Сегодня 30 марта 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → телескоп
Быстрый переход

Астрономы засекли 55 убегающих звёзд в окрестностях нашей галактики — такие объекты сильно влияют на эволюцию Вселенной

Новая работа астрономов на базе наблюдений европейского астрометрического спутника «Гайя» (Gaia) вскрыла недооценку влияния на эволюцию Вселенной блуждающих звёзд. Исследование было направлено на оценку возможностей «Гайи» создавать 3D-карту не только Млечного Пути, но также соседних карликовых галактик за её пределами. Изучение звёзд в Большом Магеллановом Облаке обнаружило 55 «беглянок» и их существенный вклад в ионизацию окружающего газа.

 Художественное представление убегающих звёзд. Источник изображения: Danielle Futselaar, James Webb Space Telescope

Художественное представление убегающих звёзд. Источник изображения: Danielle Futselaar, James Webb Space Telescope

Исследователи наблюдали за одной из самых больших соседних зон звездообразования — туманностью Тарантул и, конкретно, изучали звёзды в относительно молодом скоплении R136. Это скопление интересно тем, что в нём обнаружена самая массивная из известных на сегодня звёзд (R136a1), масса которой превышает 200 масс Солнца. Самому скоплению примерно 2 млн лет. От Земли оно удалено на 158 тыс. световых лет. Собранные «Гайей» данные говорят, что из этого скопления прочь улетают как минимум 55 звёзд-гигантов.

Астрономы выделили две волны беглянок. Первая начинает отсчёт примерно через 200 тыс. лет после начала массового рождения звёзд в скоплении, а вторая — через 1,8 млн лет. Первая волна звёзд направлена во все стороны от центра скопления, что говорит об одном механизме запуска, тогда как вторая сформировала чётко направленный вектор в одном (северном) направлении. Учёные полагают, что первая волна звёзд получила ускорение, выбросившее их из родного скопления, в первые тысячи лет после рождения, когда в их орбитах был хаос. Вторую волну мог запустить эффект от слияния скопления R136 с другим скоплением, что произошло уже на этапе зрелости.

 Данные по убегающим из скопления звёздам за 3 млн лет. Источник изображения: Mitchel Stoop / Nature 2024

Данные по убегающим из скопления звёздам за 3 млн лет. Источник изображения: Mitchel Stoop / Nature 2024

По факту переоценки оказалось, что родное скопление покинули до трети самых массивных звёзд — это больше, чем предсказывают модели. Беглянки внесли измеряемый вклад в ионизацию газа как в туманности, так и за её пределами (уж на сколько успели отлететь): от 10 % внутри от числа самых ярких звёзд и до 20 % снаружи. До сих пор при прогнозировании эволюции Вселенной вклад звёзд-беглянок в реионизацию газа в первый миллиард лет после Большого взрыва никак не учитывался. Между тем этот фактор мог оказать существенное влияние на скорость развития звёзд, галактик и самой Вселенной.

Приливное разрушение звезды чёрной дырой впервые напрямую связали с квазипериодическими вспышками в рентгене

Учёные впервые наблюдали серию квазипериодических вспышек в мягком рентгеновском диапазоне от сверхмассивной чёрной дыры вскоре после обнаруженного там же события приливного разрушения звезды чёрной дырой. Ранее столь однозначной связи между этими двумя явлениями не было, что оставляло пространство для научных споров.

 Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA

«Представьте себе пловца, который постоянно ныряет в бассейн и создаёт всплеск каждый раз, когда входит в воду, — пояснил суть проблемы Мэтт Николл (Matt Nicholl) из Королевского университета в Белфасте, Великобритания, ведущий автор исследования, опубликованного в текущем номере журнала Nature. — Звезда в этом сравнении похожа на ныряльщика, а диск [аккреции] — на бассейн, и каждый раз, когда звезда ударяется о поверхность, она создает огромный "всплеск" газа и рентгеновских лучей. Вращаясь вокруг чёрной дыры, звезда повторяет это снова и снова».

Разрушившее звезду приливное явление, известное как AT2019qiz, было впервые обнаружено в 2019 году широкоугольным оптическим телескопом Паломарской обсерватории. В 2023 году астрономы использовали рентгеновский телескоп «Чандра» и телескоп «Хаббл» для изучения последствий разрушения — следов упавшей на чёрную дыру материи в виде активности её аккреционного диска.

Данные «Чандры» были получены в ходе трёх наблюдений, каждое из которых продолжалось 4–5 часов. Общая экспозиция, составившая примерно 14 часов, показала слабый сигнал в начале и в конце наблюдений и очень сильный сигнал в середине цикла. Наблюдения с помощью приборов NICER, обсерватории Swift и индийского телескопа AstroSat позволили установить, что после разрушения звезды в приливном событии AT2019qiz из области чёрной дыры примерно каждые 48 часов исходили слабые вспышки в мягком рентгеновском диапазоне.

