Сегодня 07 июня 2023
18+
MWC 2018 2018 Computex IFA 2018
Теги → мфти
Быстрый переход

В России раскрыли загадку удивительных оптических свойств перовскитов и объяснили, как этим пользоваться для оптоэлектроники

Совместная работа учёных МФТИ, МИСИС и ИТМО позволила в деталях объяснить появление уникальных оптических свойств у кристаллов перовскита. Это один из самых перспективных материалов для оптоэлектроники будущего, понимание основ работы с которым даёт базу для создания компонентов и решений с заданными свойствами. Работа исследователей опубликована в журнале Nano Letters и доступна по ссылке.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Ранее научные коллективы во всём мире сталкивались с тем, что оптические свойства перовскитов проявляли себя не всегда или с разным значением. Речь идёт о зависимости оптических свойств кристаллов перовскитов от выбранного направления, что называется анизотропией. Это необходимо учитывать для создания волноводов, поляризаторов, нанолазеров и других оптических приборов. В одних случаях на выращенных кристаллах анизотропия проявлялась, а в других отсутствовала. Российские учёные выяснили, в чём кроется проблема.

«Форма кристаллов перовскитов определяет степень анизотропии. Если они в плоскости выросли квадратными, то они не будут проявлять анизотропных свойств, а если они стали прямоугольными, то перовскит будут анизотропным. Это удобно — просто взглянул на форму перовскита и понял, какие у него будут оптические свойства», — пояснил научный сотрудник Центра фотоники и двумерных материалов МФТИ Георгий Ермолаев.

Иначе говоря, российские исследователи на примере перовскита из свинца, цезия и бора (CsPbBr3) нашли и описали взаимосвязь зависимости анизотропии выращенных кристаллов от условий выращивания и конечной формы кристаллов. Это позволит не бродить в темноте, наугад создавая тот или иной образец перовскитов для экспериментов, а целенаправленно выращивать кристаллы с заданными оптическими свойствами, что, кстати, является одним из основных критериев для массового производства.

Кроме того, учёные обнаружили, что при определённых условиях перовскиты обладают рекордно высоким уровнем оптической анизотропии для всех известных трёхмерных материалов. Это позволяет использовать перовскиты для создания высокоэффективных волноводов и других устройств, позволяющих управлять движением света, что крайне важно для создания оптических аналогов электроники.

«Мы уверены, что перовскиты станут основой посткремниевой электроники. В Лаборатории солнечной энергетики НИТУ МИСИС реализован процесс роста монокристаллов CsPbBr3 и устройств на их основе. Мы работаем над новыми разновидностями перовскитных кристаллов для оптоэлектронного применения и благодарны коллегам из ИТМО и МФТИ за сотрудничество в сложном и интересном исследовательском проекте», — отметил ведущий инженер Лаборатории перспективной солнечной энергетики Университета МИСИС Артур Иштеев.

Учёные МФТИ первыми в России запустили квантовую нейросеть — точность решения задач превысила 90 %

Сообщается, что молодые ученые МФТИ первыми в России экспериментально реализовали работающий алгоритм квантового обучения в цепочке сверхпроводящих кубитов. Алгоритмы машинного обучения — это непросто само по себе, а их запуск на кубитах — это совсем иной уровень проблематики. Тем не менее, квантовая нейросеть показала практическую пригодность к решению сложных классических задач с высокой точностью, что также подтолкнёт к покорению новых вершин.

 Источник изображения: МФТИ

Источник изображения: МФТИ

«Мы нашли удачную структуру квантовой цепочки и алгоритм обучения, который позволяет нам достичь точности 94 % для стандартных задач классификации с несколькими метками и точности 90 % при распознавании рукописных десятичных цифр. Точность и стабильность алгоритма подтверждаются методом перекрестной проверки. Квантовая модель достаточно быстро обучается благодаря возможности эффективного вычисления градиента с использованием необычных свойств квантовых операций», — рассказал Алексей Толстобров (выше на фото), соавтор исследования, сотрудник лаборатории искусственных квантовых систем МФТИ.

Мы довольно давно слышим о машинном обучении и к настоящему времени в этой сфере достигнуты впечатляющие результаты. Взять хотя бы ставший популярным ИИ-бот ChatGPT на большой языковой модели GPT. Но у классических компьютеров (суперкомпьютеров) есть свои и довольно ощутимые пределы, преодолевать которые индустрия намеревается с помощью квантовых систем. Работа российских учёных показывает, что квантовые вычислители или, вернее, симуляторы вполне способны создавать обучаемые нейросети и выполнять алгоритмы, что когда-нибудь позволит сделать прорыв в сфере машинного обучения.

