Сегодня 28 ноября 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → квантовые технологии
Быстрый переход

NASA впервые использовало квантовый датчик в космосе — он засёк, как вибрирует МКС

Учёные NASA впервые дистанционно провели эксперимент по измерению квантовых состояний ультрахолодных атомов. Благодаря невесомости установленный на борту МКС квантовый прибор получил невообразимую чувствительность, что позволяет измерять, например, перемещение масс воды и льда в земных океанах. Первым измерением установки стали неуловимые иным способом вибрации космической станции. Прибор засёк, как она дрожит в своём движении по орбите.

 Cold Atom Laboratory. Источник изображения: NASA

Cold Atom Laboratory. Источник изображения: NASA

Установка NASA Cold Atom Laboratory имеет размеры с небольшой холодильник. В ней атомы охлаждаются до температуры немного выше абсолютного нуля. На орбиту устройство доставлено в 2018 году. Это атомный интерферометр — новое направление в измерении множества физических величин и явлений с помощью оценки квантовых состояний ультрахолодных атомов.

Как известно, элементарные частицы ведут себя также подобно волнам. Это означает, что атом может двигаться как минимум по двум физическим траекториям. На каждую из них будет воздействовать гравитация или оказываться другие влияния (силы). Эти влияния можно измерить, просто наблюдая интерференцию волн — их рекомбинацию и взаимодействие. Чувствительность подобных датчиков поражает. Они могут улавливать гравитационные колебания планет и их спутников, и на основе полученных данных давать информацию о плотности и составе пород небесных тел, а также могут открывать ещё не обнаруженные объекты.

Сильное охлаждение позволяет как бы обезличить отдельные атомы, переводя их в состояние конденсата Бозе-Эйнштейна. Тем самым большие скопления атомов приобретают одинаковые квантовые состояния и квантовые явления перекочёвывают из микромира в макромир. Проще говоря, у нас появляется возможность измерять квантовые состояния атомов, не опускаясь до их уровня, что намного проще и доступнее.

Эксперименты NASA с датчиками на ультрахолодных атомах пойдут намного дальше измерений вибраций космической станции (которые, как следует понимать, станут помехой для измерений). Первый квантовый датчик в невесомости поможет в планетарных исследованиях, в изучении климата Земли и даже в поиске источников тёмной материи и тёмной энергии, а также в ином подходе для доказательства Общей теории относительности Эйнштейна. Пусть теперь дрожит не только МКС, но и тайны Вселенной — мы пришли за ними.

Учёные создали 2D-кулер для квантовых компьютеров — он обеспечит температуру ниже, чем в открытом космосе

Швейцарские учёные разработали инновационную двумерную систему охлаждения для квантовых компьютеров, способную достигать температур до 100 милликельвинов, преобразуя тепло в электрическое напряжение. Разработка может стать прорывом в области квантовых вычислений.

 Источник изображения: LANES EPFL

Источник изображения: LANES EPFL

Исследовательская группа LANES из Швейцарской федеральной политехнической школы Лозанны (EFPL), возглавляемая Андрашем Кишем (Andras Kis), создала устройство, которое по эффективности соответствует современным технологиям охлаждения, но работает при слабых магнитных полях и сверхнизких температурах, необходимых для квантовых систем. Новая технология позволяет достигать сверхнизких температур путём преобразования тепла в электрическое напряжение, что особенно важно для вычислений, так как квантовые биты (кубиты) чрезвычайно чувствительны к теплу и требуют охлаждения до температур ниже 1 кельвина, пишет ресурс Tom's Hardware.

 Источник изображения: LANES EPFL

Источник изображения: LANES EPFL

«В настоящее время в квантовых вычислительных системах нет механизма, предотвращающего нагрев кубитов от работающей электроники», — пояснил аспирант Габриэле Паскуале (Gabriele Pasquale). Однако эта технология построена на основе двумерного материала толщиной всего в несколько атомов, и в сочетании с графеном позволяет достичь высокой производительности. Устройство работает на основе эффекта Нернста — термомагнитного явления, при котором в проводнике генерируется электрическое поле под воздействием магнитного поля и разницы температур.

Важно отметить, что новая система охлаждения может быть легко интегрирована в существующие квантовые компьютеры, так как изготовлена из доступных электронных компонентов. «Данные результаты представляют собой значительный прогресс в нанотехнологиях и открывают перспективы для разработки передовых систем охлаждения, необходимых для квантовых вычислений», — подчеркнул Паскуале.

