Опрос
|
реклама
Быстрый переход
Учёные заставили магнит реагировать на свет — это может преобразить магнитную запись
18.08.2023 [15:56],
Геннадий Детинич
Группа учёных из Городского колледжа Нью-Йорка сообщила о замеченном сильном магнитооптическом отклике. Магнитный материал буквально впитывал свет, вступая с ним в реакцию на порядки сильнее, чем было известно до этого. Обнаруженное свойство обещает привести к созданию магнитных лазеров и новых систем для записи данных, основанных не на привычном магнитоэлектрическом взаимодействии, а на магнитооптическом. В своём эксперименте учёные изучали свойства магнитных ван-дер-ваальсовых материалов. Конкретно — слоистый полупроводниковый магнитный материал CrSBr. Подобные обычно состоящие из двумерных слоёв материалы за счёт вкрапления магнитных элементов обладают внутренней магнитной структурой и способны демонстрировать интересные квантовые свойства. Образец не разочаровал. При наложении внешнего магнитного поля он настолько сильно прореагировал на световой импульс в ближней инфракрасной области, что это отразилось в изменении цвета материала. Но структура материала может реагировать на свет сама по себе. В представленных материалах возникают квазичастицы экситоны, которые связаны как с материалом, так и способны реагировать на фотоны. Обычно такие взаимодействия очень и очень слабы, но в случае с экспериментальным образцом внутренняя структура магнита как бы улавливала входящий световой импульс и проявляла на него сильную реакцию. Как показали эксперименты, оптический отклик этого материала на магнитные явления на порядки сильнее, чем в обычных магнитах. «Поскольку свет переотражается внутри магнита, взаимодействие между ними действительно усиливается, — сказал доктор Флориан Дирнбергер, ведущий автор исследования. — Например, при наложении внешнего магнитного поля отражение света в ближней инфракрасной области изменяется настолько сильно, что материал практически меняет свой цвет. Это довольно сильный магнитооптический отклик». «Технологические применения магнитных материалов сегодня в основном связаны с магнитоэлектрическими явлениями. — Рассказал соавтор исследования Цзямин Куань (Jiamin Quan). — Учитывая столь сильное взаимодействие между магнетизмом и светом, мы можем надеяться на создание магнитных лазеров и пересмотреть старые концепции оптически управляемой магнитной памяти». Крошечные магнитные вихри позволят хранить данные куда эффективнее, чем современные HDD и SSD
23.11.2022 [12:47],
Геннадий Детинич
Учёные Аргоннской национальной лаборатории Министерства энергетики США продвигаются в изучении таких магнитных явлений, как микроскопические магнитные вихри, или скирмионы. Это устойчивые магнитные возбуждения в материалах, которые в будущем могут заменить традиционную магнитную запись на жёстких дисках и память MRAM. В отличие от обычной намагниченности скирмионы труднее разрушить, что обещает повышенную надёжность записи. Но это ещё не всё. Структуру и возможность образования магнитных вихревых структур около 60 лет назад предсказал британский физик-теоретик Тони Скирми (Tony Skyrme). Позже эти магнитные вихри получили его имя. Это топологически устойчивые магнитные образования, которые можно возбуждать в магнитных плёнках, а затем считывать их состояние. По сравнению с классическими магнитами (намагниченностью) скирмионы обещают оказаться на три–четыре порядка энергоэффективнее в задачах хранения данных и они также не требуют питания для поддержки состояния намагниченности. В настоящий момент скирмионы остаются предметом раннего исследования, хотя учёные уже примерно понимают, как на их основе создать ячейки памяти. Учёные аргорнской лаборатории используют для этого сочетание электронного микроскопа и искусственного интеллекта. Алгоритм научили распознавать скирмионы в слоях материала, охлаждённого до сверхнизких температур. Выяснилось, что чем сильнее охлаждают материал, тем меньше шансов у скирмионов уцелеть. При температуре -168 °C скирмионы практически исчезли, тогда как нагрев до -50 °C вернул магнитной структуре порядок. Учёные уверены, что обратимость перехода от хаоса к порядку и наоборот создают простор для изобретения новых эффективных систем магнитной памяти. Совсем скоро для хранения данных в мире будет потребляться до 25 % всей вырабатываемой на Земле энергии. Это недопустимая роскошь. Компьютеры нуждаются в новых и энергоэффективных системах памяти. Скирмионы являются одними из многообещающих кандидатов на эту роль, хотя их ещё изучать и изучать. |