Опрос
|
реклама
Быстрый переход
Microsoft представила Majorana 1 — квантовый процессор из будущего с ещё не открытой физиками частицей
20.02.2025 [09:57],
Геннадий Детинич
Компания Microsoft объявила о революции в сфере квантовых вычислений. Специалисты компании разработали и воплотили в «железе» абсолютно новый принцип кубитов, который ранее никем не был реализован. В основе квантового процессора Majorana 1 («Майорана 1») задействованы гипотетические частицы — фермионы Майораны. Интересно, что у этой разработки можно обнаружить российские и даже советские корни. ![]() Источник изображений: Microsoft Прежде всего поясним, что фермионы Майораны существуют лишь в теории. Эти частицы ещё не были зарегистрированы в экспериментах, и их обнаружение будет равнозначно получению Нобелевской премии по физике. Пока же это мечта и цель многих учёных. Значит ли это, что Microsoft всех обманула? И да, и нет. В последние годы физики научились создавать квазичастицы, близкие по свойствам к фермионам Майораны. Это облака из сверхохлаждённых электронов, которые называют «модами нуль-энергии». Идею квантового компьютера на основе майорановских фермионов в 1990-х годах разработал советский, российский, а позднее американский физик Алексей Китаев. Он также помогал Microsoft с продвижением этого направления. Китаев разработал теорию, объясняющую способы получения таких квазичастиц. Они образуются в присутствии топологического проводника — материала, обладающего проводимостью только по поверхности. Для создания кубитов на основе майорановских фермионов был предложен модернизированный классический джозефсоновский переход — структура, состоящая из двух сверхпроводников с изолятором между ними. Однако вместо второго сверхпроводника использовался топологический материал. ![]() В случае с квантовым процессором Microsoft Majorana 1 применялась комбинация арсенида индия и алюминиевых проводов. Кубиты имеют форму буквы H, на каждом её конце в ловушках располагается по одному фермиону Майораны, представленному группой электронов. Такая конструкция обещает простое масштабирование, схожее с изготовлением транзисторов на полупроводниковых кристаллах. В настоящий момент процессор Majorana 1 содержит лишь восемь таких кубитов, однако к 2030 году Microsoft планирует увеличить их число до нескольких сотен, а в перспективе выпустить чип с миллионами кубитов всего за несколько лет, а не десятилетия. «Мы сделали шаг назад и сказали: "Хорошо, давайте изобретём транзистор для квантовой эпохи. Какими свойствами он должен обладать?" — рассказал Четан Наяк (Chetan Nayak), технический сотрудник Microsoft. — Именно так мы пришли к нашему решению. Именно сочетание, качество и важные детали в новом наборе материалов позволили создать новый тип кубита и, в конечном счёте, всю нашу архитектуру». ![]() Новая квантовая платформа Microsoft требует криогенного охлаждения и взаимодействия с классическими компьютерами для обработки квантовой информации. Казалось бы, в этом нет ничего нового. Прорывом стало использование топологических материалов — так называемых топопроводников (topoconductors), а также работа с квазичастицами майорановских фермионов. В Microsoft смогли разработать архитектуру, способную с высочайшей точностью регистрировать характеристики квазичастиц (определяя один электрон из миллиона) и управлять их состоянием. Пока нельзя сказать, насколько квазичастицы фермионов Майораны будут полностью соответствовать свойствам гипотетических майорановских фермионов. В идеальном случае эти частицы должны быть чрезвычайно устойчивы к внешним воздействиям и защищены от ошибок — главной проблемы современных квантовых платформ. Если всё пойдёт по плану Microsoft, то уже к середине 2030-х годов у нас появится универсальный, помехоустойчивый квантовый компьютер, который совершит революцию в сфере сложных вычислений. Российские учёные научили ИИ исправлять ошибки квантовых компьютеров
14.02.2025 [15:21],
Геннадий Детинич
Чувствительность кубитов к шумам вносит неконтролируемые ошибки в квантовые вычисления, что не позволяет запускать сложные алгоритмы. Чтобы улучшить ситуацию исследователи Университета МИСИС на основе нейросетей создали самообучающуюся систему поиска и исправления ошибок. Разработка сочетает преимущества интеллектуальных и классических алгоритмов, поэтому эффективнее распознаёт ошибки по мере наращивания числа кубитов, что является ключевой задачей. ![]() Источник изображения: ИИ-генерация DALL·E/3DNews «Современные устройства совершают ошибки во многом из-за взаимодействия квантовой системы с её окружением. При этом даже небольшие погрешности критичны при масштабных вычислениях, так как искажение результата накапливается с каждой операцией. Повышение точности — одна из ключевых задач в развитии квантовых технологий», — сообщил директор Института физики и квантовой инженерии НИТУ МИСИС Алексей Фёдоров. Предложенный учёными метод опирается на архитектуру рекуррентных нейронных сетей, которая анализирует временные ряды данных. Эти ряды извлекаются в процессе периодического измерения вспомогательных кубитов. Что особенно ценно, эта особенность позволяет алгоритму работать с различными кодами коррекции. Исследователи протестировали алгоритм на семействе циклических кодов коррекции с учётом топологических особенностей квантового процессора на сверхпроводящих кубитах. Результаты исследования опубликованы в журнале Physical Review A (Q1). Также статья доступна на сайте препринтов arXiv. Это её третья редакция. «Главное преимущество разработки заключается в способности обучаться на данных, полученных с конкретного устройства. Это особенно важно в условиях, когда характер ошибок отличается от теоретически предполагаемых моделей. Кроме того, предложенный алгоритм декодирования не зависит от конкретного кода коррекции, что делает его универсальным и легко масштабируемым», — сообщил автор исследования Илья Симаков, инженер научного проекта лаборатории сверхпроводниковых квантовых технологий НИТУ МИСИС, научный сотрудник Российского квантового центра. Intel нашла куда пристроить свои квантовые процессоры — они появятся в компьютерах «Made in Japan»
