Сегодня 19 марта 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → оптоэлектроника

Российские учёные создали прозрачные электроды для умных окон, оптоэлектроники и солнечных панелей

Ученые из Института автоматики и процессов управления Дальневосточного отделения РАН (Владивосток) разработали и испытали технологию производства прозрачных электродов с впечатляющим набором свойств. Электроды остаются одновременно прозрачными в широком диапазоне волн без потери электропроводности. Обычно возможно либо первое, либо второе. Разработка будет интересна для производительной оптоэлектроники, фотогенерации и умного остекления.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Результаты исследования опубликованы в журнале ACS Applied Electronic Materials. По факту российские исследователи первыми разработали электроды на основе дигерманида кальция (CaGe2) — соединения, состоящего из чередующихся двумерных слоев атомов кальция и германия. Учёные вырастили тончайшие плёнки этого материала, осаждая в вакуумной камере кальций и германий на подложку из оксида алюминия и проводя их температурную обработку при 750−850 °C.

Прозрачность полученных образцов преимущественно в инфракрасном диапазоне от 1000 до 4000 нм оказалась на уровне 78%. Затем был применён определённый технологический приём — образец «перфорировали» с помощью лазера, создав на нём что-то в виде клетчатого узора. Это сразу же увеличило прозрачность электрода до внушительных 90 % с одновременным расширением диапазона прозрачности в область видимого света. Электрод обрёл прозрачность в диапазоне от 400 до 7000 нм. Что важно, сопротивление практически не увеличилось, хотя объём токопроводящего материала существенно снизился.

Авторы исследования протестировали работу новых электродов в составе германиевого фотодетектора. Эксперимент показал, что чувствительность такого прибора на электродах из дигерманида кальция на 85 % превышает коммерческие аналоги. Кроме того, датчик оказался способен улавливать более широкий диапазон длин световых волн: 800–2200 нм по сравнению с 800–1900 нм у других подобных устройств.

 Источник изображения: ACS Applied Electronic Materials

Перфорация электрода фемтосекундным лазером и достигнутый при этом эффект. Источник изображения: ACS Applied Electronic Materials

«Самое очевидное и прямое применение полученных результатов — это развитие приборной базы телекоммуникационных технологий. Исследованные нами фотодетекторы и электроды чувствительнее аналогов, а также улавливают более широкий диапазон длин волн. Поэтому они помогут усовершенствовать линии оптической связи, например передачу интернет-трафика по оптоволокну», — рассказал участник проекта, Александр Шевлягин, кандидат физико-математических наук, старший научный сотрудник лаборатории оптики и электрофизики Института автоматики и процессов управления ДВО РАН.

Кроме использования в оптических приёмниках и передатчиках, а также в составе солнечных ячеек разработка может стать находкой для умного остекления. Например, окно с таким покрытием может быть освобождено от наледи и запотевания простым пропусканием тока по своей поверхности, что улучшит энергоэффективность помещений в холодные и сырые времена года.

В России раскрыли загадку удивительных оптических свойств перовскитов и объяснили, как этим пользоваться для оптоэлектроники

Совместная работа учёных МФТИ, МИСИС и ИТМО позволила в деталях объяснить появление уникальных оптических свойств у кристаллов перовскита. Это один из самых перспективных материалов для оптоэлектроники будущего, понимание основ работы с которым даёт базу для создания компонентов и решений с заданными свойствами. Работа исследователей опубликована в журнале Nano Letters и доступна по ссылке.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Ранее научные коллективы во всём мире сталкивались с тем, что оптические свойства перовскитов проявляли себя не всегда или с разным значением. Речь идёт о зависимости оптических свойств кристаллов перовскитов от выбранного направления, что называется анизотропией. Это необходимо учитывать для создания волноводов, поляризаторов, нанолазеров и других оптических приборов. В одних случаях на выращенных кристаллах анизотропия проявлялась, а в других отсутствовала. Российские учёные выяснили, в чём кроется проблема.