Забавно, но сегодня всё больше причин считать, что вычислительная работа головного мозга в своей основе имеет квантовые явления. Может так статься, что в будущем настоящий ИИ будет построен только на квантовой самообучающейся нейросети, что, как считают специалисты, станет концом человечества, но это уже другая история.

Возвращаясь к работе команды физиков МФТИ, уточним, что она провела цикл экспериментов с моделью гибридного классификатора, работу которой ускорил квантовый симулятор. Симулятор же представлял собой цепочку из нескольких сверхпроводящих кубитов. Модель была обучена решать задачи классификации и распознавания изображений. В частности, решались задачи чётности, обнаружения меток рака молочной железы («есть/нет») и типологии различных вин (многозначная классификация по десятку параметров). Помимо этого, было продемонстрировано решение задачи распознавания рукописных изображений цифр.

На следующем этапе учёные увеличат количество кубитов в квантовом симуляторе, что даст возможность решать более сложные задачи классификации, а также протестируют способность системы решать задачи регрессии и, наконец, попытаются перейти от классических данных к квантовым.

В России испытали отечественный квантовый процессор с 4 кубитами — он обеспечил высокую точность

Учёные из НИТУ МИСИС и МФТИ впервые в России создали полностью функциональный квантовый процессор с четырьмя кубитами и продемонстрировали на нём точность выполнения двухкубитных операций CZ более 97 %. Следующим шагом станет разработка 8-кубитных симуляторов и процессоров, что обещает подтолкнуть российских разработчиков к реализации более мощных квантовых вычислителей.

 Источник изображений: НИТУ МИСИС

Источник изображений: НИТУ МИСИС

В основе эксперимента лежала созданная в Лаборатории искусственных квантовых систем МФТИ сверхпроводниковая интегральная квантовая микросхема КИМС. Чип содержит пять ёмкостно шунтированных зарядовых сверхпроводящих кубитов, один из которых в данном эксперименте не использовался. Кубиты электрически связаны друг с другом и могут как обмениваться энергией, так и управляемо изменять друг у друга фазу суперпозиций состояний |0⟩ и |1⟩.

Сверхпроводящие кубиты и их конкретное воплощение в виде трансмонов широко используются при создании квантовых вычислителей. Например, трансмоны лежат в основе квантовых компьютеров компаний IBM и Google. В МФТИ также используют этот тип сверхпроводимых элементов, на основе которых спроектировали и изготовили пятикубитный процессор.

Опытный квантовый процессор КИМС МФТИ использует способность кубитов изменять друг у друга фазу суперпозиций состояний для реализации операции CZ — двухкубитной операции, в ходе которой один кубит контролирует поворот другого кубита, что приводит их в состояние квантовой запутанности. Поскольку операция управляемая, это открывает простор для исполнения ряда квантовых алгоритмов, один из которых российские физики успешно и впервые в стране продемонстрировали на четырёхкубитном отечественном квантовом процессоре.

«Для реализации неразрушающего считывания кубитов посредством индивидуальных микроволновых резонаторов исследователи использовали широкополосный джозефсоновский параметрический усилитель, совместно разработанный учеными МФТИ и МИСИС», — сказано в пресс-релизе НИТУ МИСИС.

На представленном изображении ёмкость одного из кубитов представлена зелёным цветом, цепочка резонаторов для индивидуального считывания — красным, индивидуальные управляющие потоковые линии — синим и антенны — жёлтым. Программный код для выполнения алгоритмов создан в НИТУ МИСИС.

«Нам удалось показать высокоэффективные квантовые операции на системе 4-х кубитов, что является уникальным достижением для российских квантовых технологий. В проведенном эксперименте время отдельной логической операции составляет около 0,025 мкс. Это позволяет реализовать более 3200 операций за время жизни квантового состояния процессора. При изготовлении квантовой интегральной микросхемы технологами из МФТИ были отработаны важные особенности технологического процесса, что позволило нам существенно улучшить ключевые характеристики кубитов», — рассказал заведующий Лабораторией искусственных квантовых систем МФТИ Олег Астафьев.

Успешное проведение подобного эксперимента наглядно подтверждает, что уровень развития технологии и экспериментальной базы, достигнутый при сотрудничестве учёных МФТИ и МИСИС достаточен для реализации среднемасштабных квантовых устройств без коррекции ошибок, что они берутся доказать в будущем в процессе создания 8-кубитовых и более мощных квантовых вычислителей.

Выпускники магистратуры МФТИ по блокчейну получили дипломы в формате NFT

Выпускникам магистратуры Физтех-школы прикладной математики и информатики (ФПМИ) МФТИ по блокчейну вручили дипломы в виде NFT — это произошло впервые в российской государственной учебной программе. NFT-диплом представляет собой графический видеообъект с информацией о магистранте и годе его выпуска.

