Сегодня 29 марта 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → коллайдер
Быстрый переход

ЦЕРН намерен построить «суперколлайдер» Future Circular Collider, но не все учёные с этим согласны

Несмотря на климатическую повестку, Европейская организация по ядерным исследованиям (CERN) настаивает на необходимости построить в Европе более мощный кольцевой коллайдер. Возможности Большого адронного коллайдера себя почти исчерпали. Чтобы продвинуться в изучении тайн мироздания, необходимо сталкивать частицы с намного большими энергиями. Но ряд европейских учёных требуют остановиться и направить финансы на решение насущных проблем.

 Сравнение БАК () и FCC. Источник изображения: CERN

Сравнение БАК (LHC) и Future Circular Collider (FCC). Источник изображения: CERN

По мере продвижения в процессе технико-экономического обоснования проекта будущего коллайдера Future Circular Collider (FCC) его стоимость понемногу растёт. На нынешнем этапе проект оценивается примерно в $17 млрд. Если он будет утверждён, то платить придётся из бюджета ЕС и Великобритании. Причём для этого придётся экономить на определённых научных программах и довольно долго — не одно десятилетие. Поэтому учёных понять можно. Они живут и работают сейчас, и что произойдёт в 2050 году, когда заработает первая очередь FCC и, тем более, в 2070 году, когда планируют запустить вторую очередь — это волнует немногих.

Бывший главный научный советник правительства Великобритании, профессор сэр Дэвид Кинг (David King), назвал расходы на FCC «безрассудными», призвав перенаправить эти средства на решение неотложных глобальных проблем, таких как чрезвычайная ситуация с климатом. Ему вторит немецкий физик и популяризатор наук Сабина Хоссенфельдер (Sabine Hossenfelder), которая не верит в способность FCC добавить что-то новое к уже известной физике элементарных частиц.

Генеральный директор ЦЕРН, профессор Фабиола Джанотти (Fabiola Gianotti), в защиту проекта назвала коллайдер «прекрасной машиной», которая поможет человечеству добиться значительных успехов в понимании фундаментальной физики и внутреннего устройства Вселенной.

Большой адронный коллайдер начал работать с 2008 году. В 2012 году он, наконец, помог обнаружить неуловимую раньше частицу, бозон Хиггса, что формально завершило построение Стандартной модели в физике элементарных частиц. Диаметр кольца БАК составляет 27 км. Диаметр кольца коллайдера FCC будет 91 км. Это на несколько порядков увеличит энергию столкновений частиц, обещая обнаруживать неизвестные ранее взаимодействия между частицами и новые частицы. Даже тот самый бозон Хиггса будет производиться в большем объёме, что поможет лучше изучить его характеристики. Собственно будущий коллайдер уже называют «хиггсовской фабрикой».

Решение ЦЕРН создать FCC последовало после тщательных консультаций с участием физиков со всего мира. Целью процесса было оценить реакцию стран-членов, включая Великобританию, которая как и другие участники проекта оплатит счета за это монументальное научное начинание. Параллельно разрабатываются ещё четыре проекта перспективных коллайдеров, три из которых относятся к линейным. В ЦЕРН подсчитали, что только проект FCC окажется самым предпочтительным с точки зрения климатической повестки. Он будет меньше всего вырабатывать CO2 в пересчёте на каждый полученный на нём бозон Хиггса.

Утверждение плана строительства FCC ожидается в 2025 году. Строительство тоннеля под кольцо коллайдера начнётся в 2033 году. Электрон-позитронный коллайдер начнёт работать в 2048 году. Ещё 20 лет спустя по кольцу FCC запустят более тяжёлые частицы — протоны, что ещё сильнее повысит энергию столкновений.