«Форма кристаллов перовскитов определяет степень анизотропии. Если они в плоскости выросли квадратными, то они не будут проявлять анизотропных свойств, а если они стали прямоугольными, то перовскит будут анизотропным. Это удобно — просто взглянул на форму перовскита и понял, какие у него будут оптические свойства», — пояснил научный сотрудник Центра фотоники и двумерных материалов МФТИ Георгий Ермолаев.

Иначе говоря, российские исследователи на примере перовскита из свинца, цезия и бора (CsPbBr3) нашли и описали взаимосвязь зависимости анизотропии выращенных кристаллов от условий выращивания и конечной формы кристаллов. Это позволит не бродить в темноте, наугад создавая тот или иной образец перовскитов для экспериментов, а целенаправленно выращивать кристаллы с заданными оптическими свойствами, что, кстати, является одним из основных критериев для массового производства.

Кроме того, учёные обнаружили, что при определённых условиях перовскиты обладают рекордно высоким уровнем оптической анизотропии для всех известных трёхмерных материалов. Это позволяет использовать перовскиты для создания высокоэффективных волноводов и других устройств, позволяющих управлять движением света, что крайне важно для создания оптических аналогов электроники.

«Мы уверены, что перовскиты станут основой посткремниевой электроники. В Лаборатории солнечной энергетики НИТУ МИСИС реализован процесс роста монокристаллов CsPbBr3 и устройств на их основе. Мы работаем над новыми разновидностями перовскитных кристаллов для оптоэлектронного применения и благодарны коллегам из ИТМО и МФТИ за сотрудничество в сложном и интересном исследовательском проекте», — отметил ведущий инженер Лаборатории перспективной солнечной энергетики Университета МИСИС Артур Иштеев.

Графеновые фотодетекторы выведут оптоэлектронику и оптический трафик на новые уровни

Графен представляется волшебным материалом для множества применений в электронике от производства аккумуляторов до выпуска чипов. Одной из таких ниш обещает стать оптоэлектроника. Использование графена в фотоприёмниках может значительно поднять скорость передачи данных, что актуально не только в перспективе для развития сетей 6G, но также в обозримом будущем для вывода оптического трафика на новый уровень пропускной способности.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Современные фотодетекторы на основе полупроводниковых материалов неплохо справляются со своей ролью преобразовывать падающий свет в электрический сигнал. Однако для полупроводниковых материалов в силу их свойств (определённой ширины запрещённой зоны) есть ограничения. В частности, полупроводниковые фотодетекторы имеют обратную зависимость между полосой пропускания, чувствительностью и потреблением. Проще говоря, работающий на максимальной скорости фотопреобразователь потребует достаточно сильного входного сигнала, что увеличит помехи и потребление.

Графен как полуметалл свободен от таких ограничений полупроводников и обеспечивает широчайший спектр поглощения, включая тетрагерцовый, дальний инфракрасный, средний инфракрасный, ближний инфракрасный, коротковолновый инфракрасный, ультрафиолетовый и видимый. У графена нет запрещённой зоны, и это обеспечивает ему уникальную возможность улавливать электромагнитные волны множества длин, а это путь к сверхширокополосным фотодетекторам.

Также графен обладает высокой подвижностью носителей, что реализуется как сверхбыстрое преобразование фотонов в электрический ток, а высокая теплопроводность обещает максимально снизить потребление фотоприёмников. Наконец, графен совместим с классическими КМОП-техпроцессами производства, что в перспективе обеспечит ему интеграцию в чипы кремниевой фотоники.

Самый быстрый на сегодня фотодетектор создали немецкие разработчики из Центра передовой микроэлектроники Аахена и компании AMO GmBH. Графеновый фотодетектор обладает полосой пропускания свыше 128 ГГц, что в теории обеспечит скорость передачи данных по оптическим каналам со скоростью свыше 180 Гбит/с. Подобного расширения ёмкости каналов связи может потребовать даже развитие сетей 5G, не говоря уже о внедрении сетей 6G к концу текущего десятилетия.