07.02.2025 [00:18],
Геннадий Детинич
Компания Intel подписала меморандум о взаимопонимании с Японским национальным институтом передовой промышленной науки и технологий (AIST) о совместной работе над квантовыми компьютерами следующего поколения. Для партнёров из Японии Intel будет поставлять свои новейшие квантовые процессоры, а исследователи из AIST создадут на их основе рабочие системы для совместного распространения среди научных учреждений всего мира. ![]() Источник изображения: Intel Компания Intel не была особенно активной в разработке квантовых систем, хотя работала в одном из самых перспективных направлений — сфере спиновых кубитов, которые также называют кремниевыми. Такие квантовые процессоры можно производить на стандартных полупроводниковых фабриках, что обеспечивает их массовость, а также обещает достаточно простое масштабирование систем. Свой первый квантовый процессор Tunnel Falls на 12 спиновых кубитах компания представила в июне 2023 года. В 2024 году ожидался выпуск процессора с увеличенным числом кубитов, но он так и не был представлен. Однако в мае 2024 года сотрудники Intel опубликовали в Nature развёрнутую статью, в которой объясняли превосходство квантовых процессоров компании над конкурентными разработками. В частности, Intel заявила об установлении отраслевого стандарта в области единообразия, точности и статистики измерений спиновых кубитов. Следует отметить, что сферу разработки и эксплуатации квантовых вычислителей в Японии около пяти лет развивает компания IBM. Свой третий квантовый компьютер Q System One компания передала Токийскому университету в обмен на обязательство разработки прикладных квантовых алгоритмов. Кроме того, IBM ещё раньше Intel подписала договор о сотрудничестве с AIST — это произошло в июне 2024 года. Тогда стало известно, что исследовательский институт заключил партнёрство с IBM по разработке квантового компьютера ёмкостью 10 000 кубит, запуск которого запланирован на 2029 год. Возвращаясь к совместной работе Intel и AIST, добавим, что компании также договорились совместно развивать полупроводниковые и сверхпроводниковые интегральные схемы, необходимые для создания квантовых компьютеров следующего поколения. Разрабатываемые партнёрами квантовые системы будут доступны университетам в США, Японии и других странах. Остальным организациям придётся доплатить за доступ к платформам. Кроме того, ирландское подразделение Intel по исследованиям и разработкам было названо одним из 36 партнёров, работающих над созданием европейской цепочки поставок криогенных квантовых технологий, включая криогенную фотонику, микроэлектронику и криомикросистемы. Проект, получивший название ARCTIC (Advanced Research on Cryogenic Technologies for Innovative Computing), стал первым результатом программы совместного объединения Европейского союза по производству чипов (CJU). Квантовую телепортацию впервые применили для распределённых квантовых вычислений
06.02.2025 [20:07],
Геннадий Детинич
Как и классические компьютеры, квантовые вычислители рано или поздно потребуют кластерных конфигураций или распределённых вычислений. Практика показывает, что таким образом проще увеличить вычислительные ресурсы, чем локально масштабировать одну систему. Реализовать передачу квантовых данных можно по классическому каналу, но это обычно приводит к увеличению ошибок. Намного надёжнее было бы телепортировать состояния, благо квантовая физика это допускает. ![]() Типичный квантовый процессор на ловушках ионов. Источник изображения: NIST Сразу уточним, что квантовая телепортация не передаёт энергию и информацию. С её помощью передаётся квантовое состояние, например направление спина электрона или атома (иона). Поскольку до измерения спина (или других квантовых состояний объекта) на передающем конце ничего нельзя знать заранее, для принимающей стороны передача не будет нести смыслового наполнения. Однако если телепортацию включить в вычислительный процесс, то некоторое (бессмысленное при всех прочих условиях) промежуточное состояние, полученное на одной платформе, может быть телепортировано для продолжения вычислений на удалённой платформе. Ранее квантовая телепортация при выполнении вычислений была реализована в рамках одного «чипа». Учёные из Оксфордского университета (Oxford University) наскоро собрали две разнесённые квантовые платформы на кубитах из ионов, чтобы проверить возможность распределённых вычислений с использованием эффекта квантовой телепортации. «Компьютеры» находились друг от друга на расстоянии двух метров, но могли располагаться в разных комнатах или даже дальше. В конце концов, это лишь вопрос стоимости лабораторного оборудования. В качестве кубитов были использованы спаренные ионы кальция и стронция — каждая пара в своей ловушке, играющей роль компьютера. В таком кластере ионы кальция служили локальной памятью, а ион стронция работал как передатчик и, на другом конце, как приёмник квантового состояния. Оба иона стронция запутывались фотонами через оптический кабель, после чего вся система начинала работать как единое целое. До установления запутанного состояния система оставалась в исходном состоянии. Но как только происходило запутывание, ион стронция испускал фотон, что сигнализировало о готовности системы к вычислениям. Представленная установка позволяла реализовать простейшую логическую операцию CZGate (контролируемый Z). Это один из базовых квантовых вентилей (гейтов), поэтому алгоритм для кластерных вычислений в принципе может быть любым. Эксперименты показали, что точность вычислений при телепортации промежуточного результата от кубита к кубиту составила 70 %, но лишь из-за использования недорогого оборудования для ловушек ионов. С точки зрения одной лишь телепортации точность достигла 97 %. Это ощутимо ниже точности многих современных квантовых платформ, но уже некий результат, с которым можно продолжать работу. При правильной комбинации операций телепортации возможно воссоздать полный набор логических квантовых элементов. Другими словами, можно создать универсальный квантовый компьютер, способный выполнять любой квантовый алгоритм, просто используя телепортацию. Тем самым термин «врата телепортации» может уверенно перекочевать из научной фантастики в нашу жизнь, пусть и не так, как мечталось. Канадцы построили фотонный квантовый компьютер и пообещали быстро масштабировать его до миллиона кубитов