 Источник изображения: blockchain.mipt.ru

Источник изображения: blockchain.mipt.ru

Руководитель магистратуры Владимир Горгадзе отметил, что технология NFT зарекомендовала себя с хорошей стороны не только как инструмент для коллекционеров, но и как универсальное средство, подтверждающее владение цифровыми активами. Цифровой документ заверен электронными подписями всех членов аттестационной комиссии — его невозможно видоизменить или подделать. С NFT выпускник получает право владения цифровым активом, а автором остаётся магистратура по блокчейну ФПМИ МФТИ. Объекты были созданы в сети Ethereum на платформе OpenSea.

В России подобный формат выбран государственным образовательным учреждением впервые, но в мировой практике прецеденты уже есть. Блокчейн для выдачи дипломов ещё в 2017 году использовали в Массачусетском технологическом институте. В 2021 году из-за большого числа поддельных документов об образовании индийский штат Махараштра ввёл аттестацию на базе Ethereum. В 2022 году NFT-дипломы выдали южнокорейские университеты Сонгюнгван и Хосео.

При необходимости происхождение документа легко отследить и убедиться в его подлинности. А доступ к нему можно мгновенно получить из любой точки мира.

Российские учёные предложили новый вариант искусственных нейронов — электронный мозг на них будет на порядки лучше существующих

Современные нейроморфные процессоры, производимые на основе классических КМОП-техпроцессов, сильно ограничены в возможностях имитировать мозг биологических существ. Проблема в том, что для работы каждого искусственного нейрона необходимо примерно 20 транзисторов, что ведёт к высокому потреблению энергии искусственными мозгами и к серьёзному тепловыделению. Российские учёные придумали, как решить эту проблему.

 Источник изображения: Nanomaterials

Источник изображения: Nanomaterials

«Лучшие на сегодня нейроморфные системы имитируют сети, состоящие примерно из одного миллиона нейронов и четверти миллиарда синапсов. Однако самые амбициозные биологические проекты ставят цели достичь 10 миллиардов нейронов и 100 триллионов синапсов. Стремление к такой высокой сложности требует решений на основе новых физических принципов передачи и обработки сигналов. Мы исследовали двух- и трёхпереходные сверхпроводящие квантовые интерферометры с джозефсоновскими контактами на основе золотых нанопроволок», — рассказал директор Центра перспективных методов мезофизики и нанотехнологий МФТИ Василий Столяров.

Учёные из МФТИ и МГУ им. М. В. Ломоносова предложили для реализации сверхпроводящих аналогов нейронов решение с использованием нанопроводов из золота. Работа выполнена при поддержке Российского научного фонда, и завершилась она публикацией в журнале Nanomaterials.

Учёные реализовали искусственный нейрон с помощью только двух джозефсоновских контактов. Это на порядок меньше, чем при использовании транзисторов в нейроморфных процессорах. К примеру, нейроморфный процессор Intel Loihi II представляет собой 1 млн искусственных нейронов и при этом содержит 2,3 млрд транзисторов (далеко не все из них идут на имитацию нейронов, но всё же).

Джозефсоновский переход — это контакт двух сверхпроводников через слой диэлектрика. При переключении перехода происходит строго дозированный всплеск напряжения, форма которого близка к форме импульса в нейросети живого мозга. Пара таких переходов и нанопроволока из золота успешно имитируют работу одного нейрона и довольно экономично с точки зрения потребления энергии. Всё что необходимо для достижения нужного эффекта — это охладить массивы до криогенных температур вблизи абсолютного нуля.

На основе подобных нейронов можно будет создавать массивы из нескольких миллиардов искусственных нейронов и удержаться в рамках разумного бюджета потребления. Тем самым искусственный мозг может вырасти в возможностях до мозга медведя (9,5 млрд нейронов) и жирафа (10,75 млрд нейронов), тогда как возможности процессора Intel Loihi II — это мозг насекомых.

Более того, российские учёные разработали вариант искусственных нейронов, имитирующих работу в особых биологических условиях — под воздействием медикаментов или с повреждениями. Это придаст исследованиям новое направление, связанное с изучением деятельности мозга в нестандартных условиях.

Николай Клёнов, доцент МГУ им. М. В. Ломоносова, добавляет: «Предлагаемый нейрон способен имитировать биологическую активность, соответствующую типичной реакции нейрона на обычную внешнюю стимуляцию, а также на допороговое раздражение. Кроме того, он имитирует режим травмы — биофизическую аномалию, вызванную различными нервными заболеваниями и повреждениями нейронов, и взрывной режим».

В МФТИ разработали чип, который заменит множество микросхем в малых космических аппаратах

Инженеры Московского физико-технического института (МФТИ) спроектировали чип для цифровых приёмопередатчиков спутников. Одна микросхема заменяет целый набор чипов, что упрощает конструкцию приёмников космических аппаратов и повышает как качество связи с ними, так и управление.

