Опрос
|
реклама
Быстрый переход
Зонду «Новые горизонты» позволили изучать Пояс Койпера — работа продлится до 2029 года
01.10.2023 [13:10],
Геннадий Детинич
В NASA сообщили, что миссия New Horizons («Новые горизонты») по исследованию объектов во внешней области Солнечной системы включит в себя изучение Пояса Койпера на всём его протяжении, пока зонд не покинет его в 2028 или 2029 году. Это решение потянет за собой изменения в финансировании будущих космических программ, чему ещё предстоит дать оценку. ![]() Зонд «Новые горизонты» в представлении художника. Источник изображения: NASA/APL/SwRI and NASA/JPL-Caltech Споры о научной программе и управлении миссией New Horizons вызвали в NASA межведомственный скандал. В прошлом году руководство NASA приняло решение, что исследование зондом Пояса Койпера — межпланетной среды и объектов, преимущественно астероидов — будет финансироваться только до 2024 года. После этого управление миссией планировали передать гелиофизикам, а планетологов лишить возможности проводить научные эксперименты или, по крайней мере, самостоятельно принимать решения об их проведении. Среди потенциально интересных исследований остаётся надежда на пролёт зонда относительно близко к какому-либо астероиду в Поясе. Потенциальная цель пока не определена, но когда-то может возникнуть недалеко от траектории полёта «Новых горизонтов». Если бы верх взяли гелиофизики, этого, возможно, не произошло бы вообще. Теперь по решению руководства NASA, планетологи и гелиофизики будут совместно управлять миссией, а финансирование расширенной программы будет поступать в основном от Управления планетарных исследований Центра космических полетов им. Маршалла. Такое положение дел продлится до выхода зонда из Пояса Койпера, что ожидается в 2028 или 2029 годах. Также это повлечёт за собой перераспределение финансирования не только для миссии New Horizons, но и для будущих миссий NASA по программам изучения дальнего космоса. Что касается самого зонда, то его источник питания рассчитан на работу до 2035 года, хотя расширенная программа может израсходовать часть его невосполняемого ресурса мощности. Учёные смоделировали столкновения спутников Сатурна — так рождались его кольца
28.09.2023 [15:50],
Геннадий Детинич
Автоматическая станция «Кассини» собрала много доказательств относительной молодости колец Сатурна — редкого и величественного явления в космосе. Судя по наблюдениям, кольца образовались лишь несколько сотен миллионов лет назад, когда по Земле уже ходили динозавры. Подобная история заставляет учёных искать ответ на вопрос, как такое могло произойти. Моделирование показало, что вероятнее всего кольца возникли из обломков столкнувшихся спутников Сатурна. ![]() Кадр из симуляции. Источник изображения: NASA/Durham University/Glasgow University/Jacob Kegerreis/Luís Teodoro Исследовательская группа воспользовалась суперкомпьютером Distributed Research using Advanced Computing (DiRAC) в Даремском университете (Великобритания). Учёные смоделировали почти две сотни столкновений между бывшими гипотетическими спутниками Сатурна. Ранее подобные вычисления уже проводились, но в новой работе шаг симуляции уменьшили в 100 раз, чтобы на два порядка улучшить разрешение. Моделирование показало, что при самых разных сценариях столкновения необходимое для образования колец количество льда распространяется в границах так называемого предела Роша, где вещество захватывается гравитацией Сатурна и перемалывается в более мелкие обломки. За границами предела Роша остатки от лун после столкновений способны собраться в отдельные новые луны. Похоже, именно так был образован спутник Сатурна Рея. Эта луна находится почти на круговой орбите. Если бы она была древней, Солнце изменило бы её орбиту до эллиптической и более наклонной. Сценарий со столкновением лун также объясняет, почему материал колец представлен преимущественно льдом. Во время столкновения лун скальная порода как более тяжёлая не смогла бы в значительном объёме мигрировать в зону гравитационного влияния Сатурна, тогда как более лёгкие ледяные