Американские физики запросили прорывной мюонный коллайдер, но всё упёрлось в финансы

Комитет P5 в пятницу опубликовал программные предложения для властей США по развитию физики элементарных частиц в стране в течение следующего десятилетия. На создание предложений ушло свыше трёх лет, в течение которых собирались и анализировались предложения американских физиков. От выбора руководства США будет зависеть, вернёт ли американская наука себе место лидера или продолжит отставать.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Комитет «пяти П» (Particle Physics Project Prioritization Panel) или группа планирования приоритетов в физике элементарных частиц выполняла задание Министерства энергетики США и Национального научного фонда по разработке планов развития на следующие 10 лет. Предыдущий план был представлен в 2014 году и срок его исполнения истекает.

Не секрет, что после запуска Большого адронного коллайдера на территории Швейцарии и Франции центр изучения физики элементарных частиц сместился в Европу. В США собирались строить свой коллайдер, но в 1993 году Конгресс не дал на это денег. США снова вернёт себе мировое лидерство в этой сфере, если создаст на своей территории «коллайдер мечты» — ускоритель на мюонах. Мюоны в современном представлении физиков — это неделимые частицы (в отличие от протонов, которые сталкивают на БАК), поэтому при столкновении мюонов будет выделяться больше энергии и, как следствие, можно будет изучать более тяжёлые частицы и искать следы тёмной материи.

В то же время следует понимать, что в течение следующих десяти лет такой проект физически неосуществим. Если по нему будет принято решение, то эти годы уйдут на проектирование и доказательство осуществимости проекта. Впрочем, рабочий проект такого масштаба — это рывок вперёд как по науке, так и по технологиям. Чтобы он приблизился к реальности, комитет P5 рекомендует увеличивать бюджет Министерства энергетики (включая средства на физику элементарных частиц) на 3 % в год. Фактически это будет следование за инфляцией, но угрозы смелым проектам такое финансирование нести не будет, что позволит физикам в США оставаться впереди учёных в других странах.

Эти средства помогут продолжить уже реализуемые проекты, например, такие как обсерватория им. Веры Рубин, или установка DUNE для изучения осциляции нейтрино, а также множество других. Но если министерство выберет альтернативный план развития физики в США, согласно которому бюджет будет расти на 2 % в год, то про эти и другие проекты, включая мюонный коллайдер, можно будет забыть. Тем самым урон может быть нанесён даже мировой фундаментальной физике, которая включает работы американских учёных. БАК близок к исчерпыванию своих возможностей. После открытия бозона Хиггса там не осталось пространства для резкого движения вперёд. Для прорывных открытий нужно что-то новое и определённый объём старого, а именно денег.

«Фундаментальные исследования трудно продать, — сказал доктор Мураяма. — Это не приносит немедленной пользы обществу». Но результат того стоит, добавил он: «Физика элементарных частиц привела к революциям в медицинских приложениях, материаловедении и даже к созданию iPhone и Всемирной паутины».

Зафиксирован случай редчайшего распада бозона Хиггса — это может изменить представления о мироздании

Обнаружение бозона Хиггса на Большом адронном коллайдере в 2012 году стало завершающим в череде исследований, подтвердивших правильность Стандартной модели. Все фундаментальные частицы были найдены экспериментально, а их характеристики были измерены и согласованы с теорией. Впрочем, остаются небольшие расхождения между теорией и практикой, что заставляет продолжать эксперименты, и особенно это касается такой «молодой» частицы, как бозон Хиггса.

 Источник изображения: ATLAS

Источник изображения: ATLAS

На стартовавшей на днях конференции «Физика большого адронного коллайдера» (LHCP) представители коллабораций ATLAS и CMS рассказали, как они сообща обнаружили редчайшее событие — распад бозона Хиггса на электрически нейтральный носитель слабого взаимодействия (Z-бозон) и носитель электромагнитной силы (фотон). Бозон Хиггса в столкновениях частиц на ускорителе может распадаться по целому ряду каналов и распад на Z-бозон и фотон в рамках Стандартной модели — это очень и очень редкое событие, которое должно случаться с вероятностью всего 0,15 %.