30.01.2025 [19:58],
Геннадий Детинич
Канадский стартап Xanadu, ранее отметившийся совместной работой с Nvidia над квантовыми симуляторами, сообщил о создании вычислительной квантовой системы на фотонах. Квантовое оборудование на фотонах можно использовать при комнатной температуре и размещать в обычных серверных стойках. Создав базовый набор стоек ничто не мешает произвести тысячи таких систем, что уже в ближайшей перспективе позволит изготовить квантовый вычислитель с миллионом кубитов. ![]() Источник изображения: Nature 2025 Сделанное компанией Xanadu Quantum Technologies заявление означает, что имеющий практическую ценность квантовый компьютер не за горами. Сама компания надеется представить квантовый вычислитель с миллионом кубитов уже к 2029 году. Ни одна серьёзная компания в сфере разработки квантовых компьютеров ещё не позволяла себе давать столь смелые обещания. Остаётся надеяться, что Xanadu хотя бы попытается его выполнить. В опубликованной на днях в журнале Nature работе специалисты Xanadu рассказали, на чём строится работа их системы и как она будет выглядеть. Комплект под названием Aurora представлен четырьмя стандартными серверными стойками, что, безусловно, намного удобнее и практичнее использования криогенных камер для сверхпроводящих кубитов. В одной стойке собраны лазерная система для формирования опорного и модулирующего лучей, а также оптическая система для их распределения и управления ими. Следует сказать, что квантовые «оптические чипы» Xanadu оперируют физическими состояниями лазерных лучей, учитывая их рекомбинацию и сложение. В конечном итоге результатом вычисления алгоритма будет количество фотонов в лазерном луче на выходе из системы. Однако здесь есть важный нюанс, который Xanadu не акцентирует: хотя сам вычислительный комплекс действительно работает при комнатной температуре, датчики, подсчитывающие фотоны в результирующем луче, охлаждаются до криогенных температур. Для этого в соседней со стойками комнате размещено специальное холодильное оборудование, без которого система функционировать не сможет. На данный момент в общей сложности в трёх вычислительных стойках задействовано 35 чипов, образующих массив из 12 кубитов для запуска алгоритма. В своей работе Xanadu не раскрывает механизмов коррекции ошибок — самого слабого места квантовых вычислений. Однако компания уверенно заявляет, что её платформа легко масштабируется до миллионов кубитов. В нижней части стоек расположены оптические цепи для связи между стойками, что позволяет соединять тысячи таких модулей. По сравнению с усилиями конкурирующих компаний этот процесс масштабирования выглядит значительно проще. В Xanadu признают, что предложенное ими решение далеко от совершенства. В частности, в процессе обработки теряется часть света (фотонов), что ведёт к увеличению частоты ошибок. Тем не менее компания обещает совершенствовать платформу и не теряет надежды создать имеющий практическую ценность квантовый компьютер к 2029 году. Учёные сделали квантовые вычисления точнее, внедрив два кода коррекции ошибок вместо одного
24.01.2025 [19:00],
Геннадий Детинич
Для квантовых вычислений классические методы коррекции ошибок не подходят. Причина кроется в квантовой механике, которая на базовом уровне не позволяет фиксировать промежуточные результаты для дальнейшего сравнения. Новые методы коррекции ошибок частично справляются с этой задачей, но имеют множество ограничений. Учёные из Австрии смогли реализовать механизм коррекции ошибок с подключением двух разных алгоритмов, чем повысили точность расчётов. ![]() Источник изображения: Helene Hainzer/University of Innsbruck Промежуточные квантовые состояния кубитов, задействованных в расчётах, нельзя, например, сохранить для проверки чётности. Поэтому из нескольких физических кубитов создают один логический кубит, при этом часть физических кубитов в составе логического кубита запутывают определённым образом. Это позволяет отслеживать ошибки без разрушения цепочки вычислений и корректировать их. Основная сложность заключается в том, что для разных групп логических элементов (гейтов) требуются различные коды коррекции. Учёные из Университета Инсбрука (University of Innsbruck) разработали методику, позволяющую переключать квантовый компьютер с одного оптимального кода на другой в процессе выполнения вычислений. Это значительно снизило частоту ошибок. Свою методику исследователи испытали на квантовом компьютере с ловушками ионов. Компьютер состоял из 16 кубитов, из которых были созданы две независимые логические цепи. Каждая цепь обрабатывалась оптимальным для неё кодом коррекции ошибок. Переключение между логическими цепями происходило без возникновения ошибок, что подтвердило возможность использования двух независимых кодов в рамках одного вычислительного цикла. В перспективе эта методика упростит исправление ошибок при масштабировании вычислений, экономно расходуя физические кубиты, которых никогда не будет много. Microsoft ввязалась в выпуск чужих квантовых компьютеров — это будут лучшие системы на рынке
21.01.2025 [16:04],
Геннадий Детинич