обломки на это способны. Тем самым, также, скальные останки бывших лун могли бы стать основой для образования новых спутников Сатурна на других орбитах. Знание истоков зарождения колец Сатурна и возможной эволюции его спутников имеет важнейшее значение для земной науки. Спутники Сатурна, как и спутники Юпитера, рассматриваются как миниатюрные звёздные системы, на лунах которых могла зародиться своя жизнь. Например, в подлёдном океане Энцелада, шестого по размерам спутника Сатурна. Но если эти луны молоды, то шансы найти там даже микробную биологическую жизнь сильно ниже. Пик солнечной активности наступит раньше, чем ожидали учёные
16.07.2023 [17:12],
Дмитрий Федоров
По мере того, как Солнце приближается к пику своего текущего солнечного цикла, наша звезда становится всё более активной. И, по мнению учёных, пик такой активности может наступить раньше, чем предполагалось. ![]() Источник изображения: NASA / SDO Приблизительно каждые 11 лет Солнце переживает периоды низкой и высокой солнечной активности, что связано с количеством солнечных пятен на его поверхности. Эти тёмные области, некоторые из которых могут достигать размеров Земли или даже больше, приводятся в движение сильным и постоянно меняющимся магнитным полем Солнца. В течение солнечного цикла Солнце переходит от спокойного к интенсивному и активному периоду. Во время пика активности, называемого солнечным максимумом, магнитные полюса Солнца меняются местами. Затем, во время солнечного минимума, на Солнце снова наступает спокойствие. Первоначально прогнозировалось, что пик активности начнётся в июле 2025 года. Теперь эксперты считают, что циклический пик, скорее всего, придётся на середину или конец 2024 года. Текущий солнечный цикл, известный как 25-й солнечный цикл, был очень активным, более активным, чем ожидалось. Учёные из Центра прогнозирования космической погоды Национального управления океанических и атмосферных исследований (NOAA / NWS) в Боулдере, штат Колорадо, уже отследили больше солнечных пятен, чем было насчитано на пике предыдущего цикла. «Нет двух одинаковых солнечных циклов», — сказал Марк Миш (Mark Miesch), научный сотрудник Центра прогнозирования космической погоды (SWPC). «Этот солнечный максимум — эквивалент сезона ураганов в космической погоде. Именно в это время мы наблюдаем самые сильные штормы. Но в отличие от сезона ураганов, который длится несколько месяцев, солнечный максимум длится несколько лет». Повышенная активность также включает в себя сильные солнечные вспышки, выбросы корональной массы и магнитные поля, которые вырываются из внешней атмосферы Солнца. Солнечные бури, порождаемые Солнцем, могут влиять на работу электросетей, GPS и авиации, а также спутников на низкой околоземной орбите. Эти явления также вызывают отключения радиосвязи и даже представляют опасность для пилотируемых космических полётов. ![]() 2 октября 2022 г. на Солнце произошла вспышка Х1, запечатлённая Обсерваторией солнечной динамики NASA (SDO). События X-класса — это самые интенсивные вспышки, и они могут повлиять на системы связи на Земле. Источник изображения: NASA / SDO Известный пример: 29 января 2022 г. на Солнце произошла серия выбросов корональной массы, и это привело к нагреву и расширению внешней атмосферы Земли. В результате этого расширения сгорели 38 из 49 спутников Starlink, запущенных компанией SpaceX. Но в увеличении активности нет ничего необычного, и оно будет продолжаться по мере приближения солнечного максимума. Солнечные пятна будут формироваться всё чаще, что приведёт к росту активности. «Это абсолютно нормально», — сказал Алекс Янг (Alex Young), помощник директора по науке научного отдела NASA по гелиофизике в Центре космических полётов имени Годдарда (GSFC) в Гринбелте, штат Мэриленд. «То, что мы наблюдаем, в целом вполне ожидаемо. По мере приближения к солнечному максимуму Вы видите, что все больше солнечных пятен появляются в виде сгустков. Иногда эти скопления будут больше и дольше». ![]() На этом изображении показан выброс корональной массы. Магнитное солнечное явление может послать в космос