Следует сказать, что в данных БАК учёные ещё не встречали распада бозона Хиггса на Z-бозон и фотон, что косвенно подтверждает редкость такого явления. Обнаружить явление смогли комбинированные данные коллективов ATLAS и CMS, собранные на БАК в период с 2013 по 2018 год, а также использование машинного обучения для поиска интересующих событий.

По-отдельности статистическая точность обнаружения указанного канала распада в данных ATLAS составила 2,2σ (сигма — стандартное отклонение), а в данных CMS — 2,6σ. В сумме статистическая значимость события достигла величины 3,4σ, чего не хватило для заявки на открытие (для этого требуется величина отклонения не менее 5 сигм), но этого оказалось достаточно для почти надёжного подтверждения события.

Учёные подтвердили, что бозон Хиггса действительно может распадаться на Z-бозон и фотон. Дальнейшие наблюдения за подобным каналом распада или подтвердит физику в рамках Стандартной модели, или заставит усомниться в её завершённости. Новые наблюдения за бозоном Хиггса будут проводиться на модернизированном БАК, возможности которого улучшались поэтапно и теперь достигли максимального значения — в прошлом году энергию столкновений подняли до 13,6 ТэВ. В ближайшие годы статистика по распаду бозона Хиггса на Z-бозон и фотон будет набираться и даст чёткий ответ на вопрос: понимаем ли мы устройство нашего мира, или нет?

На Большом адронном коллайдере впервые поймали рукотворные нейтрино — помог собранный на коленке детектор FASERnu

Нейтрино являются вторыми по распространённости во Вселенной фундаментальными частицами после фотонов, но они настолько слабо взаимодействуют с веществом, что одно время даже были кандидатами на роль тёмной материи. Всё-таки их можно улавливать и учёные это делают с 1956 года. Однако в коллайдерах нейтрино ещё не получали, пока в 2022 году на БАК не поставили серию экспериментов, уверенно доказавших детектирование нейтрино, полученных искусственным путём.

 Трек нейтрино на фотоэмульсионной плёнке. Источник изображений: FASER

Трек нейтрино на фотоэмульсионной плёнке. Источник изображений: FASER

Любопытно, что установка FASERnu для детектирования нейтрино в ходе экспериментов на БАК собрана из комплектующих, оставшихся от прошлых экспериментов. Детектор поместили в один из боковых служебных коридоров коллайдера, но это не означает, что открытие рукотворных «призрачных частиц» не имеет важного научного значения. До сих пор учёные фиксировали в основном нейтрино низких энергий, тогда как из глубин космоса к нам приходят нейтрино высоких энергий. На БАК были получены как раз высокоэнергичные частицы, что открывает возможность использовать полученные данные для понимания астрофизических процессов.

Отдельно приятно, что значительную часть теоретической работы и обработку данных провели российские физики. В коллаборации FASER эту задачу взял на себя Объединённый институт ядерных исследований (ОИЯИ). В экспериментах по физике нейтрино для регистрации частиц использовалась ядерная фотоэмульсия — чередование вольфрамовых пластин для замедления нейтрино с фоточувствительной эмульсией.

 Устройство детектора

Устройство детектора FASERnu

«Группа ОИЯИ участвует в моделировании сигнала, реконструкции и анализе фотоэмульсионных данных, проектировании и создании системы охлаждения с возможностью контроля и стабилизации температуры для FASERnu»,рассказала участник коллаборации FASER от ОИЯИ, научный сотрудник Сектора экспериментальной нейтринной физики Светлана Васина.

В предыдущих экспериментах на БАК были детектированы шесть частиц-кандидатов на роль высокоэнергетических нейтрино. Третий запуск БАК в 2022 году с повышенной яркостью дал настолько много данных, что их статистическая значимость превысила 16 сигм при требуемом уровне достоверности 5 сигм. Иначе говоря, сомнения в детектировании на БАК высокоэнергетических нейтрино при таких условиях стремятся к нулю.