Сообщается, что в течение 2025 года компании Atom Computing и Microsoft поставят клиентам первые 1000-кубитные квантовые компьютеры. Это будут локальные системы на холодных нейтральных атомах, для которых Microsoft создала программную платформу для организации гибридных квантово-классических вычислений, а также базовые алгоритмы коррекции ошибок. Эти разработки позволят создать на компьютере массив из 50 логических кубитов для произвольных вычислений. ![]() Источник изображений: Atom Computing В компании Atom Computing подчёркивают, что они разработали локальную вычислительную систему, доступную для непосредственного использования клиентами. Кубиты создаются на основе охлаждённых атомов иттербия. Атомы доводятся в одной вакуумной камере до температуры, близкой к абсолютному нулю, и затем с помощью оптических пинцетов переносятся во вторую вакуумную камеру, где удерживаются в ловушках в конфигурациях, созданных по заданному алгоритму. Конфигурации атомов представляют собой схему из соединённых гейтов — логических структур, предназначенных для обработки состояний входных кубитов. В 1000-кубитной системе этого года (точнее, 1200 кубитов) для создания схемы выполнения квантового алгоритма разработчики предлагают использовать около 50 логических кубитов. Важно отметить, что ряд конкурирующих компаний используют холодные нейтральные атомы для симуляции квантовых процессов. Это тоже своего рода расчёты, но универсальными такие платформы назвать нельзя. Компания Atom Computing изначально сочла такой подход неприемлемым и организует свои нейтральные холодные атомы в гейты. ![]() «Atom Computing вообще никогда не интересовалась аналоговыми вычислениями [симуляциями], — говорит Реми Нотерманс (Remy Notermans), директор по стратегическому планированию компании. — Причина в том, что, когда мы говорим о долгосрочных отказоустойчивых квантовых вычислениях, на самом деле нужны компьютеры на базе гейтов. Очевидно, что я не могу читать мысли наших конкурентов, но мы увидели окно возможностей, где аналоговые вычисления с нейтральными атомами очень интересны. Однако для достижения долгосрочной цели создания отказоустойчивого квантового компьютера аналоговые вычисления не подходят». У холодных нейтральных атомов, используемых в качестве кубитов, есть свои плюсы и минусы. Главный минус — операции с ними проходят ощутимо медленнее. Однако это компенсируется одним из самых длительных в отрасли времён когерентности, в течение которого можно запускать вычислительные алгоритмы и корректировать ошибки. Более того, ставка компании на атомные спины, а не на электронные, максимально увеличила время когерентности. Сегодня оно у них самое продолжительное в отрасли, а точность вычислений на уровне 99,6 % для двухкубитных гейтов является самой высокой в индустрии. Считается, что абсолютно безошибочными квантовые вычисления станут после создания компьютера на 1000 логических кубитов из 1 млн физических. На практике всё может быть не так однозначно, но цель ясна — пытаться создавать системы с наибольшим возможным числом логических кубитов за счёт избыточности физических. В этом году Atom Computing и Microsoft предложат клиентам более 50 логических кубитов на более чем 1000 физических. На следующем этапе компании планируют начать поставки систем с более чем 100 логическими кубитами на более чем 10 тыс. физических. У компании нет узких мест, препятствующих масштабированию платформы, и она готова к развитию. ![]() Интересно отметить, что в данном проекте в качестве партнёра участвует такой технологический гигант, как Microsoft. При этом у Microsoft есть свои собственные квантовые платформы и даже облачные сервисы в этой области. Однако в процессе поставки и развёртывания квантовых компьютеров Atom Computing компания Microsoft будет полноценно отвечать за свою часть — за коррекцию ошибок и создание гибридного стека с классическими компьютерами с использованием пакета Microsoft Azure Quantum. Этот пакет включает инструменты для виртуализации кубитов и упрощения работы с ними. Со временем Atom Computing обещает начать поставки квантовых компьютеров для развёртывания облачных услуг. Однако для этого необходимо создать платформы следующего поколения, которые смогут приносить практическую пользу. Современные квантовые системы, а также решения ближайших лет, компания рассматривает как полигон для отладки алгоритмов и поиска оптимальных квантовых технологий. Чтобы квантовый компьютер обрёл практическую ценность, должно пройти ещё много лет. Дженсен Хуанг обвалил акции производителей квантовых компьютеров
09.01.2025 [10:14],
Владимир Фетисов
Акции компаний, работающих в сфере квантовых вычислений, скатились вниз после того, как глава Nvidia Дженсен Хуанг (Jensen Huang) заявил, что ожидания рынка от квантовых вычислений слишком велики. По его мнению, до создания полезного квантового компьютера может пройти 15–30 лет. Точку зрения главы Nvidia разделяют не все эксперты. ![]() Источник изображений: Nvidia «Если бы вы сказали [что осталось ждать] 15 лет до появления полезных квантовых компьютеров, это, вероятно, было бы преуменьшением. Если бы вы сказали 30 лет, то, вероятно преувеличили бы. Но если бы вы выбрали 20 лет, я думаю, многие из нас поверили бы в это», — заявил Хуанг во время беседы с журналистами, отвечая на вопрос о перспективах дальнейшего роста технологий квантовых вычислений. На этом фоне акции компаний, связанных с квантовыми вычислениями, обвалились. Так ценные бумаги Rigetti Computing подешевели на 40 %, акции IonQ потеряли в цене 37 %, а D-Wave Quantum — более 30 %. Компания Quantum Computing, которая недавно объявила о размещении акций для привлечения $100 млн, подешевела на 37 %. «Поскольку оценки стали несколько завышенными, мы не увидели сегодняшней коррекции. Широкий консенсус уже давно говорит о том, что до начала массового применения квантовых вычислений ещё много лет, поэтому сегодняшние негативные новости не имеют под собой никакой реальной основы», — считает генеральный директор AXS Investments Грег Бассук (Greg Bassuk). Генеральный директор D-Wave Quantum Алан Барац (Alan Baratz) уверен, что Дженсен Хуанг ошибается в своих оценках перспектив рынка квантовых вычислений. «Причина, по которой он ошибается, заключается в том, что мы в D-Wave уже сегодня занимаемся коммерцией. Не через 30 лет, не через 20 лет, не через 15 лет, но прямо сейчас, сегодня», — заявил Барац во время беседы с журналистами CNBC. Он также добавил, что разные компании, включая Mastercard и японскую NTT Docomo, «сегодня используют наши квантовые компьютеры в производстве для улучшения своих бизнес-операций». При этом D-Wave продолжает получать минимальную выручку. Продажи компании в последнем квартале упали на 27 % до $1,9 млн относительно аналогичного периода годом ранее. В конце 2024 года вырос интерес инвесторов к квантовым вычислениям, чему способствовал анонс квантового процессора Google Willow. На этом фоне подскочила стоимость акций многих компаний, работающих в данном сегменте. К примеру, ценные бумаги Rigetti и D-Wave подорожали в сумме на 1449 % и 854 % соответственно. В России запустили первый 50-кубитный квантовый компьютер на холодных атомах
