|
Опрос
|
реклама
Быстрый переход
Учёные в 10 000 раз уменьшили самого маленького робота с «мозгами» — теперь он размером с крупинку соли
27.12.2025 [12:25],
Геннадий Детинич
Учёные из университетов Пенсильвании (Penn) и Мичигана (UMich) создали самого маленького в мире программируемого робота размерами 0,2 × 0,3 × 0,05 мм. Платформа способна «думать, чувствовать и действовать» — она обладает всеми возможностями для автономного исследования среды как самостоятельно, так и в составе роя. Ожидается, что такие роботы совершат переворот в медицине, в сфере контроля над здоровьем человека.
Источник изображений: UMich Разработчики утверждают, что они в 10 000 раз уменьшили программируемую роботизированную платформу по сравнению со всем, что было представлено раньше. Это действительно впечатляет, поскольку микробот способен передвигаться в жидкой среде в заданном направлении, совершать измерения и передавать данные. Передача данных реализована не менее удивительно — для этого робот «танцует», следуя методу коммуникации медоносных пчёл. ![]() В масштабе робота вязкость среды была главным препятствием для передвижения микробота. Это всё равно что плыть по расплавленной смоле, говорят учёные. Но разработчики нашли выход. Движком для бота стали электромагнитные поля, которые проталкивали молекулы среды вокруг робота, заставляя его продвигаться внутри жидкостей. На изображении процесс движения показан маркерными частицами в электромагнитном поле от трёх ЭМ-приводов бота. ![]() Энергию для процессора, датчиков и двигателей микробот получает от освещения, падающего на встроенные фотодатчики. Освещение от обычных светодиодных ламп генерирует около 100 нановатт энергии. На этих крохах микробот способен работать месяцами. Учёные намерены расширять исследования, создавая для микроботов всё более изощрённые программы поведения. Придёт время, и за здоровьем человека изнутри будут следить косяки таких микроботов. «Там внизу полно места», — говорил в своих лекциях Ричард Фейнман. И новая разработка стала ещё одним подтверждением его слов. В Швейцарии создали крошечного робота-курьера для адресной доставки лекарств по венам
25.11.2025 [11:07],
Геннадий Детинич
В Швейцарии учёные разработали микроскопического робота размером с песчинку, способного перемещаться внутри человеческого тела под управлением внешних магнитов. Устройство может проходить по кровеносным сосудам, цереброспинальной жидкости и другим труднодоступным участкам организма, доставляя лекарства точно в очаг заболевания.
Источник изображений: Institute of Robotics and Intelligent Systems Технология уже успешно протестирована на свиньях, чья кровеносная система сродни кровеносной системе человека, а также в искусственных моделях сосудов человека из силикона. Утверждается, что разработка смягчает одну из главнейших проблем современной фармакологии — это серьёзные побочные эффекты препаратов, из-за которых до 70 % перспективных лекарств не проходят клинические испытания.
Силиконовый имитатор кровеносных сосудов человека Древняя мудрость о том, что всякое лекарство — яд, сегодня приобретает иной контекст. Если раньше под этим подразумевалась дозировка, то сейчас нет практически ни одного препарата, который не имел бы побочных эффектов. Отчасти это связано с тем, что лекарства поступают в кровь и распространяются не только туда, куда нужно, но и во все без исключения органы. Швейцарский микроробот решает эту проблему, доставляя активное вещество только в нужную зону, минуя здоровые ткани и органы. Это позволяет значительно снизить токсичность терапии и повысить её эффективность даже при использовании сильнодействующих препаратов. Система представляет собой шесть больших магнитов диаметром от 20 до 25 см. Микробот — это желатиновый шарик из тантала и наночастиц оксида железа, в который также включено лекарство. Шариком в магнитном поле можно управлять джойстиком, как в какой-нибудь игре с гонками по сложной трассе. При этом вместо трассы шарик с лекарством движется по кровеносным сосудам даже против течения крови, настолько сильно влекущее его поле. По адресу доставки капсула разрушается от внешнего импульса, и лекарство попадает преимущественно в целевую область организма. ![]() По мнению авторов исследования, такие магнитные микророботы в будущем смогут радикально изменить подход к лечению онкологических, неврологических и других тяжёлых заболеваний. Технология открывает путь к созданию «умных» лекарств, которые будут воздействовать исключительно на поражённые клетки, практически полностью устраняя системные побочные эффекты. Корейцы заставили рой микроботов таскать гусеницу за хвост, плавать и поднимать грузы
19.12.2024 [22:51],
Геннадий Детинич
Роевое поведение микроботов легче направить на выполнение какой-либо задачи, чем заставить отдельного робота выполнить ту же работу. Рой — это взаимопомощь и взаимозаменяемость для достижения одной цели. Рои микроботов могут помочь в медицине, минимизируя хирургические вмешательства, или в сельском хозяйстве, борясь с вредителями. Учёные из Южной Кореи изучили способность микроботов к коллективным действиям, впервые осуществив управление процессами.
Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Учёные изготовили микроботов однотипными из эпоксидной смолы — по форме костяшек домино, только размером 0,6 мм каждый. Для управления микроботами в них добавляли крупицы редкоземельного магнита NdFeB (неодим-железо-бор). Микроботы были трёх типов: с поперечным расположением полюсов, с диагональным и с продольным. Каждый рой из одинаково намагниченных микроботов состоял из 1000 единиц. Вместе они оказались способны на многое. Под управлением вращающегося магнитного поля рой из поперечно намагниченных ботов самоорганизовывался для преодоления препятствий в пять раз шире длины тела отдельного микробота. Рой из микроботов с диагональной намагниченностью охотно плавал и мог обернуться вокруг таблетки в 2000 раз более тяжёлой, чем сам рой, а затем плыть с ней, условно доставляя лекарство по назначению.
Источник изображения: Cell 2024 На твёрдой поверхности рой перетаскивал груз в 350 раз тяжелее каждого отдельного микробота. Также учёные имитировали прочистку роем кровеносных сосудов человека. Наконец, под контролем магнитного поля рой таскал по столу гусеницу, демонстрируя возможность точечного воздействия на «небольшие организмы». Отдельные микроботы явно были не у дел, но командная работа достигала поставленных целей. «Высокая адаптивность роев микророботов к окружающей среде и высокий уровень автономии в управлении роем были удивительными, — говорит автор исследования Чжон Чжэ Ви (Jeong Jae Wie) из Университета Ханьянг в Сеуле, Южная Корея. — Хотя результаты исследования многообещающие, роям потребуется более высокий уровень автономии, прежде чем они будут готовы к применению в реальном мире». В Калтехе создали микроботов с ультразвуковым приводом для доставки лекарств в любую точку человеческого тела
16.12.2024 [19:13],
Сергей Сурабекянц
Доставка лекарства в нужное место организма не менее важна, чем выбор правильного препарата. Для контроля над этим процессом команда разработчиков из Калифорнийского технологического института разработала крошечного медицинского робота. Конечно, эти простейшие микроскопические сферы не похожи на полноценных роботов, но создатели утверждают, что их можно перемещать по телу с помощью ультразвука или магнитов, что позволяет адресно доставлять лекарство.
Источник изображения: Калтех Перед внедрением микроботов в организм, необходимо убедиться, что структура бота устойчива к высокому или низкому pH, присущему различным жидкостям организма. Бот также должен надёжно управляться и высвобождать препарат в нужной точке организма. Отработавшие микроботы должны полностью разложиться в организме, не оставляя после себя никаких токсичных материалов. Команда разработчиков из Калтеха утверждает, что им удалось успешно решить все перечисленные задачи. Созданные ими роботы сделаны из биологически инертного гидрогеля, обладают высокой подвижностью, а их диаметр в 30 микрон достаточно мал, чтобы обеспечить проникновение практически в любую область тела. Гидрогелевые сферы изготавливаются при помощи 3D-печати с использованием литографии с двухфотонной полимеризацией (TPP), технологии, впервые разработанной Институтом нанонауки Калтеха. Внутри сферы имеется полость, которая содержит микропузырьки воздуха. Терапевтическая нагрузка размещена во внешней оболочке, а внутренний пузырёк обеспечивает превосходный контраст при визуализации с помощью ультразвука, что позволяет легко отслеживать роботов после введения. При воздействии акустического поля, создаваемого ультразвуком, микропузырьки вибрируют, приводя бота в движение при помощи возникающего «микропотока» из двух небольших отверстий. Наличие двух отверстий обеспечивает роботу гораздо большую манёвренность. В гидрогель, из которого создан бот, внедрены магнитные частицы, что позволяет управлять им с помощью магнитных полей. Микроботы пока остаются лабораторными экспериментами, ни один человек ещё не подвергался лечению с их помощью. Но после отправки микроботов с химиотерапевтическими препаратами к месту опухоли у мышей было отмечено существенное уменьшение размера опухоли, тогда как традиционные методы лечения имели меньший эффект. Результаты эксперимента опубликованы в издании Science Robotics. В будущем разработчики надеются увидеть применение этой технологии при лечении людей. |