Несмотря на достижение, исследователи отмечают, что данная технология предназначена исключительно для квантовых вычислений и не может быть использована для охлаждения обычных компьютеров.

Учёные впервые оценили влияние вращения Земли на квантово запутанные фотоны — это поможет в поисках связи квантовой механики и ОТО

Группа исследователей под руководством Филиппа Вальтера (Philip Walther) из Венского университета провела уникальный эксперимент, в ходе которого было измерено влияние вращения Земли на квантово запутанные фотоны. Классический инструмент для доказательства правоты общей теории относительности впервые был использован для оценки явления квантовой механики, что открывает путь к поиску связи между материальным и квантовым миром.

 Источник изображений: University of Vienna

Источник изображений: University of Vienna

Посвящённая исследованию работа опубликована в журнале Science Advances. Учёные создали самый большой в мире интерферометр Саньяка, известный уже около ста лет. Этот прибор или датчик даёт возможность находить доказательства для ряда положений общей теории относительности, в частности, являясь наиболее чувствительным детектором вращения, например, нашей планеты. Исследователи из Вены собрали свою версию прибора на 1,4-м алюминиевой раме (катушке), намотав на неё две обмотки оптического кабеля по 2 км каждая.

Изоляция обмотки была достаточно надёжной, чтобы на несколько часов снизить уровень квантовых шумов ниже заданной границы чувствительности. Это позволило уверенно детектировать достаточное количество запутанных фотонов, чтобы потом использовать их для эксперимента.

Одна обмотка, пояснили учёные, не позволяла установить точку отсчёта для измерений — вытащить из данных измерений сигнал о постоянном вращении Земли. Необходимо было «обмануть свет, чтобы заставить его подумать, будто Вселенная неподвижна». Этот эффект достигался за счёт переключения между обмотками.

«Суть вопроса, — объясняет ведущий автор Раффаэле Сильвестри (Raffaele Silvestri), — заключалась в установлении точки отсчета для наших измерений, где свет остаётся незатронутым эффектом вращения Земли. Учитывая нашу неспособность остановить вращение Земли, мы придумали обходной путь: разделили оптическое волокно на две катушки одинаковой длины и соединили их с помощью оптического переключателя». Используя переключатель, исследователи смогли эффективно подавлять сигнал вращения по своему желанию, что также позволило им повысить стабильность работы прибора. «Мы, по сути, обманули свет, заставив его думать, что он находится в невращающейся Вселенной», — сказал Сильвестри.

Идея эксперимента в том, что запутанные фотоны при измерении дают больше информации, чем обычные. Это может помочь раздвинуть границы чувствительности прибора за рамки классической физики в область квантовой механики.

 Экспериментальная установка

Экспериментальная установка

В обычном интерферометре Саньяка два фотона двигались бы навстречу друг другу и вернулись бы в точку старта с некоторой разницей во времени, в зависимости от скорости вращения системы. В случае запуска по маршруту запутанных фотонов ситуация сложнее — оба фотона одновременно движутся навстречу друг другу как одна частица. При этом задержка по времени увеличивается в два раза, поясняют учёные, и это в два раза повышает разрешение датчика — достигается так называемое сверхразрешение.

Это подтвердило взаимодействие между вращающимися системами отсчёта и квантовой запутанностью, теоретическое описание чего можно найти как в специальной теории относительности Эйнштейна, так и в квантовой механике. Сделано это с тысячекратным повышением точности по сравнению с предыдущими экспериментами.

«Это является важной вехой, поскольку спустя столетие после первого наблюдения вращения Земли с помощью света запутывание отдельных квантов света, наконец, вошло в те же режимы чувствительности, — пояснил Хаокун Ю (Haocun Yu), который работал над этим экспериментом в качестве научного сотрудника Института Марии Кюри. — Я верю, что наши результаты и методология заложат основу для дальнейшего улучшения чувствительности датчиков, основанных на оценке вращения запутанностью. Это может открыть путь для будущих экспериментов по проверке поведения квантовой запутанности с учётом кривизны пространства-времени».