26.12.2024 [12:44],
Геннадий Детинич
По сообщению пресс-службы физического факультета МГУ, 19 декабря 2024 года был проведен контрольный эксперимент, подтвердивший работу первого в стране 50-кубитного квантового компьютера. Установка была официально представлена в октябре этого года. Она создана в рамках многолетнего плана под патронажем «Росатома». Платформа подходит для масштабирования и постепенно позволит нарастить число кубитов до 300 и более. ![]() Источник изображения: Пресс-служба физического факультета МГУ Создание 50-кубитного квантового компьютера в России позволит в обозримом будущем найти практическое применение вычислителям такого класса. В ближайшее время начнётся отладка платформы для повышения точности выполнения двухкубитных операций. «На новом этапе важно начать практическое применение квантовых инноваций. Атомная отрасль уже запустила программу пилотных внедрений квантовых вычислений. Мы рассчитываем на синергию в этой области усилий Росатома и научных коллективов страны, включая ЦКТ МГУ имени М.В. Ломоносова», — пояснила директор по цифровизации госкорпорации «Росатом» Екатерина Солнцева, которую цитирует пресс-служба университета. Анонсированная МГУ платформа представляет собой так называемый оптический стол, большую часть которого занимает лазерная система, используемая для охлаждения и управления состояниями атомов, а также система со сверхвысоким вакуумом и оптическим доступом. Разработчики — специалисты Московского государственного университета имени М. В. Ломоносова и Российского квантового центра — уточняют, что система будет доступна через облако. Пользователям неважно, размещён ли это прототип на открытом стенде или красиво упакованное в корпус изделие. Главное, чтобы компьютер работал. Кстати, среди ведущих специалистов в области квантовых вычислений нет единого мнения о том, что такое квантовая платформа — вычислитель или симулятор. Происходящие в них процессы представляют собой квантовые явления, которые в полном объёме невозможно воспроизвести на классических компьютерах. Учёные как бы позволяют атомам, помещённым в определённые условия, вести себя так, как будто за ними никто не наблюдает, и затем изучают полученные результаты. Таким образом, задачи поиска новых материалов, разработки лекарств и даже оптимизации логистики решаются практически сами собой, но создание начальных условий и извлечение результатов — это поистине титанический и одновременно изощрённый труд. Созданный в России вычислитель основан на одиночных нейтральных атомах рубидия, которые захватываются оптическими пинцетами (сфокусированными лазерными лучами). Именно благодаря использованию оптических пинцетов удалось относительно простыми средствами собрать 50-кубитную систему и планировать её расширение до 100 кубитов к 2030 году. «В настоящий момент в Центре квантовых технологий МГУ мы можем создавать квантовые регистры из 50 атомов, расположенных в упорядоченном массиве, реализовывать операции над одиночными кубитами. <…> Нейтральные атомы в оптических пинцетах — хорошая система с точки зрения перспектив масштабирования, нам более-менее понятно, как дойти от систем из десятков кубитов к сотням и даже тысячам кубитов», — пояснил учёный, чьи слова приводит пресс-служба университета. Rigetti Computing открыла облачный доступ к одному из мощнейших квантовых компьютеров в мире
24.12.2024 [14:47],
Геннадий Детинич
Желающие отточить навыки программирования квантовых компьютеров получили возможность работать на новейшей платформе калифорнийского стартапа Rigetti Computing. Компания открыла облачный доступ к 84-кубитной системе на новейшем процессоре Ankaa-3. Платформа Rigetti использует классические сверхпроводящие кубиты, что может сделать её новую платформу наиболее востребованной среди пользователей. ![]() Квантовый процессор и компьютер компании Rigetti Computing. Источник изображения: Rigetti Computing Как уверяют в Rigetti, благодаря модернизированной архитектуре точность квантовых вентилей существенно повышена, что приводит к более достоверным результатам вычислений. В частности, в 2024 году удалось вдвое снизить частоту ошибок и достичь средней точности iSWAP-вентилей на уровне 99,0 %, а также продемонстрировать среднюю точность fSim-вентилей на уровне 99,5 %. Среднее время выполнения операций для элементов iSWAP составило 72 нс, а для fSim — 56 нс. Вентили fSim компания называет оптимизированными для выборки случайных схем, что делает их аналогичными квантовым чипам Google и её новейшему процессору Willow. Компания Rigetti улучшила не только архитектуру кубитов, но также провела модернизацию всей цепочки производства квантовых процессоров: от методов нанесения металлизации на отдельные элементы, такие как сверхпроводящие джозефсоновские переходы, до организации кубитов в массивы для коррекции ошибок. Кубиты Rigetti представляют собой джозефсоновские переходы, резонаторы и радиочастотные датчики, которые в составе платформы охлаждаются до температуры чуть выше абсолютного нуля (около 10 мК). Для производства таких кубитов используется адаптированный техпроцесс выпуска микроэлектромеханических систем (МЭМС), хорошо известный в полупроводниковой отрасли. В 2024 году компания планирует представить следующее поколение своей квантовой модульной архитектуры. Например, ближе к лету появится 36-кубитная система, основанная на четырёх 9-кубитных чипах, соединённых вместе. Это позволит вдвое снизить частоту ошибок по сравнению с текущим уровнем. К концу 2025 года Rigetti планирует выпустить систему с более чем 100 кубитами, что также приведёт к двукратному снижению частоты ошибок по сравнению с сегодняшним днём. Кроме того, Rigetti Computing вскоре предоставит облачный доступ к своему новейшему 84-кубитному компьютеру через сторонние платформы, такие как Amazon Braket и Microsoft Azure. «Квантовые жёсткие диски» стали ближе к реальности благодаря разработке австралийских учёных
