Сегодня 18 мая 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → медицина
Быстрый переход

Медицинский ИИ от Google превзошёл GPT-4 и даже живых докторов

Google Research и исследовательская лаборатория Google в области искусственного интеллекта DeepMind сообщили подробности о семействе передовых больших языковых моделей Med-Gemini, разработанных для применения в сфере здравоохранения.

 Источник изображения: geralt/Pixabay

Источник изображения: geralt/Pixabay

ИИ-модели всё ещё находятся на стадии исследования, но авторы разработок утверждают, что Med-Gemini, основанные на модели Google Gemini, превосходят конкурирующие модели, такие как GPT-4 от OpenAI, обладают огромным потенциалом в клинической диагностике и превосходят отраслевые стандарты в 14 популярных профильных бенчмарках. В частности, в тесте MedQA (USMLE) модель Med-Gemini достигла точности 91,1 %, используя стратегию поиска, основанную на неопределённости, превзойдя медицинскую LLM Med-PaLM 2 компании Google на 4,5 %. Набор моделей также превзошёл людей в обобщении медицинских текстов и составлении рекомендаций, причём врачи в половине случаев оценивали ответы Med-Gemini-M 1.0 как хорошие или даже лучше, чем ответы экспертов.

Med-Gemini — это семейство больших мультимодальных моделей (LMM), каждая из которых имеет своё предназначение. В отличие от больших языковых моделей, которые «демонстрируют неоптимальные клинические рассуждения в условиях неопределённости», страдают галлюцинациями и предвзятостью, Med-Gemini дают «фактически более точные, надёжные и детальные результаты для сложных задач клинического обоснования», чем их конкуренты, включая GPT-4, утверждает Google.

По семи мультимодальным бенчмаркам, включая проверку по изображениям New England Journal of Medicine (NEJM), модель Med-Gemini показала гораздо лучшие результаты, чем GPT-4.

Чтобы проверить способность Med-Gemini понимать и рассуждать на основе длинной контекстной медицинской информации, исследователи с успехом выполнили с её помощью так называемую задачу поиска «иголки в стоге сена», используя большую общедоступную базу данных Medical Information Mart for Intensive Care (MIMIC-III), содержащую обезличенные данные о состоянии здоровья пациентов, поступивших в отделение интенсивной терапии.

Поддержка Med-Gemini эффективного поиска в базе данных электронных медицинских карт Electronic Health Record (EHR) позволит «значительно снизить когнитивную нагрузку и расширить возможности врачей за счёт эффективного извлечения и анализа важной информации из огромных объёмов данных пациентов», утверждает Google.

По словам исследователей, Med-Gemini также показывают хорошие результаты в медицинских тестах, медицинских знаниях, клинических рассуждениях, геномике, медицинской визуализации, медицинских записях и видео.

Вместе с тем Google заявила, что её модели нуждаются в большей доработке и специализации, прежде чем их можно будет использовать в здравоохранении.

OpenAI GPT-4 достигла уровня врачей-офтальмологов в диагностике глазных заболеваний

Большая языковая модель искусственного интеллекта OpenAI GPT-4 достигла тех же результатов, что и врачи-специалисты, в оценке глазных заболеваний и выработке методов их лечения — или превзошла их, пишет Financial Times со ссылкой на материалы исследования. Сильнее ИИ оказались лишь лучшие специалисты.

 Источник изображения: u_9p7tw4noz0 / pixabay.com

Источник изображения: u_9p7tw4noz0 / pixabay.com

Офтальмология оказалась центральным направлением проекта по внедрению ИИ в клиническую практику, а также по устранению препятствий к этому, например, галлюцинаций — склонности моделей выдавать явно не соответствующую действительности информацию. В рамках исследования рассматривались 87 сценариев лечения пациентов, чего хватило, чтобы оценить эффективность GPT-4 по сравнению с непрофильными врачами, стажёрами и опытными офтальмологами. Модель превзошла молодых врачей и добилась результатов на уровне опытных специалистов.

Исследование примечательно тем, что в нём сравнивались способности нейросети с возможностями практикующих врачей, а не результатами обследований. Кроме того, здесь применялись широкие возможности генеративного ИИ, а не узкая специализация, которая рассматривалась в предыдущих проектах, таких как оценка рисков онкологии на основе материалов сканирования пациентов. Модель одинаково хорошо справилась с вопросами как на простое наличие знаний, так и на способность рассуждать: интерполировать, интерпретировать и обрабатывать информацию.

GPT-4 можно усовершенствовать, проведя дополнительное обучение на расширенном наборе данных, включая алгоритмы управления, записи о реальных пациентах (без личной информации) и учебники, пояснил автор исследования в школе клинической медицины при Кембриджском университете Арун Тирунавукарасу (Arun Thirunavukarasu). Для этого требуется соблюсти баланс между увеличением количества и характера источников и высоким качеством данных. На практике такие модели помогут определять приоритет пациентов, когда доступ к специалистам ограничен.

Но и излишне доверяться ИИ тоже преждевременно, предупредил профессор Университетского колледжа Лондона Пирс Кин (Pearse Keane), работающий также в лондонской офтальмологической больнице «Мурфилдс» (Moorfields Eye Hospital). В прошлом году он задал большой языковой модели вопрос о дегенерации жёлтого пятна в глазах и получил не соответствующий действительности ответ.