Сродни изобретению транзистора: создан самый маленький детектор квантового света — он поможет масштабировать квантовые компьютеры

Исследователи из Бристольского университета в Великобритании разработали самый маленький в мире квантовый детектор света на кремниевом чипе. Детектор тоньше человеческого волоса может помочь расширить масштабы реализации квантовых технологий вплоть до создания мощных вычислительных платформ.

 Источник изображений: University of Bristol

Источник изображений: University of Bristol

В своём исследовании учёные решали три две связанные проблемы: уменьшение размеров детектора, снижение влияния квантового шума (квантовой неопределённости) и адаптация платформы к современному массовому производству чипов. Чем меньше датчик, тем он быстрее работает, но одновременно с этим растёт влияние электронного шума, которое снижает чувствительность. Также нужно думать о возможных техпроцессах выпуска датчиков, чтобы это было экономически выгодно и доступно.

Свою разработку британские учёные сравнивают с изобретением транзисторов в 50-е годы прошлого века, что стремительно ускорило развитие электроники и вычислительной техники. Миниатюрный по сравнению с электронными лампами полупроводниковый элемент привнёс революцию в отрасль и изменил в ней буквально всё. Новый детектор квантового света может оказать ту же услугу оптическим квантовым системам, считают разработчики.

Новый встроенный в кремниевый чип детектор квантового света имеет размеры 80 × 220 мкм (сам светочувствительный элемент ещё меньше). Он работает в 10 раз быстрее аналогов, утверждают учёные и имеет высокий порог чувствительности к квантовому шуму. Это важный момент не только для квантовых платформ, но также для других применений подобных детекторов. Например, они используются в гравитационно-волновых обсерваториях, где позволяют выявлять малейшие отклонения в фазе и амплитуде световых сигналов, что может повысить чувствительность систем, регистрировать больше событий, связанные с рождением гравитационных волн, и делать это точнее.

«Мы создали детектор на коммерчески доступном производстве чипов, чтобы сделать его применение более доступным. Хотя мы невероятно рады возможностям применения целого ряда квантовых технологий, крайне важно, чтобы мы, как сообщество, продолжали решать проблему масштабируемого производства квантовых технологий. Без демонстрации действительно масштабируемого производства квантового оборудования влияние и преимущества квантовой технологии будут отложены и ограничены», — сказал ведущий автор работы профессор Джонатан Мэтьюз (Jonathan Matthews).

Учёные создали оптико-механическую квантовую память — она может стать основой квантового интернета

Группа учёных из Института Нильса Бора (Дания) сообщила о разработке необычной квантовой памяти — «квантового барабана». Это оптико-механическая память, которая запоминает квантовые состояния фотонов в механических (звуковых) колебаниях керамической мембраны — фактически барабана. Подобное устройство может сыграть роль повторителя для передачи запутанных квантовых состояний по сети, сделав квантовый интернет реальностью.

 Источник изображения: Julian Robinson-Tait

Источник изображения: Julian Robinson-Tait

«Квантовый барабан» представляет собой керамическую пластинку из похожего на стекло материала. В ряде предыдущих исследований учёные доказали, что специальным образом обработанная пластина керамики позволяет сохранять квантовые состояния ударившего в неё лазерного луча (фотонов). Чудесен не сам факт преобразования квантового состояния света в звук (в квазичастицу фонон), а то, что квантовое, по сути, устройство представлено вполне осязаемой деталью — квантовый микромир в этом устройстве воплотился на вполне осязаемом макроуровне, а с этим уже можно и нужно работать.

Барабан хранит квантовое состояние до того момента, когда его можно передать дальше по сети уже в виде фотонов. Это временная память и она категорически нужна для организации повторителей. Ведь нам хорошо известно, что главное достоинство квантовых сетей связи — это чувствительность к перехвату сообщений. Любой перехват «заряжённых» квантовым состоянием фотонов нарушает эти состояния и это служит индикатором о компрометации передачи. Если на магистрали установить классические повторители с переводом «кубитов» в цифру и обратно это даст канал для утечки, ведь цифру можно перехватить и это будет незаметно.

 Источник изображения: University of Copenhagen

Источник изображения: University of Copenhagen

Чисто квантовые повторители — это проблема современности и их ещё развивать и развивать, или предлагать что-то новое, например, разработанные в Институте Нильса Бора «квантовые барабаны». Без подобных устройств не стоит даже мечтать о всемирной квантовой паутине. Датчане сделали уверенный шаг в нужном направлении. В лаборатории в условиях комнатной температуры они показали, что время жизни квантового сигнала в мембране достигает 23 мс с вероятностью эффективного извлечения 40 % для классических когерентных импульсов.