 Источник изображения: МФТИ

Источник изображения: МФТИ

Высококачественная связь со спутниками идёт рука об руку с тенденцией снижения стоимости запуска и самих космических аппаратов. Точнее, при снижении стоимости и габаритов космических платформ качество связи должно неуклонно повышаться, а это повышает требования к приёмопередающей аппаратуре на борту, в задачу которой также входит контроль орбиты и лётных параметров. Разработанный сотрудниками лаборатории прикладных нанотехнологий МФТИ чип и плата (преимущественно на отечественной базе) решают все поставленные задачи вкупе с относительной простотой и разумной стоимостью.

«Плата достаточно проста, но обладает своими уникальными характеристиками и обеспечивает двухстороннюю коммуникацию космических аппаратов с Землёй: принимает сигнал, обрабатывает его и передаёт информацию в цифровом виде дальше. Ещё одно преимущество нашей разработки в том, что операции по обработке сигнала происходят на одном кристалле, а не на нескольких микросхемах, как обычно», — рассказал о проекте заведующий лабораторией прикладных нанотехнологий Михаил Рыжаков.

Плата цифрового приемника состоит из двухканального аналого-цифрового и цифро-аналогового преобразователя, блока распределения тактового сигнала, цифрового модуля, постоянного запоминающего устройства и блока интерфейсов. Для уменьшения размеров разработчики максимально сократили преобразование сигналов в аналоговом виде, переложив основную роль на цифровую часть. Аналоги решения есть у компаний Boeing, Airbus и Thales, хотя российская разработка смогла предложить нечто уникальное — совместить функции целого прибора всего в одной микросхеме.

«На базе разработанной нами платы АО “Российские космические системы” создаёт приёмо-передающее устройство для управления космическими аппаратами различного назначения. По сравнению с существующей аппаратурой оно будет обладать улучшенными характеристиками в части помехоустойчивости, приёма управляющей информации, надёжности и точности измерения текущих навигационных параметров движения аппарата», — добавил Михаил Рыжаков.

Физики придумали элемент памяти для работы при сверхнизких температурах

Международная группа учёных из МФТИ и Стокгольмского университета предложила миниатюрное устройство, способное стать элементом памяти, способным работать при сверхнизких температурах. Открытие может лечь в основу как квантовых вычислительных систем, так и помочь в создании более производительной электроники с минимальным потреблением энергии и даже в условиях сверхпроводимости.

 Источник изображения: Nano Letters

Источник изображения: Nano Letters

Учёные проводили эксперименты с так называемым джозефсоновским переходом (контактом). Джозефсоновский переход представляет собой два сверхпроводника, разделённых тонким диэлектриком. По строению это как конденсатор с двумя обкладками, разделёнными диэлектриком, только в случае джозефсоновского перехода при пропускании тока через обкладки, через диэлектрик начинает течь сверхпроводящий ток.

Величину сверхпроводящего тока устанавливает разность фаз между волновыми функциями электронов с обеих сторон барьера (диэлектрика). Примечательно, что электроны с каждой стороны барьера действуют как единое целое с точки зрения этой характеристики, а разница фаз между ними возникает в результате туннельного обмена через диэлектрик. И именно возможность управляемого изменения разности фаз, что в серии экспериментов показали физики, позволяет задавать настройки сверхпроводящим переходам. В одних условиях ток течёт достаточно сильно и его можно считать «1», в других условиях он мал и состояние элемента можно считать «0».

Более того, учёные смогли дистанционно управлять сверхпроводящим элементом без каких либо проводов, что особенно важно для сверхчувствительных квантовых систем. Сделано это оригинальным образом через систему искусственно выстроенных ловушек в кристалле. Как известно, магнитное поле не может проникнуть в сверхпроводник. Физики обошлись тем, что инициировали на кристалле так называемые вихри Абрикосова. Эти вихри интересны тем, что они представляют собой вихреобразную циркуляцию сверхпроводящего тока вокруг нормального ядра. При определенных условиях в области абрикосовского вихря магнитное поле может проникать в сверхпроводник отдельными квантами, в целом не нарушая сверхпроводимости.

Управляя этими вихрями — заставляя с помощью импульсов перескакивать их из одной ловушки в другую — учёные доказали, что могут управлять разностью фаз волновых функций в ближайшем джозефсоновском переходе или, говоря иначе, заставляют сверхпроводящий ток через переходы течь с разной и управляемой интенсивностью. Немного подробнее об этом эксперименте можно прочесть в издании «За науку» или детально в статье в издании Nano Letters.

Российские учёные продвинулись в изучении «транзисторов» будущего, основанных на переключении спиновых состояний электронов

Разработчики почти вплотную подошли к границе возможностей классических техпроцессов, когда производительность определяется двумя ключевыми характеристиками транзисторов — скоростью переключения и допустимыми токами. С другой стороны всё упёрлось в ограничения по потреблению и тепловыделению, и всё вместе заставляет искать альтернативы транзисторам. Одной из таких альтернатив является спинтроника, когда в ход идут энергетически слабые квантовые явления.

