадью 185 м² и университетскую лабораторию площадью 65 м². — Сообщают исследователи. — ASC добилась почти идеальной производительности, преуспев в 59 из 60 эпизодов, преодолев аппаратные нестабильности, сбои выбора и состязательные помехи, такие как движущиеся препятствия или заблокированные пути».

Исследователи Meta сегодня открывают исходный код модели VC-1, делясь подробными сведениями о масштабировании модели и размерах наборов данных. Следующей целью команды будет попытка интегрировать VC-1 с ASC, чтобы создать единую систему, которая станет ближе к истинному воплощённому ИИ.

Amazon придумала, как избавиться от людей на складах — роботов обучат упаковывать товары, не используя штрих-коды

Хотя у роботов большое будущее, пока их механические руки не очень хорошо справляются на складах с обработкой отдельных заказов, маркированных штрих-кодами. Последние может быть трудно обнаружить и прочитать, особенно на товарах нестандартной формы. Новая система, предложенная Amazon, позволит избавиться от штрих-кодов полностью — поможет в этом компьютерное зрение.

 Источник изображения: Maximalfocus/unsplash.com

Источник изображения: Maximalfocus/unsplash.com

Фотографии товаров, снятые на складах Amazon, и тренировка на них компьютерного зрения, позволили техногиганту разработать систему камер, способную точно распознавать товары на конвейерной ленте. В конце концов эксперты Amazon по ИИ и робототехнике намерены интегрировать разработку в роботов, которые смогут узнавать товары в процессе упаковки для последующей отправки.

По словам представителя разработчиков Amazon, без поиска штрих-кодов роботы смогут намного быстрее упаковывать товары для отправки покупателям. Система, названная мультимодальной идентификацией, полностью заменит штрих-коды ещё нескоро, но уже сейчас она применяется на объектах компании в Барселоне и Гамбурге. При этом в компании заявляют, что система уже позволяет ускорить время обработки заказов. Ожидается, что технология будет внедряться в самых разных проектах компании, включая розничную торговлю.

Эксперты Amazon в области искусственного интеллекта уже начали формировать библиотеку изображений продуктов — до начала реализации данного проекта такой необходимости не было. Сами изображения, как и данные о размерах предметов, обрабатываются первыми версиями алгоритмов, а камеры последовательно делают всё новые снимки для тренировки ИИ-модели компании.

Когда алгоритм начал впервые использоваться, его точность составляла 75-80 %, сейчас в компании заявляют, что она достигла 99 %. Изначально у системы были некоторые проблемы с распознаванием цветов, но после доработки её точность заметно повысилась. Хотя отправка не тех товаров, что были заказаны, происходит, по данным Amazon, довольно редко, даже такие ошибки в масштабах такой огромной компании, как Amazon, способны принести немало неприятностей.

В ИИ-команде Amazon заявляют, что будет сложнее настроить систему мультимодальной идентификации для товаров, обрабатываемых людьми, поэтому конечной целью является доработка технологий до того уровня, на котором будет возможно использование вместо них роботов.

Стартап Science бывшего главы Neuralink будет возвращать людям зрение с помощью встраивания в глаза электроники и генной терапии

Созданная в 2021 году компания Science анонсировала свой первый продукт, который со временем начнёт возвращать зрение пациентам с рядом фатальных заболеваний глаз. Разработанный в компании электронный блок с microLED экраном будет встраиваться прямо в глазное яблоко, что позволит страдающим слепотой пациентам возвращать зрение сначала частично, а в перспективе всё полнее и полнее.

 Источник изображений:Science

Источник изображений:Science

Существует множество причин для потери зрения. Предложенное компанией Science решение облегчит жизнь пациентам с такими болезнями, как пигментный ретинит (RP) и сухая возрастная дегенерация жёлтого пятна (AMD). В обоих случаях зрение теряется по причине деградации фоторецепторов в глазах людей, хотя нервные окончания и зрительные нервы остаются в полном порядке. Имплантат Science Eye способен возбуждать эти нервные окончания — так называемые ганглионарные клетки — и передавать в мозг путь сильно упрощённые, но зрительные сигналы.