Alafia AI выпустила моноблок с 128-ядерным процессором Ampere Altra и двумя видеокартами Nvidia RTX

Стартап Alafia AI, специализирующийся на выпуске устройств для обработки медиаизображений, представил рабочую станцию Alafia Aivas SuperWorkstation в формфакторе моноблока, оснащённую 128-ядерным процессором Ampere Altra и двумя профессиональными видеокартами Nvidia RTX.

 Источник изображения: Alafia AI

Источник изображения: Alafia AI

Alafia AI позиционирует новую рабочую станцию как устройство, специально созданное для медицинской визуализации и клинических исследований, поскольку немногие приложения поддерживают как процессоры Ampere Altra на базе Arm-архитектуры, так и возможности инференса Nvidia. То есть этот компьютер не предназначен для выполнения офисных задач.

Рабочая станция Alafia Aivas SuperWorkstation оснащена сенсорным 4K-дисплеем с яркостью до 360 кд/м2, а также 128-ядерным процессором Ampere Altra с тактовой частотой 3,0 ГГц и двумя видеокартами Nvidia RTX с количеством ядер до 28 416 (в конфигурации также указаны Nvidia RTX 4000 и RTX A3000). Объём оперативной памяти DDR4 составляет до 2 Тбайт, ёмкость твердотельного накопителя — до 8 Тбайт.

На данный момент рабочая станция ориентирована на разработчиков программного обеспечения. Вместе с тем её могут использовать медицинские учреждения, если производительность и возможности устройства соответствуют их потребностям. При этом компания подчеркнула, что те, кто развёртывает рабочую станцию в полевых условиях, несут ответственность за полученные результаты.

«Рабочую станцию, серверы и/или продукты и услуги Alafia Ai, Inc. следует использовать только для ухода за пациентами или в клинических сценариях после проверки обученными медицинскими работниками на основании здравого медицинского заключения», — сообщила компания.

Alafia Ai планирует начать поставку Aivas SuperWorkstation во II квартале 2024 года с интеграцией приложений для массовых параллельных вычислений в III квартале и последующей интеграцией устройств экосистемы в IV квартале 2024 года.

Созданное с помощью ИИ лекарство впервые начали испытывать на людях — оно поможет от смертельного заболевания лёгких

Гонконгская компания Insilico Medicine сообщила, что разработанный с её помощью препарат для лечения идиопатического лёгочного фиброза (ИЛФ) стал первым в мире созданным с помощью искусственного интеллекта лекарством, разрешённым для клинических испытаний. Препарат проходит проверку на 60 пациентах в клиниках США и Китая. На его разработку ушло всего 18 месяцев, тогда как обычно такая работа требует многих лет работ.

 Источник изображения: Insilico Medicine

Источник изображения: Insilico Medicine

Болезнь ИЛФ буквально забирает жизни возрастных пациентов, а её природа до сих пор неизвестна. В случае развития заболевания пациенты сталкиваются с лёгочной недостаточностью и умирают. Компания Insilico Medicine, созданная в 2012 году в Гонконге учёным-предпринимателем Александром Александровичем Жаворонковым, с самого начала стала практиковать использование генеративных моделей искусственного интеллекта для синтеза молекул по заданным критериям.

На днях в журнале Nature Biotechnology вышла статья Жаворонкова, в которой он сообщил буквально следующее: «Эта работа [поиск мишени и её ингибитора] была завершена примерно за 18 месяцев от обнаружения мишени до доклинического выдвижения кандидата и демонстрирует возможности нашей генеративной системы поиска лекарств, управляемой искусственным интеллектом».

Для начала исследователи на собственной ИИ-платформе обучили алгоритм идентифицировать мишени, ответственные за деструктивные процессы в лёгких. Для этого использовались общедоступные данные и публикации о фиброзе. Это заболевание приводит к утолщению или рубцеванию тканей, что может снизить эластичность органов и лёгких в частности. Фиброз тесно связан с процессом старения, в результате которого возникает хроническое воспаление, приводящее часто к смертельному исходу.

С помощью предиктивной аналитики был выявлен белок TNIK, который стал главной антифибротической мишенью. Затем исследователи использовали генеративный химический алгоритм для создания около 80 кандидатов-молекул. Среди них был найден оптимальный ингибитор, получивший название INS018_055. Это лекарство допущено для клинических испытаний «второй» фазы изучения всех новых препаратов. В клиниках США и Китая препарат и его фармакологические свойства проверяются на 60 пациентах.

Разработка новых лекарств с помощью искусственного интеллекта может быть значительно ускорена на начальных этапах проведения исследовательских работ. Но на этапе клинического испытания работы ускорить нельзя. Пройдёт немало времени, прежде чем даже созданные ИИ лекарства окажутся доступными для повсеместного применения.

В Китае ИИ-чат-бот будет консультировать нейрохирургов

Поставить искусственный интеллект на службу специалистов в медицинской сфере пыталась ещё компания IBM, а уж появление более доступных систем искусственного интеллекта сделало эту задачу менее затратной. Китайские разработчики решили применить искусственный интеллект в работе нейрохирургов, помогая им выработать правильную тактику лечения пациентов или более точно поставить диагноз.