 Как выглядит детектор FASERnu  в реальности

Как выглядит детектор FASERnu в реальности

Нейтрино невозможно обнаружить напрямую при сталкивании пучков частиц, но благодаря детектору FASERnu где-то в боковом тоннеле БАК это стало возможным. Тем самым БАК стал инструментом, который полностью воспроизводит весь спектр известных современной физике элементарных частиц, включая бозон Хиггса, ради поиска которого, собственно, Большой адронный коллайдер и строился.

Энергетический кризис в Европе заставит ЦЕРН заглушить Большой адронный коллайдер на две недели раньше плановой остановки

Ранее сообщалось, что руководство Европейской организации ядерных исследований (ЦЕРН) разрабатывает планы экономии электроэнергии. Один только Большой адронный коллайдер в ЦЕРНе потребляет в пике до 200 МВт, что соответствует примерно трети потребления расположенной рядом Женевы. Чтобы не останавливать эксперименты на БАК, планировалось приостановить работу других ускорителей в комплексе, но теперь озвучено иное решение.

 Источник изображения: Keystone / Christian Beutler

Источник изображения: Keystone / Christian Beutler

Как сообщает портал N + 1 со ссылкой на участника коллаборации ATLAS и профессора МИФИ Анатолия Романюка, руководством организации было принято решение сдвинуть на две недели раньше сроки традиционной зимней остановки Большого адронного коллайдера. «Решение уже принято, оно пока не объявлено официально, но на уровне машины оно принято», — сказал Романюк.

Согласно ранее утверждённым планам по проведению экспериментов на БАК, остановка самого главного ускорителя ЦЕРН должна была произойти 13 декабря. Согласно изменённому плану, остановка БАК начнётся 28 ноября. При этом под вопросом остаётся возможность запустить БАК в марте 2023 года. Чем закончится эта зима для Европы, сегодня сказать невозможно, поэтому перенос экспериментов может произойти не только этой осенью, но также весной.

В этой связи напомним, что учёные начали призывать к «озеленению» фундаментальной науки. Современные научные инструменты и инструменты ближайшего будущего должны быть более энергоэффективными, поскольку они потребляют всё больше и больше энергии. В этом плане можно было бы позавидовать России с её богатейшими запасами разнообразных энергоресурсов. Однако необходимо понимать простую вещь, наука может успешно развиваться только в международном сотрудничестве. Так было всегда и стало особенно важным по мере умножения научных знаний.

Фундаментальная наука «позеленеет»: физики задумались об энергоэффективном производстве бозонов Хиггса

Время дешёвой энергии прошло, что требует от научных изысканий в физике элементарных частиц соответствовать моменту. Современные инструменты для изучения частиц и, прежде всего, разнообразные ускорители, потребляют так много энергии, что оказывают пагубное с точки зрения экологии воздействие на окружающую среду. Это ведёт к устойчивому мнению, что все будущие проекты ускорителей должны подвергаться строжайшей экологической экспертизе.

 Примерное расположение коллайдера Future Circular Collider. Источник изображения: CERN

Примерное расположение коллайдера Future Circular Collider. Источник изображения: CERN

Комплекс ускорителей в ЦЕРНе, жемчужиной которого является Большой адронный коллайдер (БАК), потребляет на уровне 200 МВт в пике, что примерно равно трети потребления расположенной недалеко Женевы с населением порядка 200 тыс. человек. В будущем ЦЕРН намерен создать ещё более мощный инструмент для исследования бозона Хиггса и других элементарных частиц — коллайдер Future Circular Collider (FCC) окружностью 100 км. Его ещё называют «хиггсовской фабрикой». Это колоссально поднимет потребление энергии комплексом, что заставляется задуматься о будущей энергоэффективности экспериментов.

Проект FCC ещё не утверждён, что даёт возможность оценить предложенные варианты с точки зрения воздействия на окружающую среду. Предварительные выкладки показывают, что в зависимости от выбранного проекта «сталкивателя частиц» углеродный след «хиггсовской фабрики» может отличаться в 100 раз. К такому выводу пришли европейские физики, изучившие потенциал преемников БАК. И самый масштабный проект в лице FCC со 100-км окружностью оказался самым эффективным с точки зрения затраченной энергии на получение каждого бозона Хиггса.