21.11.2024 [14:34],
Геннадий Детинич
Учёные из Австралии сообщили о разработке «трёхмерных» топологических кодов коррекции ошибок квантовых вычислений. Предложенная ими схема использует для коррекции меньше физических кубитов в пересчёте на один логический кубит. Новшество обещает приблизить появление «квантовых жёстких дисков» — хранилищ квантовых состояний для вычислений с невообразимым уровнем производительности. ![]() Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Как известно, время когерентности кубитов — время удержания запутанных квантовых состояний — очень маленькое по причине их высочайшей нестабильности. И если с физикой бороться предельно сложно, то операции коррекции ошибок могут помочь в проведении безошибочных вычислений. Классические компьютеры это показали с достаточной убедительностью. Но в случае операций с кубитами всё намного сложнее — для них нужны свои коды и механизмы коррекции. Традиционным методом исправления ошибок в квантовых вычислениях признан так называемый топологический код или поверхностный код, у которого также есть другие названия. Это своего рода таблица или матрица, которая требует физической или схемотехнической реализации логических кубитов из нескольких физических. В идеале для безошибочной работы каждого логического кубита необходимо 1000 физических кубитов, но на таком подходе масштабируемую вычислительную квантовую платформу построить нельзя. Учёные из Австралии поставили перед собой задачу уйти от традиционного поверхностного кода и создать его трёхмерный аналог, который помог бы облегчить создание квантового вычислителя или симулятора с более эффективной коррекцией ошибок и экономным расходованием физических кубитов. Как недавно они сообщили в журнале Nature Communications, им это удалось. «Предлагаемая нами квантовая архитектура потребует меньше кубитов для подавления большего количества ошибок, высвободив больше для полезной квантовой обработки», — говорится в заявлении ведущего автора работы Доминика Уильямсона (Dominic Williamson), исследователя из Нано-института и школы физики Университета Сиднея (University of Sydney Nano Institute and School of Physics). «Этот прогресс имеет решающее значение для разработки масштабируемых квантовых компьютеров, поскольку позволяет создавать более компактные системы квантовой памяти, — сказано в аннотации к работе. — За счёт сокращения физических затрат на кубиты полученные результаты прокладывают путь к созданию более компактного "квантового жёсткого диска" — эффективной системы квантовой памяти, способной надёжно хранить огромные объёмы квантовой информации». Создан первый в мире полностью механический кубит
19.11.2024 [13:12],
Геннадий Детинич
Швейцарские учёные впервые придали кубиту осязаемые физические черты. Вместо ионов, атомов и электромагнитных ловушек они предложили кубит на основе резонирующей пьезоэлектрической мембраны. Тем самым учёные значительно повысили время когерентности кубита, в течение которого он дольше остаётся в состоянии суперпозиции. Это открывает возможность проводить с ним квантовые вычисления или использовать его в качестве сверхчувствительного датчика ![]() Два серых прямоугольника слева — это сверхпроводящий кубит, а точка справа — резонатор. Источник изображения: ETH Zürich Учёные давно научились транслировать квантовые свойства элементарных частиц и атомов в состояния кубитов для вычислений или измерений. Однако эти методы страдают от высокой вероятности ошибок и крайне малого времени удержания квантовых состояний, что затрудняет свободное манипулирование ими. Было бы заманчиво воспроизвести квантовые состояния на макроскопическом уровне, обучив систему реагировать на изменения на микроуровне. Этого удалось добиться исследователям из Швейцарской высшей технической школы Цюриха (ETH Zürich). Учёные объединили сверхпроводящий кубит и пьезоэлектрический резонатор. Предложенное решение позволило транслировать состояние суперпозиции в резонансные колебания мембраны. По сути, это первый полностью механический кубит, утверждают исследователи. В ходе серии экспериментов они доказали, что устройство способно реагировать на одиночные фотоны. Время когерентности механического (точнее, акустического) кубита значительно превышает время когерентности «бозонных» кубитов и напрямую зависит от типа используемых сверхпроводящих материалов. На следующем этапе учёные намерены проверить предложенный ими механический кубит в составе вычислительных схем квантового компьютера, а также использовать его в качестве сенсора для различных измерений. Google снова показала квантовое превосходство — квантовые компьютеры стали ближе к практическому применению
10.10.2024 [09:19],
Дмитрий Федоров
Группа учёных под руководством Google сообщила о прорыве в области квантовых вычислений. Они снова продемонстрировали квантовое превосходство — способность квантового компьютера выполнять вычисления, на которые не способен классический, — но на этот раз сосредоточились на точности вычислений. Также учёные показали, что существуют фазовые переходы в вычислительных процессах, что открывает путь к дальнейшему развитию квантовых технологий. ![]() Источник изображений: Google, Nature Ещё в 2019 году Google заявляла о достижении квантового превосходства, вызвав бурные споры в научном сообществе. Тогда IBM подвергла сомнению этот результат, утверждая, что классические алгоритмы могут быть оптимизированы для решения аналогичных задач. В новой работе, опубликованной в журнале Nature, учёные описали эксперимент с использованием метода случайной выборки цепей (Random Circuit Sampling, RCS), в ходе которого 67-кубитная система выполнила 32 цикла вычислений. Акцент сделан не на квантовом превосходстве, а на том, что даже при наличии шумов — основного ограничения для квантовых процессоров и главной причины ошибок вычислений — можно добиться вычислительных успехов, которые превосходят возможности классических систем. Это доказывает, что квантовые вычисления приближаются к фазе практического применения. Термин «квантовое превосходство» вызывает определённые