 Источник изображения: Unsplash, National Cancer Institute

Источник изображения: Unsplash, National Cancer Institute

С этого года в семи медицинских центрах китайской столицы начнёт испытываться медицинский чат-бот CARES Copilot 1.0, разработанный гонконгскими специалистами с использованием большой языковой модели Llama 2.0 американской компании Meta Platforms. По словам разработчиков, в качестве аппаратной базы для чат-бота использовались около 100 ускорителей вычислений, причём это количество примерно в равной пропорции было поделено между Nvidia A100 и китайскими Huawei Ascend 910B, которые считаются близкими конкурентами. Китайские компании и учреждения не могут получать ускорители уровня Nvidia A100 в условиях американских санкций, поэтому в качестве альтернативы используют разработки Huawei.

Для обучения специализированной медицинской большой языковой модели использовалось около миллиона медицинских записей и научных трудов в сфере нейрохирургии. По замыслу создателей, нейросеть поможет не только точнее ставить диагноз, но и обрабатывать данные диагностических обследований, включая первичную информацию МРТ, УЗИ и КТ. Изображения, аудиозаписи и текст тоже будут по зубам этой системе, которая на определённом этапе развития сможет даже давать рекомендации врачам по поводу выбора правильной тактики лечения пациента. Китайские специалисты пожаловались на отсутствие доступа к передовым ускорителям Nvidia, но делают ставку на использование более точных данных для обучения языковой модели, которые должны позволить добиться хороших результатов даже при относительно слабой аппаратной базе.

Робот-хирург впервые провёл «операцию» в космосе по командам с Земли

Впервые в истории была проверена способность хирургов дистанционно управлять хирургическим роботом в космосе. Тесты проводились на МКС. Связь со станцией происходит с небольшими задержками, что отводит автоматике особую роль. В перспективе хирургические роботы должны будут самостоятельно проводить операции, не полагаясь на операторов.

 Источник изображения: University of Nebraska-Lincoln

Источник изображения: University of Nebraska-Lincoln

Портативный автоматизированный хирургический комплекс spaceMIRA создан молодой компанией Virtual Incision по контракту с NASA. Разработка опирается на проект MIRA (Miniaturized In vivo Robotic Assistant — «Миниатюрный роботизированный ассистент для операций на живом организме»). Это разработка Университета Небраски в Линкольне, выросшая в стартап. Проекту около 20 лет. Он был придуман для проведения дистанционных операций в земных условиях, но нашёл своё продолжение в космических программах NASA в образе spaceMIRA.

 Источник изображения: NASA

Источник изображения: NASA

Согласно планам космического агентства, когда-нибудь роботизированные комплексы станут неотъемлемой частью космических кораблей и станций, чтобы в автономном режиме проводить плановые или срочные операции без участия живых хирургов.

Некоторое время назад прототип хирургического комплекса spaceMIRA был доставлен на МКС для испытаний в условиях микрогравитации. Также было интересно оценить способность автоматики компенсировать запаздывание сигнала с Земли. Размещённый на МКС манипулятор spaceMIRA, состоящий из двух конечностей с захватами и камерой для обзора операционного пространства, управлялся хирургом из штаб-квартиры Virtual Incision. Оператор успешно разрезал с десяток резиновых ленточек на макете, имитирующем работу с живыми тканями.

Можно не сомневаться, что роботизированная хирургия со временем найдёт применение также на Земле. Однако для космоса она представляет особый интерес. Обидно будет долететь до Марса и умереть там от банального аппендицита, если вдруг такое случится. Остаётся пожелать, чтобы развитие проекта шло как можно быстрее, и хорошо уже то, что начало этому положено.

Нейросеть GigaChat от «Сбера» сдала экзамен на врача

Нейросеть «Сбера» GigaChat успешно справилась с экзаменом высшего медицинского учреждения по направлению подготовки «Лечебное дело», который необходим для присвоения квалификации «врач-лечебник». Для этого алгоритм прошёл тестирование и ответил на вопросы экзаменационного билета, т.е. выполнил те же действия, что и любой студент, окончивший шесть курсов медицинского вуза.

 Источник изображения: sberbank.ru

Источник изображения: sberbank.ru

В состав экзаменационной комиссии входили профессоры терапии, хирургии, акушерства и гинекологии Института медицинского образования НМИЦ им. В.А. Алмазова, которые поставили GigaChat итоговую оценку 4 балла. Стандартный билет к устному экзамену состоит из трёх задач по терапии, хирургии, акушерству и гинекологии, а также 3-5 дополнительных вопросов, касающихся составления плана лечения, назначения дополнительных обследований и др. В дополнение к этому алгоритм прошёл тестирование из 100 вопросов, набрав 82 % (порог прохождения 70 %).

GigaChat справился с экзаменом благодаря полугодовому обучению, в рамках которого использовался датасет из 42 Гбайт специализированных данных, включая учебные материалы, рекомендации для обучения студентов в медицинских вузах России, монографии, методические руководства и др. Отмечается, что несмотря на сдачу экзамена GigaChat, не является врачом и полученные от алгоритма рекомендации необходимо утвердить у лечащего врача.

Директор Центра индустрии здоровья «Сбербанка» Сергей Жданов, комментируя данный вопрос, отметил, что в перспективе GigaChat может стать основой для создания интеллектуального помощника врача и пациента. Он также выразил уверенность в том, что применение больших языковых моделей, на базе которых строятся подобные GigaChat алгоритмы, «станет одной из ключевых технологий для развития человекоцентричного здравоохранения».

