Сегодня 29 марта 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → полимер

Учёные разработали технологию цветной 3D-печати без красителей — идею подсмотрели у бабочек

Учёные Иллинойсского университета в Урбане-Шампейне (США) разработали полимер для трёхмерной печати, способный окрашиваться в разные цвета в разных фрагментах одного объекта. Материал меняет свой цвет под действием ультрафиолетового излучения.

 Источник изображения: illinois.edu

Источник изображения: illinois.edu

Обычно цвет полимеров, которые используются в 3D-триантерах, задаётся при помощи синтетических красителей — они оказываются источником загрязнения как при производстве, так и при печати. Кроме того, полимерная нить на одной катушке за редким исключением обычно имеет один цвет. А значит, что при необходимости вывести на печать разноцветный объект придётся менять катушки. Наконец, красители не позволяют добиться особо ярких цветов, например, как на крыльях бабочек — на их поверхности находятся наноструктуры, рассеивающие свет таким образом, что он воспринимается как ярко-красный, синий или зелёный.

Профессор Ин Дяо (Ying Diao) и аспирант Санхъюн Чжон (Sanghyun Jeon) из Иллинойсского университета в Урбане-Шампейне сумели воспроизвести этот эффект на полимере для трёхмерной печати. При выводе из сопла они под воздействием ультрафиолетового света формируют на поверхности материала аналогичные наноструктуры. Управляя такими параметрами как интенсивность подачи материала, движение печатающей головки и интенсивность ультрафиолетового излучения, можно настроить процесс печати таким образом, чтобы различные области объекта имели окраску от тёмно-синей до ярко-оранжевой. Технология также позволяет создавать цветовые градиенты — постепенные переходы, недоступные при традиционной 3D-печати.

Учёные разработали сегнетоэлектрический полимер, который обещает прорыв в гибкой робототехнике

Роботы станут не только более умными, но и гибкими. Исследователи из Университета штата Пенсильвания разработали сегнетоэлектрический полимер, который эффективно преобразует электрическую энергию в механическую деформацию. Этот материал, потенциально пригодный для использования в медицинских приборах и робототехнике, преодолевает традиционные пьезоэлектрические ограничения. Исследователи улучшили характеристики за счёт создания полимерного нанокомпозита, значительно снизив необходимую для деформации напряжённость поля, что расширяет потенциал применения.

 Источник изображения: Qing Wang / psu.edu

Источник изображения: Qing Wang / psu.edu

Новый тип сегнетоэлектрического полимера, который исключительно хорошо преобразует электрическую энергию в механическую деформацию, обещает стать высокоэффективным контроллером движения или линейным приводом (актуатором) с большим потенциалом для применения в медицинских устройствах, передовой робототехнике и системах точного позиционирования, сообщает международная группа исследователей под руководством Университета Пенсильвании (PSU).

Механическая деформация — изменение формы материала при приложении силы — является важным свойством для актуатора, который представляет собой любой материал, который изменяется или деформируется при приложении внешней силы, например, электрической энергии. Традиционно материалы для приводов были жёсткими, но мягкие аналоги демонстрируют большую гибкость и приспособляемость к окружающей среде.

Исследование продемонстрировало потенциал нанокомпозитов из сегнетоэлектрических полимеров для преодоления ограничений традиционных пьезоэлектрических полимерных композитов, предлагая перспективный путь для разработки мягких актуаторов с улучшенными характеристиками деформации и плотности механической энергии. Мягкие приводы представляют особый интерес для исследователей робототехники благодаря своей прочности, мощности и гибкости.

«Потенциально мы можем получить тип мягкой робототехники, которую мы называем искусственными мышцами. Это позволит нам получить мягкую материю, способную выдерживать большую нагрузку в дополнение к большой деформации. Таким образом, этот материал будет в большей степени имитировать человеческую мышцу», — сказал Цин Ванг (Qing Wang), профессор материаловедения и инженерии Университета Пенсильвании и соавтор исследования.

Однако прежде чем эти материалы смогут оправдать надежды учёных, им необходимо преодолеть несколько препятствий, и в исследовании были предложены возможные решения этих проблем. Первая — как повысить силу воздействия мягких материалов. Учёным известно, что мягкие исполнительные материалы, которыми являются полимеры, имеют наибольшую деформацию, но они генерируют гораздо меньшую силу по сравнению с пьезоэлектрической керамикой.