споры в научном сообществе. Некоторые исследователи предпочитают использовать термины «квантовая полезность» (Quantum Utility) или «квантовое преимущество» (Quantum Advantage). Последний термин подразумевает не только теоретическое превосходство квантовых устройств, но и их практическую пользу. В отличие от квантового превосходства, которое не связано с реальной полезностью для задач, квантовое преимущество предполагает выполнение задач быстрее и эффективнее, чем на классических компьютерах. ![]() Квантовые процессоры, несмотря на их потенциал, остаются чрезвычайно чувствительными к внешним шумам, таким как температурные колебания, магнитные поля или даже космическая радиация. Эти помехи могут существенно снижать точность вычислений. В исследовании Google учёные изучили влияние шума на работу квантовых устройств и провели эксперимент, который позволил исследовать два ключевых фазовых перехода: динамический переход, зависящий от числа циклов, и квантовый фазовый переход, влияющий на уровень ошибок. Результаты показали, что даже в условиях шума квантовые системы эпохи NISQ могут достичь вычислительной сложности, недоступной для классических систем. ![]() Фазовые переходы в случайной выборке цепей (RCS). График иллюстрирует два фазовых перехода. Первый — от сосредоточенного распределения битовых строк на малом числе циклов к широкому или антиконцентрированному распределению. Второй — переход в условиях шума, при котором высокая ошибка на цикл приводит к переходу от системы с полной корреляцией к представлению в виде нескольких несвязанных подсистем Метод случайной выборки цепей (RCS), использованный в эксперименте, ранее подвергался критике за свою простоту и кажущуюся бесполезность. Однако Google подчёркивает, что RCS является ключевым методом для перехода к задачам, которые невозможно решить на классических компьютерах. Этот метод оптимизирует квантовые корреляции с использованием операций типа iSWAP, что предотвращает упрощение классических эмуляций. Благодаря этому подходу Google смогла чётко обозначить границы возможностей квантовых систем, стимулируя конкуренцию между квантовыми и классическими вычислительными платформами. ![]() В исследовании также рассматриваются перспективы практического использования квантовых процессоров. Одним из первых примеров может стать сертифицированное генерирование по-настоящему случайных чисел, требующее высокой вычислительной сложности и устойчивости к шумам. Серджио Бойксо (Sergio Boixo), руководитель квантовых исследований Google, в своём интервью для Nature отметил: «Если квантовые устройства не смогут продемонстрировать преимущество с помощью RCS, самого простого из примеров использования, то вряд ли они смогут это сделать в других задачах». ![]() Дорожная карта развития квантовых вычислений Google Работа Google представляет собой значительный вклад в развитие квантовых технологий. Хотя практическое применение квантовых устройств остаётся сложной задачей, такие направления, как сертифицированное генерирование случайных чисел, могут стать первым шагом к их коммерческому использованию. Несмотря на сложности, связанные с шумами, эксперименты Google показывают, что переход от теоретических исследований к практическому применению квантовых устройств становится всё более реальным. В России создан 50-кубитный ионный квантовый компьютер
07.10.2024 [17:58],
Сергей Сурабекянц
50-кубитный квантовый ионный компьютер разработан научной группой Российского квантового центра и Физического института имени Лебедева РАН (ФИАН). На данный момент он является самым мощным квантовым компьютером в России. Доступ к нему осуществляется через облачную платформу. Разработка велась в рамках реализации дорожной карты развития высокотехнологичной области «Квантовые вычисления», координатором которой является госкорпорация «Росатом». Представленный квантовый компьютер базируется на уникальной кудитной технологии, которую российские учёные стали использовать третьими в мире, после Австрии и США. Впервые российский 16-кубитный компьютер был представлен в июле 2023 года на первом Форуме будущих технологий (ФБТ). На втором ФБТ в феврале 2023 года была продемонстрирована 20-кубитная машина. Менее чем за год после этого удалось увеличить количество кубитов до 50. «За год мы полностью переделали ультрастабильный лазер и существенно модернизировали и систему адресации и считывания, поработали над стабильностью всех подсистем, автоматизировали многие калибровки. За счёт этого получилось в короткий срок поднять мощность нашего квантового компьютера и нарастить число кубит. Дальше мы планируем работать и над увеличением числа кубит, и над достоверностью двухкубитных операций. Всё это нужно для запуска более сложных квантовых алгоритмов. Потенциал для модернизации у нашей машины есть», — прокомментировал научный руководитель проекта Илья Семериков. Эксперты полагают, что квантовые вычисления в первую очередь будут востребованы в фармацевтике для моделирования сложных соединений при создании новых лекарств. Квантовые вычисления помогут при прогнозировании эпидемий. Врачи смогут в кратчайшие сроки разработать персональные рекомендации для лечения с учётом конкретных симптомов и особенностей организма. Квантовые вычисления обеспечат принципиально новые возможности при моделировании химических процессов, что безусловно будет востребовано в промышленном секторе. В логистических операциях использование квантовых компьютеров для составления оптимальных маршрутов и расписаний движения транспорта приведёт к сокращению задержек, удешевит и ускорит доставку грузов. Аналитики уверены, что квантовые технологии радикально повысят возможности ИИ в области машинного обучения, распознавания и анализа, обработки больших данных при меньших энергозатратах. Постквантовое шифрование должно обеспечить необходимый уровень защиты персональных и конфиденциальных данных. В финансовом секторе квантовые вычисления помогут минимизировать риски и точнее оценить кредитоспособность клиента. «Ионная платформа является в мире одной из главных по значимости в квантовых вычислениях. В ФИАНе полностью освоена