«Нейросетевая модель Gigachat успешно справилась с экзаменом по лечебному делу и показала свои компетенции аттестационной комиссии, которые позволят ей в дальнейшем стать помощником как для человека, врачей, так и системы здравоохранения в целом. Gigachat — это основа для создания персональных ассистентов, в том числе и медицинских. Компания СберМедИИ разрабатывает сервисы на базе искусственного интеллекта, включая сервисы для анализа и оценки жалоб и анамнеза пациента, данных из его электронной медицинской карты», — Заявил Владимир Кох, генеральный директор СберМедИИ.

Учёные создали крошечное живое сердце на чипе — оно бьётся как человеческое

Ширится и растёт популярность создания на чипах живых имитаторов органов человека. Это даёт возможность безопасно проверять лекарства на человеческих тканях и изучать течение болезней вне тела человека. Электроника позволяет тщательнее следить за процессами и вести сбор данных круглосуточно, что раньше было невозможно.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Новые и ещё не проверенные лекарства и методы лечения способны нанести здоровью намного больше вреда, чем пользы. Особенно это касается лечения онкологических заболеваний, которые уничтожают не только больные клетки, но также множество здоровых. Именно для оценки токсичности подобных лекарств для сердечной ткани учёные из медицинского центра Cedars-Sinai в Лос-Анджелесе создали «сердце на чипе», которое как и живое бьётся с частотой 60 ударов в минуту.

«В конечном счёте, многоклинические системы на основе hiPSC, такие как представленный здесь ”сердечный чип”, могут снизить зависимость от опытов на животных, которые традиционно используются для доклинического тестирования кардиотоксичности лекарств», — пишут исследователи в статье в The Royal Society of Chemistry.

Индуцированные стволовые плюрипотентные клетки (hiPSC) способны трансформироваться в клетки любого типа. Учёные создали из них два параллельных канала, создав, таким образом, в одном канале подобие мышечных тканей, в другом — аналог кровеносных сосудов. Мышечная ткань смогла неделями оставаться в живом состоянии и демонстрировала характерные для сердечной ткани сокращения с частотой около 60 ударов в минуту.

 Источник изображения:  The Royal Society of Chemistry

Источник изображения: The Royal Society of Chemistry

«Разработанная нами платформа ”сердечный чип” позволяет проводить скрининг потенциально кардиотоксичных химиотерапевтических агентов на нескольких типах сердечно-сосудистых клеток в физиологически релевантной модели», — сообщают исследователи.

Живые ткани оставались функциональными в течение нескольких недель, предоставляя возможность для более длительных исследований того, как лекарства и другие факторы окружающей среды влияют на сердце. Такая платформа не только поможет в разработке более безопасных лекарств, но и сможет больше рассказать учёным о тонкостях сердечных заболеваний, а именно о том, как они начинаются и прогрессируют, и как их можно лечить.

Медицинский ИИ Google оказался человечнее живых врачей, но не всё так просто

Google поделилась результатами исследования, в рамках которого установила, что основанный на искусственном интеллекте чат-бот в переписке более эффективно диагностирует медицинские заболевания и более гуманно сообщает о них пациентам, чем настоящие врачи. Впрочем, делать окончательные выводы ещё рано.

 Источник изображения: Yerson Retamal / pixabay.com

Источник изображения: Yerson Retamal / pixabay.com

Система под названием Articulate Medical Intelligence Explorer (AMIE) представляет собой большую языковую модель, предназначенную для сбора медицинских данных и ведения клинических бесед. AMIE разработана, чтобы анализировать предлагаемые пациентами симптомы, задавать дополнительные вопросы и прогнозировать диагнозы.

В ходе тестирования были выбраны 20 добровольцев, играющих роль пациентов и якобы страдающих некими заболеваниями, а также 20 профессиональных врачей — специалистов по первичной медицинской помощи, отвечающих за фактор человеческого контакта. Пациенты не знали, с кем переписывались: с ИИ или настоящими врачами. И их попросили оценить качество взаимодействия вслепую.

В рамках эксперимента были разыграны 149 сценариев, и выяснилось, что пациенты предпочитали общаться с AMIE, а не настоящими врачами. Участники заявили, что чат-бот лучше понял их проблемы и дал более чуткие, ясные и профессиональные ответы. AMIE также более точно диагностировал медицинские проблемы. Но это не значит, что чат-бот оказывает медицинскую помощь эффективнее настоящего врача, пояснили в Google.

Предложенная исследователями методика, конечно, занижает действительную ценность разговора с человеком: врачи были ограничены интерфейсом текстового чата — он хорош для взаимодействия пациентов с ИИ, но не репрезентативен для стандартной клинической практики. Google не пыталась заменить врачей первичной медицинской помощи, а захотела продемонстрировать, что чат-бот с ИИ может оказаться полезным инструментом для пациентов, лишённых доступа к здравоохранению. Но в реальном мире развёртывание такой системы пока рискованно — для её ответственного использования потребуется значительная доработка.

В США создан экзоскелет, позволяющий пациентам с болезнью Паркинсона стабильно передвигаться пешком

Разработка так называемых экзоскелетов движется в двух основных направлениях: создание силовых ассистентов для людей с полноценными моторными функциями и реабилитация пациентов с различными нарушениями опорно-двигательного аппарата. Американским учёным удалось создать «мягкий» экзоскелет, который возвращает пациентам с болезнью Паркинсона возможность уверенно ходить пешком без посторонней помощи.