миллиарды тонн плазмы, которая может достичь Земли в период от одного до трёх дней, воздействуя на электронные системы как на спутниках, так и на Земле. Источник изображения: NASA «По мере того, как мы становимся все более зависимыми от технологий, от электросетей, от спутников, от самолётов и GPS, влияние космической погоды возрастает, поскольку именно эти системы подвержены влиянию солнечных бурь. Хотя этот конкретный цикл не является чем-то выдающимся с точки зрения Солнца, с нашей точки зрения он является таковым», — сказал Миш. Новые прогнозы солнечного максимума были сделаны под руководством Скотта Макинтоша (Scott McIntosh), заместителя директора Национального центра атмосферных исследований (NCAR), и Роберта Леамона (Robert Leamon), младшего научного сотрудника Института планетарной гелиофизики Годдарда (GPHI), а также их соавторов. Институт представляет собой партнёрство Университета Мэриленда (UMB), округ Балтимор, Университета Мэриленда (UMD), Колледж Парк и Американского университета (AU) с NASA. Вместо того, чтобы отслеживать солнечные пятна, исследователи сосредоточили внимание на так называемом «терминаторе» — точке, когда активность одного солнечного цикла исчезает с поверхности Солнца, после чего следует резкое увеличение солнечной активности в новом цикле. Солнечные пятна считаются ключевым моментом в прогнозировании солнечных циклов, но Леамон сказал, что он и его коллеги считают, что отслеживание магнитной активности, которая приводит к появлению солнечных пятен, может дать более точные прогнозы. После достижения солнечного максимума активность может сохраняться в течение многих лет. По словам Леамона, после максимума количество вспышек на Солнце достигает пика. Увеличение происходит на фазе подъёма чётных солнечных циклов и на фазе спада нечётных циклов. «Пик последствий для Земли наступает после максимума, поэтому наибольшие последствия на ближайшие пару лет гарантированы. Именно после максимума ожидается самый большой фейерверк. Даже если солнечных пятен станет меньше, они будут более продуктивными», — сказал он. ![]() Учёные использовали компьютерные модели и данные Обсерватории солнечной динамики NASA (SDO), чтобы создать вид сложного магнитного поля Солнца 10 августа 2018 года. Источник изображения: NASA / GSFC / SDO «Хотя переход от солнечного минимума к солнечному максимуму обычно занимает около четырёх лет, простого пика для максимума не существует, поскольку Солнце очень изменчиво», — говорит Миш. По словам Янга, иногда во время некоторых солнечных циклов возникают два пика, когда северное и южное полушария Солнца рассинхронизируются. Это может произойти, когда количество солнечных пятен в одном полушарии достигает максимума в другое время, чем в другом полушарии, что приводит к удлинению максимума. «Солнечный максимум может длиться около двух лет, прежде чем всё пойдёт на спад, что означает, что вероятность солнечных бурь может оставаться высокой дольше, чем фактический пик», — считает Миш. Более позитивным побочным эффектом повышенной солнечной активности являются авроры, «танцующие» вокруг полюсов Земли, известные как северное сияние (aurora borealis) и южное сияние (aurora australis). Когда заряженные частицы из выбросов корональной массы достигают магнитного поля Земли, они взаимодействуют с газами в земной атмосфере, создавая в небе разноцветное свечение. ![]() Гигантское солнечное пятно размером почти 128748 км в поперечнике появилось на Солнце 23 октября 2014 года. Источник изображения: NASA / SDO Геомагнитные бури, вызванные Солнцем в феврале и апреле, привели к тому, что авроры стали видны там, где их редко можно увидеть, в том числе на юге, в Нью-Мексико, Миссури, Северной Каролине и Калифорнии в США, а также на юго-востоке Англии и в других частях Великобритании. По словам Янга, в зависимости от местности, авроры не всегда видны над головой, но они могут вызывать красочное зрелище на горизонте. По словам Янга, тем, кто хочет увидеть более интенсивные авроры в будущем, возможно, стоит отправиться на Аляску, в Канаду, Исландию, Норвегию, Скандинавию