Сегодня 02 июля 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → магнитная запись

Австралийцы создали магнитную молекулу для жёстких дисков будущего — маленьких и сверхёмких

По мере развития технологий записи цифровых данных проблема хранения архивов ничуть не теряет своей актуальности. Напротив, новые технологии генерации контента опережают темпы расширения хранилищ. Говоря словами Алисы из знаменитого произведения Кэрролла: «Нужно бежать со всех ног, чтобы просто оставаться на месте». Учёные из Австралии обещают «не оставаться на месте» в системах магнитной записи, а сделать рывок, представив миру магнит из одной молекулы.

 Источник изображения: Jamie Kidston/ANU

Источник изображения: Jamie Kidston/ANU

Разработкой магнита из одной молекулы занялся коллектив из Австралийского национального университета (ANU) в сотрудничестве с Университетом Манчестера. Также были привлечены вычислительные ресурсы Центра суперкомпьютеров Pawsey в Западной Австралии. Отчёт о работе опубликован в последнем номере журнала Nature.

Сегодня магнитная запись осуществляется с вовлечением огромного массива атомов на дисках, которые организуются в домены. Соседние домены негативно влияют друг на друга, и это тоже мешает повышать плотность записи на магнитных дисках. Домен размером с одну молекулу стал бы выходом, который привёл бы к высокоплотной записи данных, и работы в этом направлении идут. Но пока все предложенные материалы демонстрируют стабильность сверхмалых магнитных доменов только при очень низкой температуре — около 80 К (-193 ℃). Учёные из Австралии шагнули в более тёплую область рабочих температур, открыв магнитную молекулу, стабильную при температуре 100 К (-173 ℃).

«Новый одномолекулярный магнит, разработанный исследовательской группой, может сохранять своё магнитное состояние при температуре до 100 Кельвинов, что составляет около минус 173 градусов по Цельсию, или такой же холодной, как лунный вечер», — сказал соавтор исследования профессор Николас Чилтон (Nicholas Chilton) из ANU.

Очевидно, что в домашних условиях непросто поддерживать температуру -173 ℃. Однако для центров обработки и хранения данных это вообще не проблема. Таких температур легко добиться с использованием такого недорогого хладагента, как жидкий азот. Слоган «Храните данные в морозилке» может стать насущной реальностью.

Сама по себе молекула-магнит представляет давно известное соединение редкоземельного элемента диспрозия с двумя атомами азота. В обычных условиях все три атома расположены зигзагом, но благодаря добавке алкена они выстроились почти в идеальную прямую, что придало молекуле магнитные свойства.

Учёные теоретически обосновали структуру магнитной молекулы и вычислили её свойства, для чего был использован суперкомпьютер и квантовая механика. Уравнения квантовой механики дают результат, совпадающий с показаниями эксперимента до 12 знаков после запятой. Поэтому расчётам можно верить. Сделанное открытие позволит оттолкнуться от него и найти молекулы с ещё более сильными магнитными характеристиками, или поддерживающими их при более высокой температуре.

«Эта новая молекула может привести к появлению новых технологий, которые позволят хранить около трёх терабайт данных на квадратный сантиметр. Это эквивалентно примерно 40 000 CD-копий альбома "Тёмная сторона Луны", помещенных на жёсткий диск размером с почтовую марку, или примерно полумиллиону видеороликов TikTok», — резюмируют исследователи.

Учёные создали память завтрашнего дня — на магнитных вихрях с имитацией синапсов мозга

Экспоненциальный рост информационного потока и прогресс в сфере нейронных сетей и искусственного интеллекта требуют новой и необычной памяти, поскольку требования к хранению и обработке данных переросли современные технологии. Кандидатов на эту роль много, и одним из них может стать созданная в Барселоне память на магнитных вихрях, которая, к тому же, удачно имитируют синапсы головного мозга человека, прокладывая путь к нейроморфным вычислениям.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

О разработке сообщили исследователи из Автономного университета Барселоны (UAB), опубликовав статью в журнале Nature Communications. Учёные отступили от идеи использовать сплошные тонкоплёночные покрытия, как, например, происходит при производстве жёстких дисков. Вместо этого они создали массив точек нанометрового размера. Каждая точка представляет собой своеобразную ячейку памяти, разрядность которой может быть ощутимо больше двух классических 0 и 1.

Принцип новой разработки заключается в том, что состоянием ячейки можно управлять без токовой цепи, как происходит в случае классической магниторезистивной памяти. Вместо этого ячейкой управляют напряжением (магнитным полем), что резко снижает энергопотребление памяти и, как следствие, её тепловыделение.

 Источник изображений: Nature Communications 2025

Источник изображений: Nature Communications 2025

Наноточки изготавливаются из первоначально парамагнитного (слабомагнитного) материала FeCoN (соединение железа, кобальта и азота). Когда под электроды под наноточками подаётся напряжение — создаётся электромагнитное поле, происходит выталкивание ионов азота в окружающий материал электролит. Тем самым материал превращается в ферромагнетик с растущим снизу вверх градиентом намагниченности.