технология создания квантового компьютера на ионах. Наша исследовательская группа смогла обеспечить высокие темпы развития квантового вычислителя до уровня в 50 кубитов, который позволяет проектировать его будущее применение в прикладных задачах экономики и сферы безопасности. Ожидается, что к 2030 году квантовые вычисления дополнят классические вычисления в решении большого ряда специфических задач, в том числе, позволят развивать квантовую химию и обеспечивать квантовое шифрование» — заявил Директор ФИАН Николай Колачевский. «50 кубитов - это колоссальное достижение, особенно, учитывая, что 4 года назад лучшим результатом в России было 2 кубита, а ионное направление построено с нуля. Однако для нас это лишь первый шаг на пути к промышленному использованию квантовых вычислений. […] Мы верим, что уже через несколько лет отдельные отрасли смогут извлечь пользу от использования того самого квантового превосходства, и сделаем все, чтобы максимально упростить эту задачу», — считает сооснователь Российского квантового центра Руслан Юнусов. Ранее он озвучивал планы создания 100-кубитного квантового компьютера к 2030 году. Россия наряду с США и Китаем сегодня входит в число стран, создавших квантовые компьютеры на всех четырёх приоритетных для квантовых вычислителей платформах: сверхпроводниках, ионах, нейтральных атомах и фотонах. И только шесть стран построили квантовые компьютеры с 50 кубитами и более: Китай, США, Канада, Россия, Япония и Франция. США стандартизировали первые криптографические алгоритмы, стойкие к взлому на квантовых компьютерах
13.08.2024 [21:20],
Сергей Сурабекянц
На сегодняшний день практически все чувствительные данные в мире защищены схемой ассиметричного шифрования RSA (Rivest-Shamir-Adleman), которую практически невозможно взломать с помощью современных компьютеров. Но появление квантовых компьютеров может кардинально изменить ситуацию. Поэтому Национальный институт стандартов и технологий США (National Institute of Standards and Technology, NIST) представил три схемы шифрования постквантовой криптографии. ![]() Источник изображений: unsplash.com Новые стандарты должны стать важным элементом криптографической защиты данных. Предыдущие стандарты криптографии NIST, разработанные в 1970-х годах, используются практически во всех устройствах, включая интернет-маршрутизаторы, телефоны и ноутбуки. Руководитель группы криптографии NIST Лили Чен (Lily Chen) уверена в необходимости массовой миграции с RSA на новые методы шифрования: «Сегодня криптография с открытым ключом используется везде и во всех устройствах, наша задача — заменить протокол в каждом устройстве, что нелегко». Хотя большинство экспертов считают, что крупномасштабные квантовые компьютеры не будут построены как минимум ещё десять лет, существуют две веские причины для беспокойства уже сегодня:
Поэтому эксперты по безопасности в различных отраслях призывают серьёзно относиться к угрозе, исходящей от квантовых компьютеров. Новые схемы шифрования основаны на понимании сильных и слабых сторон квантовых вычислений, так как квантовые компьютеры превосходят классические лишь в достаточно узком спектре задач. К квантово-устойчивым криптографическим методам относятся:
На сегодняшний день наиболее перспективным методом NIST считает решётчатую криптографию. Институт ещё в 2016 году объявил публичный конкурс на лучший алгоритм постквантового шифрования. Было получено 82 заявки от команд разработчиков из 25 стран. С тех пор конкурс прошёл через четыре отборочных тура и в 2022 году завершился, назвав четыре победивших алгоритма. Были учтены мнения криптографического сообщества, промышленных и учёных кругов, а также заинтересованных государственных служб. ![]() Четыре победивших алгоритма имели звучные названия: CRYSTALS-Kyber, CRYSTALS-Dilithium, Sphincs+ и FALCON, но после стандартизации получили типовое обозначение «Федеральный стандарт обработки информации» (Federal Information Processing Standard, FIPS) с номерами 203–206. Сегодня NIST объявил о стандартизации FIPS 203, 204 и 205. Ожидается, что FIPS 206 будет стандартизирован ближе к концу года. FIPS 203, 204 и 206 основаны на решётчатой криптографии, в то время как FIPS 205 — на хеш-функциях. Стандарты включают компьютерный код алгоритмов шифрования, инструкции по его реализации и сценарии предполагаемого использования. Для каждого протокола существует три уровня безопасности, разработанные для обеспечения будущих стандартов в случае обнаружения в алгоритмах слабых мест или уязвимостей. Ранее в этом году внимание криптографического сообщества привлекла публикация Или Чена (Yilei Chen) из Университета Цинхуа, которая утверждала, что решётчатая криптография на самом деле плохо защищена от квантовых атак. Но при дальнейшем рассмотрении силами сообщества в аргументации Чена были найдены ошибки, и авторитет решётчатой криптографии был восстановлен. Этот инцидент подчеркнул базовую проблему, лежащую в основе всех криптографических схем: нет никаких доказательств того, что какие-либо из математических задач, на которых основаны схемы, на самом деле «сложные». Единственным реальным доказательством стойкости шифрования, даже для стандартных алгоритмов RSA, являются многочисленные неудачные попытки взлома в течение длительного времени. Поскольку постквантовые стандарты криптографии пока очень «молоды», их стойкость постоянно подвергается сомнениям и попыткам взлома, причём каждая неудачная попытка только повышают доверие к ним. «Люди изо всех сил пытались взломать этот алгоритм. Многие люди пытаются, они очень стараются, и это на самом деле придаёт нам уверенности», — заявила по этому поводу Лили Чен. Безусловно, представленные NIST новые стандарты постквантового шифрования актуальны, но работа по переводу на них всех устройств только началась. Потребуется длительное время и значительные средства, чтобы полностью защитить данные от дешифровки при помощи будущих квантовых компьютеров. Для примера, компания LGT Financial Services потратила 18 месяцев и около полумиллиона долларов лишь на частичное внедрение новых алгоритмов, а затраты на полный переход оценить затруднилась. |