В настоящее время существует пять предложений по созданию высокоэнергетического позитронно-электронного коллайдера. Это три коллайдера на линейных ускорителях — Международный линейный коллайдер (ILC) в Японии, американский коллайдер C3 и Компактный линейный коллайдер в ЦЕРНе, а также два кольцевых коллайдера — ЦЕРНовский FCC и китайский электрон-позитронный коллайдер (CEPC). Физики из ЦЕРНа проанализировали каждый проект и пришли к выводу, что Future Circular Collider будет самым энергоэффективным даже с учётом влияния на окружающую среду сооружений коллайдера и всех необходимых строительных работ (хотя все приведенные ниже выкладки учитывают только энергетическую составляющую работы коллайдеров как самую значимую).

В частности, исследователи подсчитали, что Future Circular Collider будет потреблять 3 МВт·ч на каждый произведенный бозон Хиггса. На втором месте по эффективности оказался китайский CEPC — 4,1 МВт·ч на бозон Хиггса. Самым энергозатратным признан американский коллайдер C3, который на каждый бозон Хиггса будет расходовать 18 МВт·ч.

С учётом углеродного следа от производства электроэнергии в каждой из стран, где планируется строить будущие и более мощные коллайдеры, круговой коллайдер Future Circular Collider снова оказался самым дружественным к природе — производство каждого бозона Хиггса на FCC будет сопровождаться выбросом 0,17 т эквивалента CO2. Японский ILC, к примеру, будет производить в 50 раз больше выбросов на каждый бозон Хиггса (9,4 т эквивалента CO2). Такая громадная разница возникла преимущественно по той причине, что Future Circular Collider будет запитан от французских энергосетей, в которых преобладает электричество от атомных электростанций.

Более того, если Future Circular Collider увеличит число точек взаимодействия частиц с 2 до 4, то его эффективность вырастет ещё в два раза — до 1,8 МВт·ч на каждый бозон Хиггса и выбросов до 0,1 т эквивалента CO2.

Как ещё один вариант для снижения воздействия коллайдеров ЦЕРНа на окружающую среду предложено протянуть линию электропередачи от солнечных электростанций в Северной Африке, хотя это уже другая история. Факт в том, что фундаментальная наука сможет двигаться вперёд далеко не во всех странах и регионах. И это ещё непонятно, как на всём этом скажется нынешний энергетический кризис. В ЦЕРН уже задумались о сокращении ряда второстепенных экспериментов, и с этим придётся жить дальше.

«Росэлектроника» создаст электронные компоненты для сверхмощных коллайдеров

Государственная корпорация «Ростех» сообщает о том, что в РФ в рамках программы импортозамещения будет разработано семейство специализированных ферритовых приборов — электронных компонентов для усилительной техники. Эти устройства найдут применение в сверхмощных отечественных коллайдерах.

 Источник изображений: pixabay.com

Источник изображений: pixabay.com

Проект реализует НИИ «Феррит-Домен» холдинга «Росэлектроника». Речь идёт о создании узкополосных циркуляторов высокого уровня мощности на базе ферритов. В настоящее время проектируются опытные образцы, а начало серийного производства запланировано на третий квартал 2023 года.

Ожидается, что изделия найдут применение в различных сферах. Это, в частности, оборудование для цифрового телевидения, промышленные установки генерации плазмы, комплексы для исследования элементарных частиц и термоядерного синтеза, а также перспективные ускорители для научных и медицинских целей.

Новые ферритовые приборы помогут в строительстве сверхмощных коллайдеров, которые должны появиться в Сарове, Новосибирске и на Дальнем Востоке. Циркуляторы будут производиться в форм-факторе Drop-In. Это позволит максимально эффективно интегрировать их в архитектуру радиоэлектронной аппаратуры, которая всё чаще создаётся на базе твердотельной техники вместо электровакуумной.