 Иллюстрация перехода между двумя состояниями. Источник изображения: Aleshin et al. / Angew. Chem. Int. Ed., 2021

Иллюстрация перехода между двумя состояниями. Источник изображения: Aleshin et al. / Angew. Chem. Int. Ed., 2021

Учёные давно экспериментируют с передачей момента импульса элементарных частиц или спина. Это неотъемлемая квантовая характеристика частиц, которая также выражается в её намагниченности. Чтобы изменить спиновое состояние электрона и его магнитный момент требуется очень и очень мало энергии — кратно меньше, чем для течения тока и переключения состояний транзистора. Задача учёных найти подходящие магнитные материалы для построения молекулярных цепочек, у которых логический сигнал менял бы магнитные состояния у всех молекул в цепи, взамен тока электронов.

Как сообщает журнал «За науку», ученым из МФТИ и их коллегам из Института элементоорганических соединений им. А. Н. Несмеянова и Испании впервые удалось зарегистрировать специфический переход между спиновыми состояниями электронов у соединения железа. Статья о работе опубликована в журнале Angewandte Chemie.

Учёные исследовали поведение молекулярной системы с двумя ионами двухвалентного железа, каждый из которых мог существовать в двух состояниях: высокоспиновом (ВС) и низкоспиновом (НС). Два состояния из четырёх оказались симметричны друг другу — ВС-НС и НС-ВС, что означает возможность переключения из одного в другое. Фактически это условные 0 и 1, что необходимо как для организации вычислений, так и для устройств хранения (записи) данных. Проблемой было зарегистрировать переход из одного состояния в другое, чтобы подтвердить возможность коммутации. Скорость переключения была слишком высока для регистрации явления.

Зафиксировать явление удалось с помощью метода ядерного магнитного резонанса, при котором регистрируется взаимодействие ядерных магнитных моментов с магнитным полем, магнитными моментами неспаренных электронов и ядерных магнитных моментов с магнитными моментами электронов. В этой работе удалось впервые зарегистрировать переход между ВС-НС и НС-ВС состояниями, что открывает возможность к экспериментам с логическими цепочками и позволяет рассчитывать на движение в сторону спиновой электроники. Добавим, чуть больше подробностей можно найти по этой ссылке.

Фундаментальная физика сделала шаг вперёд с открытием дважды очарованного тетракварка

Ранее мы сообщали, что объединение LHCb в рамках работы Большого адронного коллайдера обнаружило новую и крайне уникальную по своим свойствам частицу — дважды очарованный тетракварк (T+). Физическое обоснование существования T+ представили бывшие выпускники МФТИ, и эти данные помогут фундаментальной физике сделать шаг вперёд к новым открытиям.

 Источник изображения: Журнал «За науку»

Дважды очарованный тетракварк. Источник изображения: Журнал «За науку»

Современная физическая модель описания внутриатомных взаимодействий в тяжёлых атомах очень и очень приблизительная. Учёные не могут математически точно представить множество явлений и процессов внутри атомов. Идея коллайдеров — ускорителей, которые сталкивают частицы во встречных пучках с такой силой, что те дробятся на множество менее крупных частиц — открывает путь к изучению обломков, чтобы понять целое.

Чтобы открыть один из таких обломков — дважды очарованный тетракварк и другие частицы — свыше 1000 учёных настраивали, ставили опыты, собирали данные и анализировали результаты столкновений на детекторе LHCb Большого адронного коллайдера с 2011 по 2018 год. «За 10 лет работы были записаны петабайты информации с миллиардами событий соударения протонов на Большом адронном коллайдере», — поясняет один из авторов открытия Михаил Михасенко.

Физическим анализом самых интересных событий с последующим построением физической модели для описания полученных результатов занималась сводная группа бывших выпускников МФТИ из Вани Беляева и Ивана Полякова (Курчатовский институт ИТЭФ) и Михаила Михасенко (ORIGINS, Мюнхен). Все трое внесли решающий вклад в открытие новой и революционной частицы. Как выяснилось, что было подкреплено теоретическим обоснованием, дважды очарованный тетракварк стал самой долгоживущей из когда-либо обнаруженных частиц экзотической материи и первой, содержащей два тяжёлых кварка и два лёгких антикварка.

Понимание взаимодействий элементарных частиц в составе только что обнаруженной новой частицы позволит пролить свет на внутриатомные взаимодействия более тяжёлых атомов. Фундаментальная физика обогатится новыми знаниями о строении и взаимодействии материи. Без этих знаний движение вперёд по пути прогресса для человечества просто невозможно.