 Источник изображения: YouTube, Harvard John A. Paulson School of Engineering and Applied Sciences

Источник изображения: YouTube, Harvard John A. Paulson School of Engineering and Applied Sciences

К нарушениям функций опорно-двигательной системы человека приводят самые разные заболевания, но в случае с болезнью Паркинсона основной проблемой являются периодические застывания на месте при ходьбе, которым предшествует сокращение амплитуды движения конечностей. В результате таких замираний человек может потерять равновесие и упасть, по этой причине пациентам с болезнью Паркинсона сложно передвигаться самостоятельно, особенно на открытых пространствах с множеством отвлекающих факторов.

Как сообщает TechCrunch, команде учёных из университетов Гарварда и Бостона удалось создать «мягкий» экзоскелет, который при помощи системы датчиков адаптируется к особенностям походки конкретного человека, и при помощи закреплённых на ногах исполнительных механизмов ненавязчиво придаёт им импульс движения в нужный момент, исключая характерные замирания почти полностью. В ходе испытаний экзоскелета с участием 73-летнего мужчины, страдающего болезнью Паркинсона, было установлено, что без особой тренировки он научился ходить внутри помещений с высокой скоростью и без замираний, а на открытых пространствах характерные застывания на месте случались гораздо реже. Ему также удавалось сочетать ходьбу и поддержание беседы, чего было сложно добиться без соответствующего устройства.

Команда разработчиков продолжит совершенствовать свой экзоскелет, а также готова лицензировать технологию всем желающим производителям соответствующих устройств-ассистентов. Создание такой техники в значительной степени решает проблему социализации людей, страдающих нарушениями опорно-двигательного аппарата, и способствует повышению качества их жизни.

Дроны с автоматическими дефибрилляторами способны спасать жизни — они прилетают раньше скорой, показало исследование

Обширное более чем двухлетнее исследование в Швеции по доставке дронами автоматических дефибрилляторов для реанимации людей с остановившимся сердцем показало, что беспилотники действительно спасают жизни до прибытия медиков. Эксперимент имеет все предпосылки стать мировой практикой.

 Источник изображения: ИИ-генерация Кандинский 2.2 / 3D News

Источник изображения: ИИ-генерация Кандинский 2.2 / 3DNews

Исследование провели учёные крупнейшего в Швеции медицинского университета — Каролинского института. Развёртывание беспилотников с автоматическими внешними дефибрилляторами (AED, automated external defibrillators) началось летом 2020 года. Проект охватил территорию западной Швеции с населением около 200 тыс. человек. Первоначальное исследование, проведенное летом 2020 года в Гетеборге и Кунгальве, показало, что идея осуществима и безопасна.

Собранный учёными материал удостоился публикации в престижном медицинском журнале The Lancet Digital Health. Предпосылкой к данному проекту стала статистика, которая говорит, что в Швеции ежегодно внезапная остановка сердца происходит примерно у 6 тыс. человек. Из них выживают только 600 человек или десятая часть пациентов. При этом в стране имеются десятки тысяч приборов AED, но они не доступны в домах людей, где случаются приступы. В то же время важно как можно быстрее попытаться запустить остановившееся сердце. Приборы AED позволяют сделать это неспециалисту — они сами определяют, нужен разряд или нет.

«Это более полное продолжение исследования, которое теперь показывает на большом материале, что методика работает в течение всего года, летом и зимой, при дневном свете и в темноте. Беспилотники могут быть оповещены, прибыть, доставить AED, и люди на месте успевают воспользоваться AED до приезда скорой помощи», — сказала София Ширбек, ведущий автор исследования.

В ходе проведения работы беспилотники доставили приборы AED в 55 случаях подозрения на остановку сердца. В 37 из этих случаев доставка осуществлялась до приезда скорой помощи или в 67 % случаев (дроны оповещались одновременно со звонком в скорую помощь), а среднее время доставки составило 3 минуты 14 секунд. Позвонивший должен был достать прибор из контейнера и, следуя голосовым инструкциям, применить его, что в стрессовой ситуации довольно непросто. Так, в 18 случаях реальной остановки сердца прибор удалось применить только 6 раз, что составило 33 %. В двух случаях прибор рекомендовал запустить импульс, и в одном случае это привело к запуску остановившегося сердца. Пациент выжил.

«Наше исследование раз и навсегда показало, что доставка AED с помощью дронов возможна и что это можно сделать за несколько минут до приезда скорой помощи в случае острой остановки сердца, — заявляют учёные. — Экономия времени означает, что в ряде случаев центр экстренной медицинской помощи может дать указание человеку, вызвавшему скорую помощь, достать и использовать AED до приезда скорой помощи».

Китайцы создали беспроводную зарядку, которую можно безопасно поместить внутрь человека

Китайские ученые создали биоразлагаемое беспроводное устройство, которое может принимать и даже хранить энергию, находясь внутри человека — под его кожей. Оно может питать биоэлектронные имплантаты, например, полностью биоразлагаемые системы доставки лекарств.