Вторая проблема заключается в том, что для сегнетоэлектрического полимерного привода обычно требуется очень высокое движущее поле, то есть сила, которая навязывает изменение в системе, например, изменение формы. В данном случае высокое движущее поле необходимо для создания изменения формы полимера, требуемого для сегнетоэлектрической реакции, необходимой для превращения в актуатор.

Решение, предложенное для улучшения характеристик сегнетоэлектрических полимеров, заключалось в разработке перколяционного нанокомпозита на основе сегнетоэлектрического полимера — своего рода микроскопической наклейки, прикреплённой к полимеру. Включив наночастицы в один из видов полимера, поливинилиденфторид (polyvinylidene fluoride), исследователи создали взаимосвязанную сеть полюсов внутри полимера.

«Этот новый материал может быть использован для многих устройств, для эффективности которых требуется низкое движущее поле, таких как медицинские приборы, оптические устройства и мягкая робототехника», — сказал профессор Цин Ванг. Можно с уверенностью сказать, что этот материал станет незаменимым в приборах для дистанционных нейрохирургических операций.

Новый сегнетоэлектрический полимер, разработанный исследователями из Пенсильвании, представляет собой значительный прорыв в области робототехники и медицинских устройств. Этот материал, способный эффективно преобразовывать электрическую энергию в механическую деформацию, обещает стать высокоэффективным контроллером движения. Исследование подчёркивает потенциал нанокомпозитов из сегнетоэлектрических полимеров для преодоления ограничений традиционных пьезоэлектрических полимерных композитов, открывая перспективный путь для разработки мягких актуаторов с улучшенными характеристиками деформации и плотности механической энергии. Это открытие может привести к созданию нового типа мягкой робототехники, которую можно назвать искусственными мышцами, и представляет собой важный шаг вперёд в этой области.

Учёные разработали электропроводящий гель, который позволит создавать по-настоящему гибких роботов

Инженерам из Университета Карнеги-Меллона удалось объединить полимеры с жидким металлом для разработки органогелевого композита, который обладает сверхгибкостью и высокой проводимостью. Благодаря новому гелю учёные, возможно, находятся на пути к созданию первых по-настоящему «мягких» роботов и самовосстанавливающихся биометрических устройств. По утверждению создателей, их материал мягкий и очень эластичный, с пределом деформации более 400 %.

 Источник изображений: Zhao Et Al./Nature Electronics

Источник изображений: Zhao Et Al./Nature Electronics

Для создания композита исходный полимер был погружён в растворитель, чтобы добиться пластичности. Затем получившаяся полимерная основа была смешана с микроскопическими каплями жидкого сплава галлия и индия и чешуйками серебра. Конечным продуктом стало гелеобразное вещество низкой плотности, содержащее достаточное количество металла для передачи электричества.

Порванный кусок композита можно соединить, после чего он восстановит свою форму. Его электропроводность превосходит любой другой эластичный материал, что позволяет соединять электрические компоненты без ущерба для функциональности. Основной проблемой большинства гелевых веществ является их склонность к высыханию, но разработчики в качестве основы использовали этиленгликоль, который имеет незначительную скорость испарения.

Изобретатели использовали свой композит для создания робота-улитки, игрушечной машины и биометрического монитора. Новый композит использовался только для соединения батареи и мотора робота-улитки и показал себя весьма ремонтопригодным. В игрушечной машине новый материал позволил быстро объединить электрические цепи и привести в действие двигатель и фары. В качестве реконфигурируемого биоэлектрода материал может быть использован для измерения мышечной активности с помощью электромиографии (ЭМГ) на любой части тела.

Удаление наиболее «жёстких» компонентов машины и замена их гелевыми «нервными системами» позволит инженерам создавать действительно гибких роботов и устройства. Это открывает бесчисленные возможности, особенно в медицине, где учёные могут имитировать живые органы или создавать самовосстанавливающиеся биометрические мониторы для сердца и других мышц. Разработчики уверяют, что настоящие мягкие роботы могут «прикрепляться к вашей коже, ползать по полу вашего дома и помогать вам в повседневных делах».

Учёные создали пластик, который почему-то проводит ток — он подойдёт для электроники будущего

Группа исследователей из Университета Чикаго создала новый пластиковый материал, который проводит электрический ток подобно металлу и сохраняет стабильность при нагревании, охлаждении, пребывании на воздухе или даже под воздействием кислоты. По мнению авторов проекта, этот материал поможет сделать шаг на пути создания электроники нового поколения.