Российские учёные придумали, как связывать квантовые компьютеры разных типов в единую систему

Учёные продвинулись в создании отдельных квантовых вычислителей и настала пора подумать о создании кластеров из нескольких систем. Проблема в том, что у разных групп свои квантовые платформы — сверхпроводящие, оптические, кремниевые или иные. Новая работа российских физиков позволяет рассчитывать на эффективный обмен информацией между квантовыми системами на разных платформах для использования преимуществ каждой.

 Многослойная структура для создания сильного взаимодействия. Источник изображения: Science Advances

Многослойная структура для создания сверхсильной фотон-магнонной связи. Источник изображения: Science Advances

Учёные из МФТИ и МИСиС разработали и протестировали новую платформу для реализации сверхсильной фотон-магнонной связи. Фотоны — это логичный выбор для обмена информацией между системами, а магноны — это квазичастицы, которые способны стать своеобразным интерфейсом между кубитами и внешними линиями связи. Российским физикам удалось создать на кремнии многослойную тонкоплёночную структуру, в которой фотоны «замедлялись» до такой степени, что могли создавать сверхсильное взаимодействие с магнонами.

 Монтирование сверхпроводящего чипа на плату. Источник изображения: Андрей Змеев, пресс-служба МФТИ

Монтирование сверхпроводящего чипа на плату. Источник изображения: Андрей Змеев, пресс-служба МФТИ

«Основным сдерживающим фактором для развития подобных систем является принципиально слабая связь между фотонами и магнонами. Фотоны — это квантовые электромагнитные колебания, стоячая электромагнитная волна, запертая в резонаторе. Магноны — коллективные спиновые возбуждения, или магнитные колебания. Они разного размера, и у них разные законы дисперсии. Здесь можно привести для аналогии всем известных слона и моську — разница в размерах в сотню раз делает взаимодействие очень сложным», — поясняют в МФТИ.

 Игорь Головчанский с с исследуемым чипом в руках. Источник изображения: Андрей Змеев, пресс-служба МФТИ

Игорь Головчанский с с исследуемым чипом в руках. Источник изображения: Андрей Змеев, пресс-служба МФТИ

Для реализации сильного взаимодействия фотонов с магнонами учёные создали две тонкоплёночные структуры. Одна из них в сотню раз снижала фазовую скорость фотонов — это слои сверхпроводник/диэлектрик/сверхпроводник, а другая — слои сверхпроводник/ферромагнетик/сверхпроводник — увеличивала коллективные собственные частоты спина (магнона). Подобная структура кратно увеличила взаимодействие фотонов и магнонов, что открывает путь к новым решениям в области сверхпроводящей спинтроники и магнонике и, в общем случае, приведёт к созданию гибридных квантовых систем. О работе рассказано в престижном журнале Science Advances. Статья свободно доступна по ссылке.

В России разработали технологию производства магнитного порошка для жёстких дисков невообразимой плотности и смартфонов 6G

Группа учёных из МГУ и МФТИ разработала быстрый метод получения уникального соединения железа, которое в чистом виде в природе не встречается. Впечатляющие магнитные свойства этого материала обещают как значительно повысить плотность магнитной записи, так и помочь с разработкой и эксплуатацией сотовой связи 6G и последующих.

 Кристаллические структуры оксидов железа (III). Источник изображения: Евгений Горбачёв

Кристаллические структуры оксидов железа (III). Источник изображения: Евгений Горбачёв

Речь идёт об эпсилон-оксид железе (ε-Fe2O3). Эта модификация обладает экстремально высокой коэрцитивной силой на уровне 20 кЭ при комнатной температуре, а это уже свойства магнитов из весьма недешёвых редкоземельных элементов. Также эпсилон-оксид железа отлично поглощает электромагнитное излучение в субтерагерцовом диапазоне частот (100–300 ГГц). Это тот диапазон, в котором будет работать сотовая связь 6G. За счет эффекта естественного ферромагнитного резонанса эпсилон-оксид железа может поглощать излучение в этом диапазоне, что делает его удобным для предотвращения утечек — для экранирования, а также определяет материалы, которые могут помочь в приёме сигналов в этом диапазоне.

 Авторы эксперимента Людмила Алябьева и Евгений Горбачев в лаборатории терагерцовой спектроскопии МФТИ. Источник изображения: МФТИ

Авторы эксперимента Людмила Алябьева и Евгений Горбачев в лаборатории терагерцовой спектроскопии МФТИ. Источник изображения: МФТИ

В чистом виде эпсилон-оксид железа был получен в 2004 году. По предложенным технологиям синтез материала занимает около 30 дней. Для промышленного производства это не подходит. Команда российских учёных смогла разработать технологию для 30-кратного ускорения синтеза ε-Fe2O3. Предложенная методика, разработке которой посвящена статья в издании Journal of Materials Chemistry C, открывает возможность синтезировать эпсилон-оксид железа за одни сутки.