«Мы ожидаем, что хранение квантового света станет возможным при умеренных криогенных условиях (T≈10 К). Такие системы могут найти применение в новых квантовых сетях, где они могут служить в качестве долгоживущих оптических квантовых накопителей, сохраняя оптическую информацию в фононном [звуковом] режиме», — поясняют разработчики в статье в журнале Physical Review Letters.

«Бауманка» запустит первое в России серийное производство сверхпроводниковых квантовых процессоров

МГТУ им. Н.Э. Баумана и ФГУП «ВНИИА им. Н.Л. Духова», работающие над созданием технологий квантовых компьютеров с 2016 года, заявили о запуске первого в России контрактного производства сверхпроводниковых квантовых процессоров на 100-мм пластинах. Производство разместится в новом кампусе МГТУ и должно удовлетворить спрос со стороны основных заказчиков, в числе которых технологические компании и научные лаборатории.

 Источник изображений: МГТУ им. Н.Э. Баумана

Источник изображений: МГТУ им. Н.Э. Баумана

Технологии сверхпроводниковых квантовых схем в значительной степени отличаются от классического полупроводникового КМОП-процессора и требуют соответствующих компетенций при производстве. В НОЦ ФМН (совместный научный центр МГТУ и ВНИИА) осуществили переход от изготовления «отдельных кристаллов» к серийному выпуску за счёт использования собственной технологии сверхпроводниковых джозефсоновских схем, которая является одной из наиболее перспективных при создании высокоточных квантовых процессоров и параметрических усилителей. На одной пластине размещаются сотни чипов разных квантовых устройств, которые объединены единым технологическим маршрутом изготовления.

Разработчикам потребовалось несколько лет, чтобы осуществить переход на серию с соблюдением параметров качества квантовых устройств, которое было достигнуто на отдельных чипах. Специалисты сознательно не хотели снижать уровень качества и в конечном счёте даже смогли улучшить точность изготовления элементов квантовых схем в допуске 0,5 нм. Для масштабирования технологии и организации контрактного производства ещё предстоит дооснастить построенный в этом году в новом Бауманском кампусе исследовательский кластер, площадь чистых комнат которого составляет 2500 м², уже спроектированным оборудованием.

Одна из важнейших задач при постановке серийного техпроцесса заключалась в создании наноразмерных элементов сверхпроводниковых устройств — джозефсоновских переходов. Они представляют собой трёхслойную структуру, состоящую из алюминия, туннельного оксида алюминия и алюминия (Al-AlOx-Al), внутри которой «рождается» кубит при переходе чипа в состояние сверхпроводимости (охлаждение процессора до температуры ниже 273 ºС). Специалисты НОЦ ФМН использовали технологию изготовления джозефсоновских переходов с линейными размерами в десятки нанометров с суб-нанометровой точностью. За счёт этого удалось добиться рекордных показателей воспроизводимости электрических характеристик переходов и параметров кубитов процессоров на мировом уровне.

Для постановки технологии в серийное производство на пластине 100 мм командой исследователей предложена и внедрена математическая модель, симулирующая процесс воспроизводимого форматирования джозефсоновских переходов. Полученные результаты позволяют изготавливать квантовые интегральные схемы с высочайшей точностью контроля частот кубитов.

Российские физики придумали, как создавать треугольные и прямоугольные лазерные импульсы — это улучшит управление квантовыми схемами

Считается, что в обычных световых импульсах напряженность электромагнитного поля меняется со временем по синусоиде. Другие формы поля считались невозможными, пока недавно российские физики не предложили теоретический подход, меняющий правила игры. Открытие позволит формировать световые импульсы треугольной или прямоугольной формы, что привнесёт много нового в работу схем квантовых компьютеров.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Как установили исследователи из Санкт-Петербургского государственного университета и Физико-технического института имени А. Ф. Иоффе РАН (Санкт-Петербург), изменить форму напряжённости электромагнитного поля в оптическом диапазоне можно с помощью неравномерного распределения плотности в среде, через которую пропускают импульсы сверхкороткой длительности в несколько фемтосекунд. Чем больше форм и разновидностей оптических импульсов получится создавать, тем более точным будет управление кубитами, например, в виде атомов и даже электронов.

