Опрос
|
реклама
Быстрый переход
Учёные создали крошечное живое сердце на чипе — оно бьётся как человеческое
31.01.2024 [14:11],
Геннадий Детинич
Ширится и растёт популярность создания на чипах живых имитаторов органов человека. Это даёт возможность безопасно проверять лекарства на человеческих тканях и изучать течение болезней вне тела человека. Электроника позволяет тщательнее следить за процессами и вести сбор данных круглосуточно, что раньше было невозможно. ![]() Источник изображения: ИИ-генерация Кандинский 3.0/3DNews Новые и ещё не проверенные лекарства и методы лечения способны нанести здоровью намного больше вреда, чем пользы. Особенно это касается лечения онкологических заболеваний, которые уничтожают не только больные клетки, но также множество здоровых. Именно для оценки токсичности подобных лекарств для сердечной ткани учёные из медицинского центра Cedars-Sinai в Лос-Анджелесе создали «сердце на чипе», которое как и живое бьётся с частотой 60 ударов в минуту. «В конечном счёте, многоклинические системы на основе hiPSC, такие как представленный здесь ”сердечный чип”, могут снизить зависимость от опытов на животных, которые традиционно используются для доклинического тестирования кардиотоксичности лекарств», — пишут исследователи в статье в The Royal Society of Chemistry. Индуцированные стволовые плюрипотентные клетки (hiPSC) способны трансформироваться в клетки любого типа. Учёные создали из них два параллельных канала, создав, таким образом, в одном канале подобие мышечных тканей, в другом — аналог кровеносных сосудов. Мышечная ткань смогла неделями оставаться в живом состоянии и демонстрировала характерные для сердечной ткани сокращения с частотой около 60 ударов в минуту. ![]() Источник изображения: The Royal Society of Chemistry «Разработанная нами платформа ”сердечный чип” позволяет проводить скрининг потенциально кардиотоксичных химиотерапевтических агентов на нескольких типах сердечно-сосудистых клеток в физиологически релевантной модели», — сообщают исследователи. Живые ткани оставались функциональными в течение нескольких недель, предоставляя возможность для более длительных исследований того, как лекарства и другие факторы окружающей среды влияют на сердце. Такая платформа не только поможет в разработке более безопасных лекарств, но и сможет больше рассказать учёным о тонкостях сердечных заболеваний, а именно о том, как они начинаются и прогрессируют, и как их можно лечить. Медицинский ИИ Google оказался человечнее живых врачей, но не всё так просто
17.01.2024 [18:39],
Павел Котов
Google поделилась результатами исследования, в рамках которого установила, что основанный на искусственном интеллекте чат-бот в переписке более эффективно диагностирует медицинские заболевания и более гуманно сообщает о них пациентам, чем настоящие врачи. Впрочем, делать окончательные выводы ещё рано. ![]() Источник изображения: Yerson Retamal / pixabay.com Система под названием Articulate Medical Intelligence Explorer (AMIE) представляет собой большую языковую модель, предназначенную для сбора медицинских данных и ведения клинических бесед. AMIE разработана, чтобы анализировать предлагаемые пациентами симптомы, задавать дополнительные вопросы и прогнозировать диагнозы. В ходе тестирования были выбраны 20 добровольцев, играющих роль пациентов и якобы страдающих некими заболеваниями, а также 20 профессиональных врачей — специалистов по первичной медицинской помощи, отвечающих за фактор человеческого контакта. Пациенты не знали, с кем переписывались: с ИИ или настоящими врачами. И их попросили оценить качество взаимодействия вслепую. В рамках эксперимента были разыграны 149 сценариев, и выяснилось, что пациенты предпочитали общаться с AMIE, а не настоящими врачами. Участники заявили, что чат-бот лучше понял их проблемы и дал более чуткие, ясные и профессиональные ответы. AMIE также более точно диагностировал медицинские проблемы. Но это не значит, что чат-бот оказывает медицинскую помощь эффективнее настоящего врача, пояснили в Google. Предложенная исследователями методика, конечно, занижает действительную ценность разговора с человеком: врачи были ограничены интерфейсом текстового чата — он хорош для взаимодействия пациентов с ИИ, но не репрезентативен для стандартной клинической практики. Google не пыталась заменить врачей первичной медицинской помощи, а захотела продемонстрировать, что чат-бот с ИИ может оказаться полезным инструментом для пациентов, лишённых доступа к здравоохранению. Но в реальном мире развёртывание такой системы пока рискованно — для её ответственного использования потребуется значительная доработка. В США создан экзоскелет, позволяющий пациентам с болезнью Паркинсона стабильно передвигаться пешком