Новый материал может послужить основой для высокоплотной магнитной записи на лентах и дисках, а также для решений сотовой связи следующего поколения. «Теперь дело за инженерами, мы с удовольствием делимся с ними полученной информацией и с нетерпением ждем возможности подержать в руках свой 6G-телефон», — отмечает Людмила Алябьева, старший научный сотрудник лаборатории терагерцовой спектроскопии МФТИ, где проводились терагерцовые исследования.

В России создан математический аппарат для распознавания кибератаки в электронном шуме

Группа ученых из Московского физико-технического института и Казанского национального исследовательского технологического университета им. А. Н. Туполева разработала математический аппарат, который может привести к прорыву в области сетевой безопасности. Математики помогли распознать злоумышленника при анализе электронного шума в линии передачи данных. Технология может работать на слабом оборудовании и предупреждать атаки, что раньше было невозможно.

 Источник изображения: МФТИ

Источник изображения: МФТИ

Результаты работы опубликованы в журнале Mathematics. Учёные обобщили показатель Хёрста, добавив в него намного больше коэффициентов для более полного описания динамики анализируемого трафика. Подобный шаг позволяет анализировать и находить закономерности там, где их нет по определению из-за множества случайных факторов.

Фактически представлен математический аппарат для анализа электронного шума на линии, куда входит как полезный трафик, так и тепловой шум передатчика. Это как узнавать радиста по почерку. Благодаря этой технологии можно даже выстраивать криптозащиту, научив систему подтверждать доверенный источник передачи по тепловому шуму передатчика.

«Таким образом удается производить «на лету» выделение значимых признаков и применять элементарные методы машинного обучения для поиска сетевых атак. В совокупности получается точнее тяжелых нейронных сетей, и такой подход можно разворачивать на маломощных промежуточных устройствах», — сказано в пресс-релизе на сайте МФТИ.

Представленное российскими математиками решение позволяет задать параметры для анализа и провести анализ процессов, для которых нет точного математического описания. Это открывает серьёзные перспективы не только в области сетевой безопасности, но также в сфере прогнозирования и анализа сложных систем и не обязательно электронных. Развитие живых и, в том числе, наших организмов тоже не поддаётся точной математике, а понимать, что с ними происходит в динамике и к чему это приведёт — это заветная мечта каждого здравомыслящего человека.

В России появится новая лаборатория для развития искусственного интеллекта

Московский физико-технологический институт (МФТИ) и банк ВТБ подписали соглашение о сотрудничестве, предусматривающее развитие технологий искусственного интеллекта (ИИ) и анализа больших данных.

Инициатива, как сообщает РБК, предусматривает создание в России новой лаборатории ИИ. Сотрудники данной структуры займутся разработкой приложений и сервисов распознавания речи для улучшения клиентской поддержки.

«Искусственный интеллект будет активно применяться при создании чат-ботов, голосовых помощников и при анализе видеопотока. В частности, чат-бот-системы или голосовые помощники должны будут обрабатывать неструктурированную речь клиентов, чтобы проанализировать их желания», — говорится в сообщении.

Кроме того, лаборатория будет осуществлять исследования в области определения психоэмоционального состояния персонала с помощью нейронных сетей. Такие алгоритмы помогут поднять эффективность работы сотрудников компании.

МФТИ и ВТБ также занимаются долгосрочными проектами, нацеленными на видеоаналитику. Инвестиции в рамках обозначенных инициатив пока не раскрываются.

Российские физики создали прототип пятикубитного процессора. Это приблизит создание квантового компьютера в России

По сообщению лаборатории искусственных квантовых систем МФТИ, в России впервые создана квантовая интегральная схема на основе пяти сверхпроводниковых кубитов. Это важный шаг на пути создания полномасштабных универсальных квантовых процессоров и симуляторов. Формально разработку можно назвать прототипом квантовых процессоров, которых в мире пока совсем немного.

 Образец интегральной схемы на основе пяти сверхпроводниковых кубитов в держателе. Источник изображения: МФТИ

Образец интегральной схемы на основе пяти сверхпроводниковых кубитов в держателе. Источник изображения: МФТИ

Впервые о разработке в России сверхпроводящего кубита специалисты МФТИ сообщили в 2015 году. Год спустя физики начали эксперименты с двухкубитовым чипом. Сегодня учёные готовы к экспериментам с квантовыми вычислителями и симуляторами на основе пятикубитовых чипов, что существенно повысит ценность исследований.

Как считают российские физики, в ближайшие годы от квантовых систем больше всего практической пользы можно будет получить в области машинного обучения и работы с нейросетями. На квантовых системах нейросети могут работать с меньшим числом параметров, что существенно ускорит обработку данных. Также значительный эффект от использования квантовых платформ можно получить в симуляторах процессов, которые невозможно рассчитать на обычных компьютерах в разумное время.