 Источник изображения: John Zich / University of Chicago

Источник изображения: John Zich / University of Chicago

«Это порошок чёрного цвета. Однако, когда мы наносим его на поверхность в виде плёнки или прессуем, как пластилин, он начинает переливаться и становится блестящим. Насколько мы можем судить, он стабилен при температуре до 250 °С», — рассказал руководитель исследовательской группы доктор Джон Андерсон (John Anderson). Он также отметил, что материал обладает электропроводимостью, как у графита.

Электропроводимость является одной из характеристик материалов, в которых электроны могут свободно перемещаться. Прежде считалось, что ключевым условием для электропроводимости является упорядоченная структура материала, как, например, у меди, состоящей из ровных рядов атомов. Однако новое вещество, названное учёными металлополимером, состоит из молекулярных нитей на основе серы, углерода и водорода, а также вкраплений никеля через равные промежутки. При этом речь идёт о материале с высокой электропроводимостью, несмотря на то, что он является аморфным.

Учёные отметили, что не существует надёжной теории, объясняющей свойства нового материала. Цепочки полимеров в нём образуют неупорядоченные стопки, которые складываются друг на друга, создавая аморфный материал, но также позволяя электронам двигаться в горизонтальном и вертикальном направлениях.

«Хотя у нас ещё нет чёткой картины, мы думаем, что молекулярный вид цепочек обеспечивает сильное перекрытие и свойства металла, даже когда материал имеет неупорядоченную структуру и аморфен», — отметил Джон Андерсон. По его мнению, новый материал может оказаться полезным в разных сферах деятельности человека, поскольку его можно распылять или наносить иным способом на поверхности устройств. Например, создание гибких полимеров с электропроводимостью может открыть двери для разработки носимой электроники нового поколения и многих других электронных устройств.


window-new
Soft
Hard
Тренды 🔥
Крупное обновление добавило в No Man’s Sky возможность создавать собственные космические корабли — фанаты мечтали об этом с 2016 года 10 ч.
CD Projekt раскрыла, как продвигается разработка The Witcher 4, и похвасталась успехами Cyberpunk 2077 10 ч.
Громкие анонсы «без рекламы и лишней болтовни»: ведущие инди-разработчики устроят собственную игровую презентацию The Triple-i Initiative 12 ч.
Databricks представила открытую LLM DBRX, превосходящую GPT-3.5 Turbo 12 ч.
«Всегда обидно, когда хейтеры оказываются правы»: Earthblade от авторов Celeste не выйдет и в 2024 году 13 ч.
США запретили властям использовать ИИ, который ущемляет американцев 13 ч.
Экшен-платформер Nine Sols от создателей Devotion наконец получил дату выхода — это смесь Hollow Knight и Sekiro: Shadows Die Twice в стиле даопанка 15 ч.
Разработчики Homeworld 3 раскрыли, как улучшат игру после критики фанатов 16 ч.
Экс-глава EA Russia Тони Уоткинс сделает Astrum Entertainment «компанией №1» на российском рынке видеоигр 18 ч.
Магазин чат-ботов ChatGPT провалился, но им пользуются ученики школ и университетов 18 ч.
Выручка SMIC от контрактного выпуска чипов упала почти на 10 % в 2023 году 7 мин.
Производство чипов в Южной Корее подскочило в феврале на рекордные 65,3 % 2 ч.
Объёмы поставок смартфонов в этом году вырастут на 3 % до 1,2 млрд штук 3 ч.
Amazon потратит почти $150 млрд на расширение ЦОД, чтобы стать лидером в области ИИ 9 ч.
Новая статья: Обзор лазерного 4К-проектора Hisense Laser Mini Projector C1: передовые технологии в действии 10 ч.
В Китае запустили связь 5.5G — первыми её поддержку получили смартфоны Oppo Find X7 10 ч.
Apple представит обновлённые планшеты iPad Pro и iPad Air в начале мая, если слухи верны 12 ч.
Глобальное потепление замедлило вращение Земли, и в этом уже нашли плюсы 13 ч.
Nautilus запустила линейку инфраструктурных решений EcoCore для модульных ЦОД 13 ч.
Китай нарастил закупки нидерландского оборудования для выпуска чипов в несколько раз, несмотря на санкции 13 ч.