07.01.2024 [08:06],
Алексей Разин
Разработка так называемых экзоскелетов движется в двух основных направлениях: создание силовых ассистентов для людей с полноценными моторными функциями и реабилитация пациентов с различными нарушениями опорно-двигательного аппарата. Американским учёным удалось создать «мягкий» экзоскелет, который возвращает пациентам с болезнью Паркинсона возможность уверенно ходить пешком без посторонней помощи. ![]() Источник изображения: YouTube, Harvard John A. Paulson School of Engineering and Applied Sciences К нарушениям функций опорно-двигательной системы человека приводят самые разные заболевания, но в случае с болезнью Паркинсона основной проблемой являются периодические застывания на месте при ходьбе, которым предшествует сокращение амплитуды движения конечностей. В результате таких замираний человек может потерять равновесие и упасть, по этой причине пациентам с болезнью Паркинсона сложно передвигаться самостоятельно, особенно на открытых пространствах с множеством отвлекающих факторов. Как сообщает TechCrunch, команде учёных из университетов Гарварда и Бостона удалось создать «мягкий» экзоскелет, который при помощи системы датчиков адаптируется к особенностям походки конкретного человека, и при помощи закреплённых на ногах исполнительных механизмов ненавязчиво придаёт им импульс движения в нужный момент, исключая характерные замирания почти полностью. В ходе испытаний экзоскелета с участием 73-летнего мужчины, страдающего болезнью Паркинсона, было установлено, что без особой тренировки он научился ходить внутри помещений с высокой скоростью и без замираний, а на открытых пространствах характерные застывания на месте случались гораздо реже. Ему также удавалось сочетать ходьбу и поддержание беседы, чего было сложно добиться без соответствующего устройства. Команда разработчиков продолжит совершенствовать свой экзоскелет, а также готова лицензировать технологию всем желающим производителям соответствующих устройств-ассистентов. Создание такой техники в значительной степени решает проблему социализации людей, страдающих нарушениями опорно-двигательного аппарата, и способствует повышению качества их жизни. Neuralink начала искать добровольцев для вживления им мозгового импланта N1
20.09.2023 [10:14],
Дмитрий Федоров
Компания Neuralink, основанная миллиардером Илоном Маском (Elon Musk), получила разрешение на первые клинические испытания мозгового импланта на людях ещё в мае, а теперь подбирает первых добровольцев. Исследование, которое продлится около 6 лет, предусматривает имплантацию интерфейса мозг-компьютер (BCI) с помощью хирургического робота R1 в область человеческого мозга, отвечающую за движение. Первоначальная цель проекта — дать людям возможность управлять курсором или клавиатурой компьютера силой мысли. ![]() Источник изображений: Neuralink Вчера Neuralink объявила о получении одобрения от независимого совета по этическим вопросам для начала набора участников первого клинического испытания своего мозгового импланта для пациентов с параличом конечностей. Исследование, получившее название PRIME (Precise Robotically Implanted Brain-Computer Interface), нацелено на оценку безопасности импланта N1 и хирургического робота R1, а также функциональности BCI. ![]() Имплант N1 регистрирует нейронную активность с помощью 1024 электродов, распределенных по 64 нитям. Эти сверхгибкие и ультратонкие нити позволяют минимизировать повреждения при имплантации и дальнейшем использовании В мае текущего года Neuralink получила зелёный свет от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) для начала первых клинических испытаний на людях. Стоит отметить, что на тот момент компания уже находилась под пристальным надзором регулятора в связи с проведением испытаний на животных. Кандидатами могут стать люди, страдающие от паралича вследствие травмы шейного отдела спинного мозга или амиотрофического бокового склероза. Однако компания не раскрыла, сколько человек будет привлечено для участия в исследовании, которое займёт около 6 лет. Ранее компания планировала включить в него 10 пациентов, но FDA предложило сократить это число из-за опасений по поводу безопасности испытаний. ![]() В голове хирургического робота R1 интегрированы оптические системы и датчики, включающие 5 камер, а также оборудование для оптической когерентной томографии (ОКТ) В ходе исследования с помощью хирургического