или на верхний полуостров штата Мичиган. «Я видел авроры — это одно из самых удивительных явлений, которые я когда-либо наблюдал», — сказал он. Хотя наиболее вероятным временем возникновения солнечных бурь является период максимума, они могут произойти в любой момент цикла, сказал Миш. Специалисты Центра прогнозирования космической погоды (SWPC) используют данные наземных и космических обсерваторий, магнитные карты солнечной поверхности и ультрафиолетовые наблюдения за внешней атмосферой Солнца, чтобы определить, когда на Солнце наиболее вероятны солнечные вспышки, выбросы корональной массы и другая космическая погода, которая может повлиять на Землю. По словам Билла Муртаха (Bill Murtagh), координатора программ центра, прогнозы, наблюдения, предупреждения и оповещения предоставляются тем, кого затрагивает космическая погода, как можно скорее, от нескольких часов до нескольких недель. Солнечные вспышки могут повлиять на связь и GPS практически сразу, поскольку они нарушают ионосферу Земли, или часть верхней атмосферы. Высокоэнергетические частицы, высвобождаемые Солнцем, могут также вывести из строя электронику на космических аппаратах и воздействовать на астронавтов, не имеющих надлежащей защиты, в течение от 20 минут до нескольких часов. Частицы, посылаемые с большой скоростью от Солнца во время выбросов корональной массы, могут достичь Земли за 30-72 часа, вызывая геомагнитные бури, которые влияют на спутники и создают электрические токи в верхних слоях атмосферы, которые проходят через Землю, оказывая влияние на электросети. Согласно исследованиям Геологической службы США (USGS), регионы к востоку от Аппалачских гор, на верхнем Среднем Западе и на Тихоокеанском Северо-Западе более подвержены нарушениям в работе электросетей, поскольку земля в этих районах проводит ток по-разному в зависимости от её состава. Бури также влияют на схемы полётов коммерческих авиакомпаний, которым предписано держаться подальше от полюсов Земли во время геомагнитных бурь из-за потери связи или сбоев навигации. ![]() Солнечная вспышка среднего размера и выброс корональной массы вырвались из крупной активной области 14 июля 2017 г. Витки — это частицы, вращающиеся по спирали вдоль линий магнитного поля, которые образовались после взрыва. Изображения были получены в диапазоне длин волн экстремального ультрафиолетового света. Источник изображения: NASA / GSFC / SDO Предсказать, когда следующая большая солнечная буря повлияет на Землю, довольно сложно. Экстремальные бури случались и раньше, например, одна из них вывела из строя электросеть в Квебеке в 1989 году. «Событие Кэррингтона» 1859 года остаётся самой интенсивной геомагнитной бурей из когда-либо зарегистрированных, в результате которой телеграфные станции искрились и загорались, а небо светилось арктическим сиянием даже в тропических широтах. Если подобное событие произойдёт сегодня, оно может причинить ущерб на триллионы долларов и вывести из строя некоторые электросети на долгое время. «Мы не знаем, когда произойдёт следующая крупная катастрофа. Она может произойти через пару недель или через 50 лет», — сказал Муртаг. Солнце и его тайны очаровывали человечество на протяжении тысячелетий. Солнце является якорем нашей Солнечной системы и обеспечивает тепло и свет, необходимые жизни для выживания, однако остаётся много вопросов о его внутренних процессах, которые определяют его магнитную активность. Разгадка оставшихся секретов Солнца с помощью таких миссий, как Parker Solar Probe NASA и Solar Orbiter Европейского космического агентства (ESA), может улучшить прогнозы. А у учёных будет шанс изучить Солнце во время полного солнечного затмения 8 апреля 2024 года. Учёные предложили «теорию сэндвича» — модель формирования планет, которая объясняет появление Марса и Урана
05.07.2023 [14:06],
Павел Котов