Авторы работы теоретически смоделировали прохождение двух последовательных сверхкоротких оптических импульсов через газообразный натрий. Первичные импульсы были классической дугообразной формы, соответствующей половине периода обычной электромагнитной волны. По условиям моделирования импульсы проходили в среде путь длиной 5 мкм. Первый из импульсов передавал возбуждение атомам натрия, запуская их колебания, а второй останавливал их. Этот процесс вызывал отклик электромагнитного поля в виде двух пиков и с этим уже можно работать.

Исследователи предложили таким образом изменить плотность среды, чтобы плотность размещения атомов натрия менялась от малой к большой, затем шло плато, после чего плотность снова снижалась. Таким образом изменение плотности напоминало трапецию. После этого модель стала выдавать импульсы света строго прямоугольной формы. Меняя переход плотности среды на участках подъёма и спада с линейной на параболическую, учёные заставляли импульсы принимать треугольную форму.

 Импульсы прямоугольной и треугольной формы. Источник изображения: Ростислав Архипов

Импульсы прямоугольной и треугольной формы. Источник изображения: Ростислав Архипов

«Мы теоретически показали, что, меняя распределение плотности в среде, через которую проходит оптический импульс, можно управлять его формой. Далее предстоит экспериментально проверить наши выводы. В дальнейшем мы планируем исследовать, как оптические импульсы разной формы будут влиять на состояние квантовых систем, которые лежат в основе квантовых компьютеров», — рассказал руководитель проекта, поддержанного грантом РНФ, Ростислав Архипов, кандидат физико-математических наук, ведущий научный сотрудник физического факультета СПбГУ.

Добавим, работа по исследованию была опубликована в журнале Optics Letters.


window-new
Soft
Hard
Тренды 🔥
Steam наконец стал 64-битным — 32-битному клиенту осталось чуть больше месяца 7 ч.
Airbus уже семь лет переезжает с Microsoft Office на Google Workspace, но полностью отказаться от Excel и Word всё не получается 12 ч.
Трассировка лучей на ПК, «Новая игра +» и прокачка «Легенды»: для Dying Light: The Beast вышло самое крупное обновление с релиза 12 ч.
Лучше поздно, чем никогда: спустя почти десять лет Ubisoft наконец добавила достижения для Rainbow Six Siege в Steam 13 ч.
Спустя семь лет разработки Light No Fire до сих пор занимается «крошечная команда» — No Man's Sky остаётся приоритетом Hello Games 14 ч.
Слухи: датамайнеры нашли в файлах Assassin’s Creed Shadows название ремейка Assassin’s Creed IV: Black Flag 15 ч.
Премьера финального сезона «Очень странных дел» сломала Netflix 15 ч.
«Базис» идёт на IPO в декабре 16 ч.
Вот тебе, закупщик, и «Юрьев день» 17 ч.
OpenAI признала утечку данных пользователей через Mixpanel — переписки с ChatGPT остались в безопасности 17 ч.
Так дальше продолжаться не может: штаб-квартира Nexperia призвала китайское подразделение возобновить поставки автомобильных чипов 10 мин.
Рост цен на память на фоне бума ИИ подтверждается большинством участников рынка 2 ч.
Тайваньские следователи обыскали дома экс-вице-президента TSMC по делу о передаче секретов в Intel и забрали всю электронику 7 ч.
Как построить 5000-ваттный GPU будущего — Intel расскажет на ISSCC 2026 7 ч.
Новая статья: Обзор игрового WQHD IPS-монитора Gigabyte M27Q2 QD: доступный универсал 8 ч.
Сословное право доступа: из-за дефицита ИИ-серверов Alibaba Cloud вынужденно разделила клиентов на категории 9 ч.
В Китае намекнули на создание многочиповых ИИ-ускорителей, способных потягаться с Nvidia Blackwell 11 ч.
Honor представила компактный проектор с жестовым управлением и автокалибровкой за $85 11 ч.
«Руцентр» вошёл в реестр провайдеров хостинга для государственных информационных систем 12 ч.
После провала iPhone Air китайские бренды передумали выпускать сверхтонкие смартфоны 15 ч.