робота R1 будет осуществлена хирургическая имплантация BCI в область мозга, отвечающую за формирование намерения двигаться. Имплант N1, который после установки становится косметически незаметным, предназначен для беспроводной передачи сигналов мозга в приложение, демонстрирующее намерения движения. Первоначальной целью Neuralink является возможность управления курсором или клавиатурой компьютера исключительно силой человеческой мысли. ![]() Игла тоньше человеческого волоса захватывает, вставляет и отпускает нейронные нити Маск видит большие перспективы для Neuralink, включая быстрые хирургические вмешательства с использованием чипов для лечения ожирения, аутизма, депрессии и шизофрении. Несмотря на текущий прогресс, эксперты предупреждают, что даже в случае подтверждения безопасности устройства BCI для использования людьми, на получение разрешения на его коммерческое использование может потребоваться более 10 лет. Это связано с необходимостью строгого соблюдения стандартов безопасности, установленных FDA. Учёные разработали сегнетоэлектрический полимер, который обещает прорыв в гибкой робототехнике
10.07.2023 [10:39],
Дмитрий Федоров
Роботы станут не только более умными, но и гибкими. Исследователи из Университета штата Пенсильвания разработали сегнетоэлектрический полимер, который эффективно преобразует электрическую энергию в механическую деформацию. Этот материал, потенциально пригодный для использования в медицинских приборах и робототехнике, преодолевает традиционные пьезоэлектрические ограничения. Исследователи улучшили характеристики за счёт создания полимерного нанокомпозита, значительно снизив необходимую для деформации напряжённость поля, что расширяет потенциал применения. ![]() Источник изображения: Qing Wang / psu.edu Новый тип сегнетоэлектрического полимера, который исключительно хорошо преобразует электрическую энергию в механическую деформацию, обещает стать высокоэффективным контроллером движения или линейным приводом (актуатором) с большим потенциалом для применения в медицинских устройствах, передовой робототехнике и системах точного позиционирования, сообщает международная группа исследователей под руководством Университета Пенсильвании (PSU). Механическая деформация — изменение формы материала при приложении силы — является важным свойством для актуатора, который представляет собой любой материал, который изменяется или деформируется при приложении внешней силы, например, электрической энергии. Традиционно материалы для приводов были жёсткими, но мягкие аналоги демонстрируют большую гибкость и приспособляемость к окружающей среде. Исследование продемонстрировало потенциал нанокомпозитов из сегнетоэлектрических полимеров для преодоления ограничений традиционных пьезоэлектрических полимерных композитов, предлагая перспективный путь для разработки мягких актуаторов с улучшенными характеристиками деформации и плотности механической энергии. Мягкие приводы представляют особый интерес для исследователей робототехники благодаря своей прочности, мощности и гибкости. «Потенциально мы можем получить тип мягкой робототехники, которую мы называем искусственными мышцами. Это позволит нам получить мягкую материю, способную выдерживать большую нагрузку в дополнение к большой деформации. Таким образом, этот материал будет в большей степени имитировать человеческую мышцу», — сказал Цин Ванг (Qing Wang), профессор материаловедения и инженерии Университета Пенсильвании и соавтор исследования. Однако прежде чем эти материалы смогут оправдать надежды учёных, им необходимо преодолеть несколько препятствий, и в исследовании были предложены возможные решения этих проблем. Первая — как повысить силу воздействия мягких материалов. Учёным известно, что мягкие исполнительные материалы, которыми являются полимеры, имеют наибольшую деформацию, но они генерируют гораздо меньшую силу по сравнению с пьезоэлектрической керамикой. Вторая проблема заключается в том, что для сегнетоэлектрического полимерного привода обычно требуется очень высокое движущее поле, то есть сила, которая навязывает изменение в системе, например, изменение формы. В данном случае высокое движущее поле необходимо для создания изменения формы полимера, требуемого для сегнетоэлектрической реакции, необходимой для превращения в актуатор. Решение, предложенное для улучшения характеристик сегнетоэлектрических полимеров, заключалось в разработке перколяционного нанокомпозита на основе сегнетоэлектрического полимера — своего рода микроскопической наклейки, прикреплённой к полимеру. Включив наночастицы