Для коммерциализации графеновых фотодетекторов компания AMO совместно с учёными создала в Германии компанию Black Semiconductor. Заявлено, что Black Semiconductor представит технологию массового производства гибридных кремний-графеновых фотонных платформ для любой электроники. У компании AMO достаточно наработок в этой сфере, которые она передала Black Semiconductor. Например, ещё в 2018 году AMO показала первый в мире полностью графеновый оптический кабель связи, который может достигать скорости передачи данных 25 Гбит/с на канал. Преобразование электрических сигналов в оптические и обратное преобразование в разъёмах кабеля выполняли графеновые схемы.

Научный и производственный багаж Black Semiconductor и AMO Germany позволили включить их в общеевропейский проект ULTRAPHO (Ultra-fast Graphene Photodetectors FTI) целью которого является революция на рынке фотонных коммуникационных устройств путем вывода на рынок революционной графеновой технологии. Перефразируя давнюю поговорку о том, что памяти много не бывает, можно смело утверждать, что трафика тоже не бывает много. Графен обещает стать тем решением, которое если не решит проблему с пропускной способностью, то хотя бы на годы её отодвинет.

Екатеринбургский УрФУ создал оптоволокно, устойчивое к сверхвысоким дозам радиации — для работы в космосе и агрессивных средах

Исследователи расположенного в Екатеринбурге Уральского федерального университета (УрФУ) создали оптоволокно, способное работать в средах со сверхвысоким уровнем радиации. Это позволяет использовать его как в традиционной электронике, так и в космосе, а также на ядерных объектах.

 Источник изображения: JJ Ying/unsplash.com

Источник изображения: JJ Ying/unsplash.com

Как сообщает РИА «Новости», подобное оптическое волокно будет крайне востребовано в космических проектах, поскольку его можно будет использовать при создании аппаратов с защитой от сильного ионизирующего космического излучения. Более того, разработанное в УрФУ оптоволокно можно встраивать и в инфракрасные космические телескопы, что позволит заменять массивные зеркала и линзы — они способны как принимать, так и передавать излучение космических объектов. При этом авторы разработки предполагают, что срок службы подобного оптоволокна будет выше, чем срок работы самих телескопов.

Сообщается, что оптоволокно создано на основе монокристаллов бромистого и йодистого серебра (AgBr–AgI). Компьютерное моделирование позволило определить оптимальные условия их изготовления для выпуска однородных оптических волокон, работающих в инфракрасном диапазоне. По данным издания, «присутствие в кристаллической решётке бромида серебра анионов йода определило дополнительную фото- и радиационную стойкость волокон, расширило диапазон пропускания ими инфракрасного излучения». Компьютерное моделирование уже получило экспериментальное подтверждение.

Как заявила Анастасия Южакова, представляющая лабораторию волоконных технологий и фотоники УрФУ, «на основе монокристаллов системы AgBr–AgI мы создали оптические волокна с самым широким на сегодня инфракрасным диапазоном пропускания — от 3 до 25 микрон. При этом прозрачность волокон достигает 70–75 %, что соответствует теоретически возможным значениям для кристаллов системы AgBr–AgI. В то же время оптические потери волокон достигают предельно низких значений».

По мнению учёных, в перспективе это позволяет применять волокна не только в обычной оптоэлектронике, но и в условиях интенсивного ионизирующего излучения — в лазерной хирургии, эндоскопической и диагностической медицине и даже при определении составов отходов атомной промышленности и, конечно, в космосе. Результаты работ уже опубликованы в издании Оptical materials.