«Новая разработка холдинга "Росэлектроника" является востребованным электронным компонентом для усилительного оборудования различного типа, в том числе в составе уникальных научных установок класса "мегасайенс"», — говорится в сообщении.

Запуск обновлённого Большого адронного коллайдера на полную мощность в два раза ускорит научные исследования

Вчера Большой адронный коллайдер (БАК) вывели на полную мощность, что стало возможным после нового цикла модернизации установки. До этого БАК сталкивал встречные пучки протонов с энергией 13 ТэВ, а после модернизации энергию столкновений подняли до 13,6 ТэВ. И хотя подъём кажется незначительным, возросшая интенсивность столкновений, рост числа протонов в пучках и установка новых детекторов позволят до двух раз ускорить научные исследования на БАК.

 Источник изображения: CERN

Источник изображения: CERN

БАК работает циклами (Run), за период которых собираются данные для последующего анализа. После нескольких лет модернизации, что даёт возможность как усилить энергию столкновений, так и добавить новые детекторы в установку, запускается новый цикл по сбору данных. Текущий цикл третий по счёту (Run 3). БАК был остановлен в 2018 году после цикла Run 2 и почти три года проходил техническое обслуживание и модернизацию.

К работе установку начали возвращать в апреле текущего года. Поскольку это чрезвычайно сложный инструмент с тысячами контроллеров, то запустить его по «щелчку переключателя» невозможно в принципе. Инженеры постепенно наращивали энергию пучков, пока 5 июля не смогли добиться максимально возможного значения в 13,6 ТэВ.

«Одних соединений, переключений, контроллеров всевозможных тысячи и десятки тысяч. Мы же не можем включить один большой рубильник и сказать — всё, теперь работаем. Надо настраивать большое количество магнитов, и это требует больших усилий и много времени. Это удивительно сложная работа, и наши коллеги-инженеры, которые начали работать с ускорителем, уложились с этими тестами и настройками всего за 3–4 месяца, это героический поступок»,рассказал РБК ректор НИЯУ МИФИ доктор физико-математических наук Владимир Шевченко.

По словам российских физиков, возросшая интенсивность столкновений протонов в коллайдере до двух раз ускорит научные исследования на нём. Вместо 10–15 лет работы на сбор необходимых данных будет уходить до 5 лет и даже меньше. Научные открытия будут совершаться чаще и в более сжатые сроки.

До лета–осени 2024 года российские и белорусские физики продолжат работать на Большом адронном коллайдере по уже открытым проектам. Новые проекты временно открывать запрещено, хотя в будущем вопрос сотрудничества с РФ и Республикой Беларусь может быть рассмотрен заново.

Большой адронный коллайдер построили в 2008 году для проверки Стандартной модели физики и поиска новых данных о фундаментальных частицах. Адронами называют частицы, состоящие из кварков. Простейшими адронами, например, являются нейтроны и протоны. Атомы и молекулы тоже относятся к адронам, как и мы с вами в целом. Из это следует название установки — Большой адронный коллайдер (сталкиватель).

Увеличение энергии столкновений приведёт к росту частоты тех или иных событий, что позволит уточнить параметры частиц Стандартной модели и попытаться обнаружить отклонения от этой модели. А любые отклонения — это путь к неизвестному, например, к обнаружению тёмного вещества, тёмной энергии или антиматерии.

Большой адронный коллайдер готовятся разогнать до рекордных показателей

Вновь начавший работу после модернизации Большой адронный коллайдер (БАК) будет «разогнан» до рекордной энергии 13,6 триллиона электронвольт (ТэВ). Более трёх лет работ по обновлению программно-аппаратной составляющей позволят мощнейшему в мире ускорителю частиц в дальнейшем работать около 4 лет, обеспечивая недостижимый ранее потенциал для новых открытий.