 Созданный группой китайских ученых источник питания и накопитель энергии является биоразлагаемым и беспроводным. Фото: Lanzhou University

Созданный китайскими учеными беспроводной источник питания и накопитель энергии. Источник изображения: Lanzhou University

Имплантируемые биоэлектронные системы, такие как датчики мониторинга и имплантаты для доставки лекарств, являются малоинвазивными и надёжными способами точного контроля и лечения пациентов. Однако, согласно статье, опубликованной в четверг в журнале Science Advances под руководством исследователей из Университета Ланьчжоу, разработка модулей питания для работы этих устройств отстаёт от создания биосовместимых и биоразлагаемых датчиков и схемных блоков.

Хотя существуют биоразлагаемые блоки питания, они часто могут быть использованы только один раз и обладают недостаточной мощностью для биомедицинских приложений. Кроме того, блоки питания, подключаемые к трансдермальным зарядным устройствам, могут вызывать воспаление, а блоки питания, работающие от не перезаряжаемых батарей, могут потребовать хирургической замены, что чревато осложнениями.

Для устранения этого недостатка исследователи предложили беспроводную имплантируемую систему питания, обладающую «одновременно высокой эффективностью накопления энергии и благоприятными свойствами взаимодействия с тканями». Её мягкая и гибкая конструкция позволяет адаптироваться к форме тканей и органов.

Беспроводное устройство питания состоит из магниевой катушки, которая заряжает устройство при размещении внешней передающей катушки на коже над имплантатом. Прямо как с беспроводной зарядкой для смартфона. Энергия, получаемая катушкой под кожей, проходит через цепь, после чего поступает в модуль хранения энергии, состоящий из гибридных цинк-ионных суперконденсаторов (ионисторов). Ионисторы по своим характеристикам занимают промежуточное положение между конденсатором и химическим источником тока, например, аккумулятором. Хотя суперконденсаторы хранят меньше энергии на единицу объёма, чем литиевые батареи, они обладают высокой плотностью мощности и поэтому могут стабильно выдавать большое количество энергии.

Прототип системы электропитания, заключенный в гибкий биоразлагаемый чипоподобный имплантат, объединяет в одном устройстве приём и накопление энергии. Энергия может поступать по электрической цепи непосредственно в подключенное биоэлектронное устройство, а также в ионистор, где она накапливается «для обеспечения постоянного и стабильного разряда для питания биоэлектронного устройства» после завершения зарядки.

Цинк и магний необходимы человеческому организму, и исследователи отмечают, что их количество, содержащееся в устройстве, ниже уровня ежедневного потребления, что делает растворяемые имплантаты биосовместимыми. Всё устройство заключено в полимер и воск, которые могут изгибаться и деформироваться в соответствии со структурой ткани, в которую оно помещено.

Испытания устройства на крысах показали, что оно может эффективно работать до 10 дней, а полностью рассасывается в течение двух месяцев. Продолжительность работы устройства может быть изменена путем изменения толщины и химического состава инкапсулирующего слоя. Чтобы продемонстрировать функциональность источника питания, исследователи соединили уложенные суперконденсаторы с приёмной катушкой и биодеградируемым устройством доставки лекарств и имплантировали их крысам. Имплантируемый прототип не был заключен в единое устройство, а состоял из отдельных инкапсулированных частей, соединенных между собой. Устройство доставки лекарственного средства, содержащее противовоспалительный препарат, было имплантировано крысам с дрожжевой лихорадкой. В течение 12 часов наблюдения температура в группе без имплантата была значительно выше, чем в группе с имплантатом.

Исследователи отметили, что остаётся проблема включения и выключения устройства, поскольку оно перестаёт функционировать только тогда, когда заканчивается заряд. Однако, по их мнению, контролируемый запуск зарядки также может управлять и продолжительностью включения и выключения. По словам исследователей, у крыс, которым вводили имплантат без подзарядки, также наблюдалось некоторое пассивное высвобождение лекарственного вещества, поскольку температура, зарегистрированная в этой группе, также была снижена по сравнению с контрольной группой.

Тем не менее, в статье говорится, что прототип «представляет собой важный шаг вперед в продвижении широкого спектра имплантируемых биоэлектронных устройств с переходным режимом работы, способных обеспечить эффективные и надежные энергетические решения».

Будущие Apple Watch смогут измерять давление, выявлять апноэ и измерять сахар в крови

Компания Apple всегда стремилась быть в авангарде инноваций, и сфера здравоохранения пользователей не является исключением. С момента основания проекта Avolonte Health в 2011 году, компания исследовала возможности интеграции медицинских технологий в свои продукты. Однако, как показало время, переход от теории к практике оказался более сложным процессом из-за ряда проблем.

Одной из основных проблем являются технологические ограничения. Например, несмотря на значительные инвестиции в проект по разработке инструмента для неинвазивного отслеживания содержания глюкозы в крови, технология так и не была интегрирована в Apple Watch из-за проблем с расходом заряда батареи и высокими требованиями к миниатюрности компонентов. Даже после того, как в носимые устройства были добавлены некоторые медицинские функции, вроде мониторинга сердечного ритма и снятия электрокардиограммы, оригинальная идея о маленькой медицинской лаборатории на запястье пользователя до сих пор не реализована в полной мере.