Учёные Уорикского университета предложили «теорию сэндвича» — новую модель формирования планет, которая объясняет, как между двумя более крупными планетами в звёздной системе может появиться ещё одна небольшая. ![]() Источник изображения: warwick.ac.uk Классическая модель формирования планет предполагает, что они образуются из протопланетных дисков, возникающих вокруг звезды на ранних этапах развития системы. Частицы протопланетного диска со временем «слипаются» как снежный ком и в течение миллионов лет формируют крупные тела. Классическая теория также объясняет, почему каменистые планеты вроде Венеры и Земли оказались ближе к Солнцу, а газовые гиганты Сатурн и Юпитер — на некотором отдалении от него. Учёные Уорикского университета выдвинули теорию, согласно которой в протопланетных дисках кольца вещества чередуются с пустотами, в которых планеты уже сформировались. Потоки пыли между ними относительно невелики, но в этих остаточных кольцах вещества между более крупными «братьями и сёстрами» могут появляться более мелкие планеты. Они чем-то напоминают тонкий слой начинки между двумя толстыми ломтями хлеба в сэндвиче. Авторы исследования утверждают, что при наблюдении на экзопланетами им удалось найти подтверждения своей гипотезы. Она также объясняет появление в Солнечной системе Марса и Урана, окружённых с обеих сторон более крупными планетами. На заре формирования Солнечная система пережила взрыв близкой сверхновой — стечение обстоятельств помогло ей уцелеть
05.07.2023 [08:20],
Руслан Авдеев
Как считают учёные, взрыв близкой сверхновой рядом с Солнцем на заре формирования нашей звезды мог поставить точку в истории формирования нашей звёздной системы — если бы не облако молекулярного газа, выступившего в роли своеобразного щита. ![]() Иллюстрация. Источник изображения: NASA Учёные пришли к такому мнению после изучения изотопов элементов, обнаруженных в метеоритах. Обычно такие объекты являются фрагментами астероидов, сформировавшихся из материалов, находившихся рядом, когда формировалась звезда и другие планеты. Таким образом, метеориты являются своеобразными остатками, позволяющими исследователям реконструировать эволюцию Солнечной системы. Изучение радиоактивных изотопов алюминия в образцах метеоритов позволило установить, что около 4,6 млрд лет назад в системе появился дополнительный радиоактивный алюминий — лучшим объяснением этому, по мнению учёных, является «впрыск» материала от взорвавшейся рядом сверхновой. По данным исследователей Национальной астрономической обсерватории Японии, находившаяся во «младенчестве» Солнечная система, вероятно, действительно пережила такой взрыв, а окружавший её «кокон» защитил от полного уничтожения. Взрывы сверхновых обычно случаются, когда у массивных умирающих звёзд заканчивается топливо для ядерного синтеза и их ядра больше не могут противостоять гравитационному коллапсу. Это и приводит к взрыву, благодаря которому в космос выбрасываются элементы, накапливавшиеся во время жизни звезды. Материалы становятся кирпичиками следующего поколения звёзд — но достаточно мощный взрыв может негативно повлиять на находящуюся рядом звезду и зарождающуюся планетную систему. Поскольку звёзды обычно рождаются в гигантских облаках молекулярного газа, по мнению учёных, у взорвавшейся сверхновой ушло около 300 тыс. лет, чтобы «взломать» плотную защиту, окружавшую Солнечную систему. Метеориты, богатые радиоактивными изотопами, в своё время откололись от астероидов, родившихся в первые 100 тыс. лет существования Солнечной системы, когда она всё ещё находилась в плотном газовом «коконе», который защищал её от жёсткой радиации — радиация могла негативно сказаться на формировании планет вроде Земли. Новые результаты свидетельствуют о том, что плотные «нити», сформировавшиеся из окружавшего систему газа, могли задержать и доставить в регион, близкий к Солнцу, и радиоактивные изотопы. Ожидается, что открытие станет критически важным для понимания процесса формирования и эволюции звёзд и их планетарных систем. Например, подобные «нити» могут играть важную роль в защите молодой Солнечной системы от жёсткой радиации соседних звёзд, которая могла бы «испарить» протозвёздный диск, что повлияло бы на его конечный размер, в результате это обязательно сказалось бы на формировании планет в диске. |