Российские учёные создали оптоэлектронный элемент из нанотрубки и белка — он работает как память, фотодиод и светодиод

Группа российских учёных вместе с зарубежными коллегами разработала биоэлектронный фотоэлемент на основе всего одной молекулы светящегося белка, соединённого с углеродной нанотрубкой. Это прямой путь к созданию экологически чистых электронных компонентов, запоминающих устройств и солнечных батарей, о чём на днях было заявлено в журнале Advanced Functional Materials.

 Внешний вид микрочипа с биооптоэлектронным транзистором. Источник изображения: МИЭТ

Внешний вид микрочипа с биооптоэлектронным транзистором. Источник изображения: МИЭТ

Учёные из Национального исследовательского университета «МИЭТ» (Москва), Физического института имени П. Н. Лебедева РАН (Москва), Сколковского института науки и технологий (Москва) с коллегами из Кардиффского университета (Великобритания), Университета Аалто (Финляндия) и Нови-Садского университета (Сербия) модифицировали углеродные нанотрубки зелёным флуоресцентным белком (ЗФБ). Полученная таким образом система оказалась способна менять свои электронные свойства под действием света и в зависимости от того, как прикрепить белок. От вариантов крепления зависело поведение элемента: он мог либо служить прожектором, либо хранить информацию.

«В данном случае однослойная углеродная нанотрубка играет роль активного проводника и носителя белковой молекулы, с которой она связана через фенилазидную группу, обеспечивающую ковалентную сшивку и образование общих электронных пар между компонентами электронного устройства», — рассказал заведующий Лабораторией наноматериалов, проф. Сколковского института науки и технологий, Альберт Насибулин.

 Источник изображения: Advanced Functional Materials

Источник изображения: Advanced Functional Materials

Как показано на рисунке выше, зелёный флуоресцентный белок (ЗФБ) представляет собой «бочонок» из складчатой аминокислотной цепи, внутри которого располагается молекула флуорофора. Флуорофор под действием излучения приобретает дополнительную энергию, претерпевает электронные перестройки, а затем возвращается в исходное состояние, отдавая избыток энергии в виде собственного излучения. От возможного выделения тепла ЗФБ защищает «бочонок» — оболочка, что позволяет длительное время сохранять флуоресцентные свойств элемента.

Представленные органические оптоэлектронные элементы можно использовать в качестве компонентов для молекулярной электроники, светоизлучающих диодов (LED), новейших лазеров и оптических транзисторов. Также они могут работать как элементы памяти или в качестве солнечных элементов и, самое главное, что они биоразлагаемые и даже при обычном захоронении не нанесут вреда экологической системе Земли.


window-new
Soft
Hard
Тренды 🔥
Всё своё ношу с собой: Nvidia представила контейнеры NIM для быстрого развёртывания оптимизированных ИИ-моделей 6 ч.
Nvidia AI Enterprise 5.0 предложит ИИ-микросервисы, которые ускорят развёртывание ИИ 7 ч.
NVIDIA запустила облачную платформу Quantum Cloud для квантово-классического моделирования 8 ч.
NVIDIA и Siemens внедрят генеративный ИИ в промышленное проектирование и производство 8 ч.
SAP и NVIDIA ускорят внедрение генеративного ИИ в корпоративные приложения 8 ч.
Microsoft проведёт в мае презентацию, которая положит начало году ИИ-компьютеров 9 ч.
Амбициозная ролевая игра Wyrdsong от бывших разработчиков Fallout: New Vegas и Skyrim в опасности — в студии прошли массовые увольнения 10 ч.
THQ Nordic раскрыла системные требования Alone in the Dark на все случаи жизни — для игры на «ультра» понадобится RTX 4070 Ti 10 ч.
Сливать игры до релиза станет опаснее — создатели Denuvo рассказали о технологии TraceMark for Games 11 ч.
Календарь релизов 18–24 марта: Dragon's Dogma 2, Rise of the Ronin, Horizon Forbidden West на ПК 12 ч.