Внутренние разногласия в философии компании также играют роль в замедлении прогресса. Внутри Apple существует напряженность между стремлением служить здоровым людям, предлагая им инструменты для мониторинга и улучшения их здоровья, и потребностью помогать больным людям, что представляет собой более сложные задачи с точки зрения медицинской диагностики и лечения. Этот внутренний диссонанс отражает глобальное противоречие в отрасли между профилактическими мерами и лечением уже имеющихся заболеваний.

Тем не менее, несмотря на эти преграды, Apple продолжает инвестировать в медицинские технологии. В планах на 2024 год — внедрение в Apple Watch функций обнаружения гипертонии (повышенного давления) и апноэ (временного прекращения дыхания во время сна), а также возможности слуховых аппаратов для AirPods и превращение AR/VR-гарнитуры Vision Pro в устройство для здоровья и фитнеса. Эти планы показывают, что, несмотря на прежние трудности, компания продолжает двигаться вперед, стремясь внести свой вклад в медицинскую отрасль.

Также заслуживает внимания исследование Apple в области виртуальной реальности для улучшения психического здоровья, а также разработка для смарт-часов функций для отслеживания уровня кровяного давления и сахара в крови, что может стать важным шагом на пути к более активному участию в медицинской сфере.

При этом, некоторые критики указывают, что, несмотря на эти усилия, компания до сих пор избегает затрагивания более сложных аспектов медицинского ухода, таких как диагностика и лечение заболеваний. Эта осторожность может быть обусловлена страхом перед возможными регуляторными и юридическими проблемами, а также желанием сохранить имидж компании.

В общем, несмотря на значительные усилия Apple в области медицинских инноваций, полноценный вход в эту сферу может потребовать больше времени и ресурсов, чем предполагалось изначально.

Neuralink начала искать добровольцев для вживления им мозгового импланта N1

Компания Neuralink, основанная миллиардером Илоном Маском (Elon Musk), получила разрешение на первые клинические испытания мозгового импланта на людях ещё в мае, а теперь подбирает первых добровольцев. Исследование, которое продлится около 6 лет, предусматривает имплантацию интерфейса мозг-компьютер (BCI) с помощью хирургического робота R1 в область человеческого мозга, отвечающую за движение. Первоначальная цель проекта — дать людям возможность управлять курсором или клавиатурой компьютера силой мысли.

 Источник изображений: Neuralink

Источник изображений: Neuralink

Вчера Neuralink объявила о получении одобрения от независимого совета по этическим вопросам для начала набора участников первого клинического испытания своего мозгового импланта для пациентов с параличом конечностей. Исследование, получившее название PRIME (Precise Robotically Implanted Brain-Computer Interface), нацелено на оценку безопасности импланта N1 и хирургического робота R1, а также функциональности BCI.

 Имплантат N1 регистрирует нейронную активность с помощью 1024 электродов, распределенных по 64 нитям. Эти сверхгибкие и ультратонкие нити позволяют минимизировать повреждения при имплантации и дальнейшем использовании

Имплант N1 регистрирует нейронную активность с помощью 1024 электродов, распределенных по 64 нитям. Эти сверхгибкие и ультратонкие нити позволяют минимизировать повреждения при имплантации и дальнейшем использовании

В мае текущего года Neuralink получила зелёный свет от Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) для начала первых клинических испытаний на людях. Стоит отметить, что на тот момент компания уже находилась под пристальным надзором регулятора в связи с проведением испытаний на животных.

Кандидатами могут стать люди, страдающие от паралича вследствие травмы шейного отдела спинного мозга или амиотрофического бокового склероза. Однако компания не раскрыла, сколько человек будет привлечено для участия в исследовании, которое займёт около 6 лет. Ранее компания планировала включить в него 10 пациентов, но FDA предложило сократить это число из-за опасений по поводу безопасности испытаний.

 В голове хирургического робота R1 интегрированы оптические системы и датчики, включающие 5 камер, а также оборудование для оптической когерентной томографии (ОКТ)

В голове хирургического робота R1 интегрированы оптические системы и датчики, включающие 5 камер, а также оборудование для оптической когерентной томографии (ОКТ)

В ходе исследования с помощью хирургического робота R1 будет осуществлена хирургическая имплантация BCI в область мозга, отвечающую за формирование намерения двигаться. Имплант N1, который после установки становится косметически незаметным, предназначен для беспроводной передачи сигналов мозга в приложение, демонстрирующее намерения движения. Первоначальной целью Neuralink является возможность управления курсором или клавиатурой компьютера исключительно силой человеческой мысли.

 Игла, тоньше человеческого волоса, захватывает, вставляет и отпускает нейронные нити

Игла тоньше человеческого волоса захватывает, вставляет и отпускает нейронные нити

Маск видит большие перспективы для Neuralink, включая быстрые хирургические вмешательства с использованием чипов для лечения ожирения, аутизма, депрессии и шизофрении.

Несмотря на текущий прогресс, эксперты предупреждают, что даже в случае подтверждения безопасности устройства BCI для использования людьми, на получение разрешения на его коммерческое использование может потребоваться более 10 лет. Это связано с необходимостью строгого соблюдения стандартов безопасности, установленных FDA.

Учёные разработали сегнетоэлектрический полимер, который обещает прорыв в гибкой робототехнике

Роботы станут не только более умными, но и гибкими. Исследователи из Университета штата Пенсильвания разработали сегнетоэлектрический полимер, который эффективно преобразует электрическую энергию в механическую деформацию. Этот материал, потенциально пригодный для использования в медицинских приборах и робототехнике, преодолевает традиционные пьезоэлектрические ограничения. Исследователи улучшили характеристики за счёт создания полимерного нанокомпозита, значительно снизив необходимую для деформации напряжённость поля, что расширяет потенциал применения.