В каждом глазу человека примерно по 100 млн клеток фоторецепторов. Нервных окончаний, которые передают весь этот массив информации, всего по 1 млн на глаз. Нетрудно понять, насколько будет упрощена передаваемая в мозг нервная информация, основанная на возбуждении всего одного миллиона нервных окончаний. Но это будет определённо лучше полной слепоты и, в перспективе, учёные научатся передавать зрительные данные в более полном объёме.

Созданный в Science имплантат представляет собой электронный блок с процессором и блоком питания, который вживляется под веко на верхнюю поверхность глазного яблока, и экран microLED, который заводится внутрь глаза и устанавливается напротив нервных окончаний в его сетчатке. И это была самая лёгкая часть. Операция займёт около двух часов и может быть сокращена до одного часа после отработки технологии.

 Имплантат с экраном шириной 2 мм

Имплантат с экраном шириной 2 мм

Самое сложное, точнее — самое труднопреодолимое препятствие будет заключаться в том, чтобы наделить нервные окончания глаза световой чувствительностью. Проделать это можно с помощью генной терапии. Учёные давно работают с флуоресцентными белками, которые могут светиться и воспринимать фотоны. Чтобы Science Eye работал, в нервные окончания глазного нерва необходимо будет ввести инородные для человека гены. Нетрудно представить, что эта необходимость вызовет бурную дискуссию как в научном сообществе, так и среди обычных людей.

В компании предупреждают, что получаемое с помощью Science Eye и генной терапии зрение будет совсем не таким, как мы его обычно воспринимаем. Однако это реальный шанс вернуть потерявшему зрение человеку возможность самостоятельно и лучше ориентироваться в пространстве. Впрочем, до этого пройдут годы работы по улучшению технологии. Сегодня она испытывается на кроликах и до работы с людьми ещё довольно долго.

 Очки для обеспечения работы иммплантат

Очки для обеспечения работы имплантата

Добавим, компанию Science создал бывший соратник Илона Маска — Макс Ходак (Max Hodak). До 2021 года он возглавлял компанию Маска Neuralink, которая разрабатывает мозговой имплантат. Весной 2021 года он покинул Neuralink и создал свой стартап Science, который к сегодняшнему дню привлёк финансирование в объёме около $160 млн. Имплантат Science Eye назван флагманским продуктом Science. Будет интересно узнать, что ещё есть в её портфеле разработок.

Впервые технология обнаружения объектов вне прямой видимости добилась высокого разрешения — можно будет даже читать вывески за углом

Автопилоты и другая роботизированная техника учится лучше и глубже оценивать дорожную обстановку, чем водитель-человек. В это ей помогают также технологии обнаружения объектов вне прямой видимости. Однако из множества технологий визуализации объектов «за углом» до сих пор не было способа получить картинку в высоком разрешении. Учёные из Калифорнийского технологического института заполнили этот пробел, предложив новую технологию UNCOVER.

 Источник изображения: Caltech

Источник изображения: Caltech

Традиционно «за угол» можно заглянуть, если проанализировать в зоне прямой видимости свет, отражённый от других объектов, например, от стен. Поскольку свет от таких объектов рассеивается, более-менее цельное изображение можно собрать с помощью ИИ-алгоритмов. Но если рядом с искомой целью есть точечный источник света — guidestar (путеводная звезда), то скрытый объект можно рассмотреть намного детальнее.

Свет от точечного источника позволяет вычислить волновые фронты отражённого от стен света и использовать эту информацию для расчёта светового потока от наблюдаемого скрытого объекта. Проблема в том, что в обычной дорожной обстановке подсветить скрытые объекты никак невозможно. В противном случае каждому пешеходу и каждой машине на улице пришлось бы придать свою собственную «путеводную звезду».

Технология UNCOVER позволяет использовать как guidestar сам скрытый объект. В эксперименте учёные показали возможность различить находящиеся вне зоны прямой видимости сложные символы в виде звёздочки, геометрических фигур и букв. Предложенная технология, уверены учёные, поможет улучшить автопилоты на улицах городов и роверов на далёких планетах. Марсоходу не нужно будет пробираться по труднопреодолимым преградам, чтобы осмотреть скрытые за ними объекты. Если вокруг светло, он получит картинку даже за линией прямой видимости.