 Источник изображения: CERN

Источник изображения: CERN

Как сообщает «Интерфакс», курируемый Европейской организацией по ядерным исследованиям (CERN) проект уже действует с апреля, но постепенно он будет выводиться на максимальную мощность — машина БАК и ее инжекторы вводятся в эксплуатацию для работы с новыми пучками повышенной интенсивности с увеличенной энергией.

Благодаря этому учёные смогут более эффективно исследовать природу бозона Хиггса «с беспрецедентной точностью по новым каналам». Кроме того, они получат возможность исследовать и другие, ранее недоступные процессы и повысить точность измерений для решения актуальных вопросов вроде природы «асимметрии» присутствия материи-антиматерии во вселенной. Дополнительно будут изучаться свойства материи при экстремальной температуре и плотности, а также будет вестись поиск «кандидатов» в тёмную материю — как прямым поиском, так и с помощью точных измерений свойств уже известных частиц.

По данным CERN предполагается дальнейшее изучение бозонов Хиггса и, в частности, возможность их распада на частицы тёмной материи. В рамках программы по изучению столкновений тяжёлых ионов планируется исследование кварк-глюонной плазмы — вещества, предположительно существовавшего в течение 10 секунд после Большого взрыва, в результате которого согласно современной научной модели образовалась Вселенная.

Прямая трансляция запуска состоится в 17:00 по московскому времени. Анонс мероприятия уже размещён на канале CERN на YouTube.

Напомним, на данный момент CERN по политическим мотивам объявил о намерении прекратить сотрудничество с учёными из России и Беларуси с 2024 года, когда закончится срок действия уже существующих договорённостей.


window-new
Soft
Hard
Тренды 🔥
Крупное обновление добавило в No Man’s Sky возможность создавать собственные космические корабли — фанаты мечтали об этом с 2016 года 10 ч.
CD Projekt раскрыла, как продвигается разработка The Witcher 4, и похвасталась успехами Cyberpunk 2077 10 ч.
Громкие анонсы «без рекламы и лишней болтовни»: ведущие инди-разработчики устроят собственную игровую презентацию The Triple-i Initiative 11 ч.
Databricks представила открытую LLM DBRX, превосходящую GPT-3.5 Turbo 11 ч.
«Всегда обидно, когда хейтеры оказываются правы»: Earthblade от авторов Celeste не выйдет и в 2024 году 12 ч.
США запретили властям использовать ИИ, который ущемляет американцев 13 ч.
Экшен-платформер Nine Sols от создателей Devotion наконец получил дату выхода — это смесь Hollow Knight и Sekiro: Shadows Die Twice в стиле даопанка 14 ч.
Разработчики Homeworld 3 раскрыли, как улучшат игру после критики фанатов 15 ч.
Экс-глава EA Russia Тони Уоткинс сделает Astrum Entertainment «компанией №1» на российском рынке видеоигр 18 ч.
Магазин чат-ботов ChatGPT провалился, но им пользуются ученики школ и университетов 18 ч.
Производство чипов на территории Южной Кореи подскочило в феврале на рекордные 65,3 % 58 мин.
Объёмы поставок смартфонов в этом году вырастут на 3 % до 1,2 млрд штук 2 ч.
Amazon потратит почти $150 млрд на расширение ЦОД, чтобы стать лидером в области ИИ 8 ч.
Новая статья: Обзор лазерного 4К-проектора Hisense Laser Mini Projector C1: передовые технологии в действии 9 ч.
В Китае запустили связь 5.5G — первыми её поддержку получили смартфоны Oppo Find X7 10 ч.
Apple представит обновлённые планшеты iPad Pro и iPad Air в начале мая, если слухи верны 11 ч.
Глобальное потепление замедлило вращение Земли, и в этом уже нашли плюсы 12 ч.
Nautilus запустила линейку инфраструктурных решений EcoCore для модульных ЦОД 12 ч.
Китай нарастил закупки нидерландского оборудования для выпуска чипов в несколько раз, несмотря на санкции 13 ч.
Оптика для HBM: стартап Celestial AI получил ещё $175 млн инвестиций, в том числе от AMD и Samsung 13 ч.