 Источник изображения: Qing Wang / psu.edu

Источник изображения: Qing Wang / psu.edu

Новый тип сегнетоэлектрического полимера, который исключительно хорошо преобразует электрическую энергию в механическую деформацию, обещает стать высокоэффективным контроллером движения или линейным приводом (актуатором) с большим потенциалом для применения в медицинских устройствах, передовой робототехнике и системах точного позиционирования, сообщает международная группа исследователей под руководством Университета Пенсильвании (PSU).

Механическая деформация — изменение формы материала при приложении силы — является важным свойством для актуатора, который представляет собой любой материал, который изменяется или деформируется при приложении внешней силы, например, электрической энергии. Традиционно материалы для приводов были жёсткими, но мягкие аналоги демонстрируют большую гибкость и приспособляемость к окружающей среде.

Исследование продемонстрировало потенциал нанокомпозитов из сегнетоэлектрических полимеров для преодоления ограничений традиционных пьезоэлектрических полимерных композитов, предлагая перспективный путь для разработки мягких актуаторов с улучшенными характеристиками деформации и плотности механической энергии. Мягкие приводы представляют особый интерес для исследователей робототехники благодаря своей прочности, мощности и гибкости.

«Потенциально мы можем получить тип мягкой робототехники, которую мы называем искусственными мышцами. Это позволит нам получить мягкую материю, способную выдерживать большую нагрузку в дополнение к большой деформации. Таким образом, этот материал будет в большей степени имитировать человеческую мышцу», — сказал Цин Ванг (Qing Wang), профессор материаловедения и инженерии Университета Пенсильвании и соавтор исследования.

Однако прежде чем эти материалы смогут оправдать надежды учёных, им необходимо преодолеть несколько препятствий, и в исследовании были предложены возможные решения этих проблем. Первая — как повысить силу воздействия мягких материалов. Учёным известно, что мягкие исполнительные материалы, которыми являются полимеры, имеют наибольшую деформацию, но они генерируют гораздо меньшую силу по сравнению с пьезоэлектрической керамикой.

Вторая проблема заключается в том, что для сегнетоэлектрического полимерного привода обычно требуется очень высокое движущее поле, то есть сила, которая навязывает изменение в системе, например, изменение формы. В данном случае высокое движущее поле необходимо для создания изменения формы полимера, требуемого для сегнетоэлектрической реакции, необходимой для превращения в актуатор.

Решение, предложенное для улучшения характеристик сегнетоэлектрических полимеров, заключалось в разработке перколяционного нанокомпозита на основе сегнетоэлектрического полимера — своего рода микроскопической наклейки, прикреплённой к полимеру. Включив наночастицы в один из видов полимера, поливинилиденфторид (polyvinylidene fluoride), исследователи создали взаимосвязанную сеть полюсов внутри полимера.

«Этот новый материал может быть использован для многих устройств, для эффективности которых требуется низкое движущее поле, таких как медицинские приборы, оптические устройства и мягкая робототехника», — сказал профессор Цин Ванг. Можно с уверенностью сказать, что этот материал станет незаменимым в приборах для дистанционных нейрохирургических операций.

Новый сегнетоэлектрический полимер, разработанный исследователями из Пенсильвании, представляет собой значительный прорыв в области робототехники и медицинских устройств. Этот материал, способный эффективно преобразовывать электрическую энергию в механическую деформацию, обещает стать высокоэффективным контроллером движения. Исследование подчёркивает потенциал нанокомпозитов из сегнетоэлектрических полимеров для преодоления ограничений традиционных пьезоэлектрических полимерных композитов, открывая перспективный путь для разработки мягких актуаторов с улучшенными характеристиками деформации и плотности механической энергии. Это открытие может привести к созданию нового типа мягкой робототехники, которую можно назвать искусственными мышцами, и представляет собой важный шаг вперёд в этой области.


window-new
Soft
Hard
Тренды 🔥
Thermal Grizzly выпустила кастомную крышку для чипов Intel LGA 1700 — с ней температура падает почти на 15 °C 28 мин.
Короткие кабели затормозили внедрение DisplayPort 2.1 UHBR20 — сделать длиннее не получается 48 мин.
Новая технология активного шумоподавления с ИИ позволяет выделить определённые звуки и убрать все лишние 2 ч.
Сродни изобретению транзистора: создан самый маленький детектор квантового света — он поможет масштабировать квантовые компьютеры 3 ч.
Чипы стали новой нефтью в борьбе мировых держав за лидерство 4 ч.
Индия отправит на Марс собственный ровер и вертолёт 4 ч.
Первый запуск Boeing Starliner с людьми снова перенесли — на космическом корабле обнаружили утечку гелия 7 ч.
Раскладушки Motorola Razr 50 и Razr 50 Ultra получат большие внешние экраны и свежие процессоры 7 ч.
XPeng начнёт продавать электромобиль с электролётом в багажнике в 2026 году 12 ч.
Слухи: Apple готовит сверхтонкий iPhone 17 — он выйдет в 2025 году и будет дороже iPhone 17 Pro Max 15 ч.