в один из видов полимера, поливинилиденфторид (polyvinylidene fluoride), исследователи создали взаимосвязанную сеть полюсов внутри полимера. «Этот новый материал может быть использован для многих устройств, для эффективности которых требуется низкое движущее поле, таких как медицинские приборы, оптические устройства и мягкая робототехника», — сказал профессор Цин Ванг. Можно с уверенностью сказать, что этот материал станет незаменимым в приборах для дистанционных нейрохирургических операций. Новый сегнетоэлектрический полимер, разработанный исследователями из Пенсильвании, представляет собой значительный прорыв в области робототехники и медицинских устройств. Этот материал, способный эффективно преобразовывать электрическую энергию в механическую деформацию, обещает стать высокоэффективным контроллером движения. Исследование подчёркивает потенциал нанокомпозитов из сегнетоэлектрических полимеров для преодоления ограничений традиционных пьезоэлектрических полимерных композитов, открывая перспективный путь для разработки мягких актуаторов с улучшенными характеристиками деформации и плотности механической энергии. Это открытие может привести к созданию нового типа мягкой робототехники, которую можно назвать искусственными мышцами, и представляет собой важный шаг вперёд в этой области. Медицинский ИИ-чатбот Google уже проходит тестирование в больницах
09.07.2023 [08:03],
Дмитрий Федоров
Med-PaLM 2, медицинский ИИ-чатбот Google, проходит тестирование в клинике Mayo и других медицинских учреждениях США. Этот инструмент, предназначенный для ответов на вопросы в сфере медицины, может стать особенно полезным в странах с ограниченным доступом к медицинским услугам. Несмотря на некоторые проблемы с точностью, Med-PaLM 2 показывает обнадёживающие результаты. ![]() Источник изображения: Userba011d64_201 / pixabay.com Начиная с апреля, новейший ИИ-чатбот от Google, предназначенный для ответов на вопросы о медицине, проходит тестирование в исследовательской клинике Mayo, а также других медицинских учреждениях США. Med-PaLM 2 — это модификация PaLM 2, который был анонсирован на Google I/O в мае текущего года. PaLM 2 — это языковая модель, лежащая в основе Google Bard. The Wall Street Journal сообщает, что согласно внутренней переписке, которую изучил источник, Google считает, что обновлённая модель может быть особенно полезна в странах с «ограниченным доступом к медицинским услугам». Med-PaLM 2 была обучена на основе тщательно подобранного набора примеров или демонстраций, созданных и предоставленных медицинскими экспертами, что, по мнению Google, делает её более эффективной в диалогах о здоровье пациента, в сравнении с обычными ИИ-чатботами, такими как Bard, Bing и ChatGPT. Также WSJ ссылается на исследование, опубликованное Google в мае, которое показало, что Med-PaLM 2 всё ещё сталкивается с некоторыми проблемами точности, которые разработчики уже научились решать в больших языковых моделях. В ходе исследования врачи обнаружили больше неточностей и нерелевантной информации в ответах, предоставленных Google Med-PaLM и Med-PaLM 2, чем в ответах других врачей. Тем не менее, почти по всем другим показателям, таким как обоснование аргументов, ответы, поддержанные консенсусом, или отсутствие признаков неправильного понимания, Med-PaLM 2 показал результаты, сравнимые с результатами реальных врачей. WSJ пишет, что клиенты, тестирующие Med-PaLM 2, будут контролировать свои медицинские данные, которые будут зашифрованы, и даже Google не будет иметь к ним доступа. Согласно словам старшего директора по исследованиям Google Грега Коррадо (Greg Corrado), Med-PaLM 2 всё ещё находится на ранней стадии разработки. Коррадо заявил, что, хотя он бы не хотел, чтобы это стало частью «медицинского путешествия» его собственной семьи, включающего всё от первого визита к врачу и диагностики до лечения, реабилитации и последующего наблюдения, он считает, что Med-PaLM 2 «расширяет возможности применения ИИ в здравоохранении в 10 раз». Можно сказать, что медицинский ИИ-чатбот Google является значительным шагом вперёд в области здравоохранения. Несмотря на некоторые проблемы с точностью, выявленные в ходе исследований, общие результаты показывают, что этот инструмент может быть эффективным, особенно в странах, где доступ к медицинским услугам ограничен. Однако, как подчеркнул старший директор по исследованиям Google, Med-PaLM 2 пока находится на ранней стадии разработки, и поэтому важно продолжать тестирование новейшего ИИ для большей точности диагнозов, а следовательно и безопасности пациентов. |