После определённого рубежа магнитные моменты атомов в наноточках формируют устойчивую магнитную вихреобразную структуру (Vortion). Это соответствует переводу наноточки в определённое состояние или, проще говоря, ведёт к записи ячейки. Учёные убедились, что регулируя время подачи напряжения на электроде можно добиваться нескольких магнитных состояний вихрей, тем самым повышая разрядность хранения данных в каждой наноточке.

Самым интересным применением нового типа памяти обещает стать её использование в нейроморфных вычислениях. Подобно хранению данных в синапсе человеческого мозга, память на магнитном вихре может содержать одновременно весовой коэффициент и амплитуду, открывая путь к новым типам вычислений в памяти.

Учёные заставили магнит реагировать на свет — это может преобразить магнитную запись

Группа учёных из Городского колледжа Нью-Йорка сообщила о замеченном сильном магнитооптическом отклике. Магнитный материал буквально впитывал свет, вступая с ним в реакцию на порядки сильнее, чем было известно до этого. Обнаруженное свойство обещает привести к созданию магнитных лазеров и новых систем для записи данных, основанных не на привычном магнитоэлектрическом взаимодействии, а на магнитооптическом.

 Источник изображения: City College of New York

Пойманный в ловушку в магнитном материале свет. Художественное представление. Источник изображения: City College of New York

В своём эксперименте учёные изучали свойства магнитных ван-дер-ваальсовых материалов. Конкретно — слоистый полупроводниковый магнитный материал CrSBr. Подобные обычно состоящие из двумерных слоёв материалы за счёт вкрапления магнитных элементов обладают внутренней магнитной структурой и способны демонстрировать интересные квантовые свойства. Образец не разочаровал. При наложении внешнего магнитного поля он настолько сильно прореагировал на световой импульс в ближней инфракрасной области, что это отразилось в изменении цвета материала.

Но структура материала может реагировать на свет сама по себе. В представленных материалах возникают квазичастицы экситоны, которые связаны как с материалом, так и способны реагировать на фотоны. Обычно такие взаимодействия очень и очень слабы, но в случае с экспериментальным образцом внутренняя структура магнита как бы улавливала входящий световой импульс и проявляла на него сильную реакцию.

Как показали эксперименты, оптический отклик этого материала на магнитные явления на порядки сильнее, чем в обычных магнитах. «Поскольку свет переотражается внутри магнита, взаимодействие между ними действительно усиливается, — сказал доктор Флориан Дирнбергер, ведущий автор исследования. — Например, при наложении внешнего магнитного поля отражение света в ближней инфракрасной области изменяется настолько сильно, что материал практически меняет свой цвет. Это довольно сильный магнитооптический отклик».

«Технологические применения магнитных материалов сегодня в основном связаны с магнитоэлектрическими явлениями. — Рассказал соавтор исследования Цзямин Куань (Jiamin Quan). — Учитывая столь сильное взаимодействие между магнетизмом и светом, мы можем надеяться на создание магнитных лазеров и пересмотреть старые концепции оптически управляемой магнитной памяти».


window-new
Soft
Hard
Тренды 🔥
В Threads появились собственные личные сообщения — без перехода в Instagram 5 ч.
Одной из двух замороженных игр People Can Fly была Outriders 2 — подробности отменённого сиквела 7 ч.
Telegram добавил списки задач и посты от подписчиков — на последних можно зарабатывать 7 ч.
Bloomberg раскрыл список «очень состоятельных» претендентов на покупку TikTok в США 7 ч.
Rockstar вспомнила о Red Dead Online — для мультиплеерного боевика вышло первое за долгое время крупное обновление 8 ч.
Психологический хоррор Dead Take сотрёт границу между кино и играми — в главных ролях оказались звёзды Baldur’s Gate 3 и Clair Obscur: Expedition 33 10 ч.
Nvidia выпустила драйвер с поддержкой GeForce RTX 5050 11 ч.
System Shock 2: 25th Anniversary Remaster получила новую дату выхода на PlayStation, Xbox и Nintendo Switch 11 ч.
Разработчик конфиденциальных сервисов Proton решил засудить Apple за недобросовестную конкуренцию 12 ч.
Новый план Huawei по «захвату мира»: компания открыла исходный код своих ИИ-моделей 13 ч.
Федеральный суд в США отказался снять обвинения с Huawei в нарушении санкций 14 мин.
Задняя панель Nothing Phone 3 стала больше похожа на экран смартфона 50 мин.
Новая статья: Обзор смартфона HONOR 400 Pro: настоящая уличная магия 4 ч.
Apple оштрафовали на $110 млн за незаконное использование технологии связи 20-летней давности 5 ч.
Новая статья: Обзор системного блока Bloody BD-PC CZ79C3: главное — настрой! 6 ч.
Apple обвинила экс-инженера Vision Pro в краже тысяч секретных файлов перед переходом к конкуренту 6 ч.
Отечественный квантовый процессор с наибольшим числом кубитов прошёл испытания и готов к масштабированию 8 ч.
Nothing представила накладные наушники Headphone (1) — аналоговое управление, звук KEF и автономность до 80 часов за €299 9 ч.
Nothing представила флагманский Phone (3) с матричным экраном и четвёркой 50-Мп камер за $800 9 ч.
Marshall представила портативную колонку Middleton II с автономностью до 30 часов и LE Audio — она работает даже под водой 10 ч.