«Интегральная схема разработана в лаборатории искусственных квантовых систем МФТИ и изготовлена на технологической базе Центра коллективного пользования московского Физтеха, — сообщается на сайте института. — Первые измерения показали, что все элементы схемы работают с ожидаемыми параметрами. В настоящий момент МФТИ обладает уникальной возможностью самостоятельно разрабатывать, изготавливать и тестировать квантовые устройства».

 Часть двухкубитовой квантовой системы. Источник изображения: МФТИ

Часть двухкубитовой квантовой системы образца 2016 года. Источник изображения: МФТИ

Успех разработке обеспечил ряд ключевых факторов. Главным фактором стал опыт сотрудников и развёрнутое производственное и научное оборудование. В ходе многолетних исследований учёные смогли «существенно улучшить контроль геометрических и электрических параметров туннельных контактов». Также физики отладили технологию изготовления микроволновых резонаторов, которые располагаются на чипе вблизи кубитов и служат для считывания их квантового состояния. Другой важной вехой в разработке стала отладка процесса изготовления навесных мостиков (эйр-бриджей), которые позволяют подавить паразитные резонансные моды и тем самым повысить добротность структур.

По словам сотрудников, возможности центра и лаборатории достаточны для выполнения всех этапов, необходимых для создания элементов квантовых процессоров от технологических чертежей до интегральной квантовой схемы на чипе и ее измерений. Но для создания полноценного квантового компьютера требуется дооснащение лаборатории и модернизация «чистой комнаты». И эта оговорка неспроста. Объёмы финансирования разработки российского квантового компьютера могут сократить со всеми вытекающими последствиями.

Российские учёные улучшили ячейку памяти ReRAM с помощью дефектных электродов

Резистивная память представляет собой одну из самых простых структур для энергонезависимого хранения данных. Сотрудники лаборатории атомно-слоевого осаждения МФТИ совместно с коллегами из Кореи доказали пользу дефектов электродов в улучшении параметров ячейки памяти ReRAM. Открытие подсказало, как можно значительно увеличить устойчивость ReRAM к износу при заметном снижении потребления.

 Источник изображения: МФТИ

Источник изображения: МФТИ

Прежде чем продолжить, напомним, что память ReRAM в общем случае представляет собой бутерброд из двух электродов, между которыми расположен материал, по команде меняющий своё сопротивление условно от нуля до бесконечности. Это обратимое и энергонезависимое состояние, что делает память ReRAM идеальной по массе причин. Обычно один из электродов из нитрида титана, а второй — из платины. Но платина плохо совместима с техпроцессом КМОП и учёные в эксперименте заменили сначала верхний электрод на рутений, а потом и нижний.

Опытным путём учёные выяснили, что по мере увеличения толщины рутениевого электрода путём послойного напыления шероховатость его поверхности резко возрастает. Что самое интересное, чем дальше от идеально ровной поверхности, тем лучше оказываются параметры ячейки!

В эксперименте размеры зёрен на поверхности электродов росли от 5 до 70 нм по мере увеличения осаждаемых слоёв. При максимальном их размере напряжение переключения ячейки снижалось, как и снижалось сопротивление материала ячейки памяти, отвечающего за эффект памяти, причём в обоих состояниях — в непроводящем (диэлектрическом) и проводящем. Кроме того, заметно увеличился ресурс устройства, достигая 50 млн циклов перезаписи для случая с наиболее шероховатым электродом.

 Ячейка памяти ReRAM на примере разработки компании Panasonic

Ячейка памяти ReRAM на примере разработки компании Panasonic

Чтобы объяснить неожиданный полезный эффект «неидеального электрода» сначала была предложена упрощённая модель, а затем проведено изучение образца с помощью проводящей атомно-силовой микроскопии, которое доказало верность теоретических рассуждений (подробнее см. в статье в издании ACS Applied Materials & Interfaces).

Оказалось, что с использованием «супершероховатых» электродов электрические параметры ячейки ReRAM улучшились благодаря локализации электрического поля на склонах наиболее крупных зерен на поверхности рутения.

«Наши результаты помогут понять, как можно существенно улучшить ячейки памяти нового типа. Увеличение толщины пленки рутения приводит к увеличению шероховатости поверхности электрода. При этом на склонах зерен формируются области локальной концентрации электрического поля, что, в свою очередь, значительно улучшает ключевые характеристики устройства. Результаты дают надежду, что в будущем устройства памяти будут иметь лучшую производительность и надежность», — дополняет Андрей Маркеев, заведующий группой атомно-слоевого осаждения МФТИ.

window-new
Soft
Hard
Тренды 🔥