Британское правительство заблокировало лицензирование Китаю технологии машинного зрения

Правительство Великобритании обратилось к закону о национальной безопасности, чтобы заблокировать сделку, которая позволила бы китайской компании Beijing Infinite Vision Technology лицензировать технологию машинного зрения, разработанную в Манчестерском университете.

 Источник изображения: Gerd Altmann / pixabay.com

Источник изображения: Gerd Altmann / pixabay.com

Китайская компания, которая позиционирует себя как передового разработчика технологий 3D-рендеринга и архитектурной визуализации, запросила у Манчестерского университета лицензию на решения SCAMP-5 и SCAMP-7. Лежащая в их основе технология предназначена для «тесной интеграции нового сенсорного и вычислительного оборудования с алгоритмами зрения, навигации и управления для обеспечения автономных роботов нового поколения». Сделку заблокировал министр предпринимательства, энергетики и промышленной стратегии Великобритании Квази Квартенг (Kwasi Kwarteng).

В январе в силу вступил британский Закон о национальной безопасности и инвестициях, который позволяет правительству страны отменять или ограничивать сделки по соображениям национальной безопасности — недавно он использовался для приостановки сделки по продаже валлийского завода Newport Wafer Fab нидерландской компании Nexperia, которой владеют китайцы.

Разработчики технологии для SCAMP-5 и SCAMP-7 пояснили, что в её основе лежит чип, производящий предварительную обработку изображений — он транслирует алгоритмам машинного зрения только необходимые данные. Чип также замеряет «время пролёта» по каждому пикселю, что ускоряет построение карт в реальном времени. Как решили (PDF) в британском правительстве, «существует вероятность, что технологию смогут использовать для создания оборонных или технологических инструментов, способных представлять угрозу национальной безопасности Соединённого Королевства».

Авторы проекта говорят, что разработанная ими технология сможет использоваться в самых разных сферах от игрушек и прочих потребительских товаров до военных систем — особенно для разведывательных и спасательных операций. В Манчестерском университете уже заявили о готовности подчиниться решению правительства.

Lime оснастит электросамокаты компьютерным зрением, чтобы отучить людей ездить по тротуарам

Компания Lime, занимающаяся производством электрических велосипедов и самокатов, а также владеющая сервисами их проката, объявила о планах по внедрению усовершенствованной системы безопасности Advanced Rider Assistance Systems. Для этого была создана собственная платформа компьютерного зрения для выявления езды по тротуарам. В таких случаях пользователь будет уведомляться о нарушении звуковым сигналом или путём принудительного снижения скорости движения.

 Источник изображения: Lime

Источник изображения: Lime

Согласно имеющимся данным, Lime начнёт тестировать новую систему на 400 самокатах в Сан-Франциско к середине августа. К концу года планируется расширить действие пилотного проекта на шесть городов, включая Париж, где компания впервые и продемонстрировала новую технологию.

Отмечается, что за последнее время многие крупные сервисы микромобильности пытались внедрить ту или иную форму ARAS для самокатов. Bird, Superpedestrian и Neuron полагаются на системы, основанные на определении местоположения, чтобы фиксировать, где ездят и паркуются пользователи. Voi, Spin и Zipp опробовали технологии компьютерного зрения сторонних разработчиков. В Lime рассказали, что компания также тестировала системы компьютерного зрения сторонних разработчиков, чтобы проверить жизнеспособность такого подхода. В конечном счёте было принято решение об инвестировании в создание собственной технологии, которая позволит фиксировать и препятствовать случаям езды по тротуарам.

Системы ARAS на основе определения местоположения и компьютерного зрения имеют немало сторонников. Приверженцы первого варианта отмечают, что система определения местоположения дешевле и её проще интегрировать. Также отмечается, что технология компьютерного зрения ещё не развита настолько, чтобы быть по-настоящему эффективной. Не говоря уже о том, что для компьютерного зрения требуется дополнительное оборудование, которое может сломаться или стать объектом вандализма на улицах.


window-new
Soft
Hard
Тренды 🔥