 Рентгеновские изображения AT2019qiz, полученные 9 и 10 декабря 2023 года. Источник изображения: Matt Nicholl / Nature 2024

Рентгеновские изображения AT2019qiz, полученные 9 и 10 декабря 2023 года. Источник изображения: Matt Nicholl / Nature 2024

Данные обсерватории «Хаббл» в ультрафиолетовом диапазоне помогли понять, насколько увеличился аккреционный диск чёрной дыры за счёт новой порции материи. Учёные предполагают, что диск аккреции увеличился настолько, что в него стал нырять компактный объект — звезда или чёрная дыра, которая вращается по орбите вокруг чёрной дыры, разорвавшей звезду. Помимо того, что учёные могут прояснить один из механизмов возникновения квазипериодических вспышек в рентгеновском диапазоне у чёрных дыр, проделанная работа может помочь получить более чёткое представление о размерах и динамике изменения аккреционного диска у конкретных чёрных дыр.

Европейские астрономы создали самую подробную в истории инфракрасную карту Млечного Пути

Учёные Южной европейской обсерватории представили самую подробную из когда-либо созданных инфракрасных карт нашей галактики Млечный Путь. Карта содержит примерно в 10 раз больше объектов, чем ранее. Новый атлас будет десятилетиями служить учёным источником бесценных данных о нашем ближнем звёздном окружении, что приведёт к множеству удивительных открытий.

 Примеры изображения из нового атласа. Источник изображения: ESO

Примеры изображения из нового атласа. Источник изображения: ESO

Работа по картированию объектов Млечного Пути велась в два этапа с 2010 года по первую половину 2023 года. Международная команда учёных под руководством сотрудников Южной Европейской обсерватории использовала для наблюдений телескоп VISTA в Чили, в пустыне Атакама. Данные собирались в инфракрасном диапазоне с помощью камеры VIRCAM, что позволяло видеть сквозь пыль и газ, обнаруживать относительно холодные объекты — бурые карлики и блуждающие планеты, а также новорождённые звёзды в коконах из газопылевых облаков.

Собранные учёными изображения охватывают область неба, эквивалентную 8600 полным лунам. Объём собранных данных превысил 500 Тбайт, что стало самым крупным наблюдательным проектом, когда-либо осуществлённым с помощью телескопа ESO. Учёные сделали более 200 тысяч снимков Млечного Пути, на которых запечатлено более 1,5 миллиарда объектов.

«Мы сделали так много открытий, что навсегда изменили представление о нашей галактике», — сообщил Данте Миннити (Dante Minniti), астрофизик из Университета Андреса Белло в Чили, который руководил проектом.

Проделанная работа тем более ценна, что наблюдения в течение 420 ночей, включая повторные съёмки одних и тех же участков, позволили проследить за движением звёзд в пространстве и, таким образом, создать частично трёхмерную карту звёзд в нашей галактике. Учёные также смогли обнаружить больше переменных звёзд, которые являются своеобразной шкалой времени во Вселенной, позволяя точно определять расстояния до объектов. Наконец, инфракрасный диапазон помог заглянуть вглубь Вселенной, в ту область, которую закрывает яркая и насыщенная объектами и пылью центральная часть Млечного Пути.

Подготовка проекта уже привела к появлению 300 научных работ. Использование материалов нового атласа обещает ещё больше исследований и открытий, которые будут удивлять нас в ближайшие годы и в будущем. Самое приятное, что картирование Млечного Пути продолжится на новом уровне. Телескопы ESO вскоре получат новые и ещё более чувствительные приборы для ещё более детального изучения нашего ближайшего звёздного окружения.

Наметился прорыв в изучении физики Солнца — учёные научились делать карты магнитных полей его атмосферы

Учёные из Национальной солнечной обсерватории США (NSO) представили первые в мире детальные карты магнитных полей солнечной атмосферы (короны). Проделанная работа — это только начало тотального картирования магнитосферы короны. Это новый уровень в изучении физики нашей родной звезды, который позволит прогнозировать едва ли ни все явления на Солнце от пятен до корональных выбросов, а это путь к предсказанию космической погоды в нашей системе.

 Источник изображения: NASA/SDO

Источник изображения: NASA/SDO

Новаторские карты магнитных полей в атмосфере Солнца смог получить новый и самый большой в мире наземный солнечный телескоп им. Дэниела Иноуэ (Daniel K. Inouye Solar Telescope, DKIST). Он начал научную работу в феврале 2022 года и уже добыл самые детализированные снимки нашей звезды, где разрешение каждого пикселя соответствовало 20 км. Казалось бы, что нам искать фактически под микроскопом на Солнце? Тем не менее учёные имеют более-менее полное представление о масштабных физических процессах на нашей звезде, но в мелочах не способны разобраться даже сегодня.

Для выявления магнитных линий (полей) в короне Солнца учёные воспользовались криогенно охлаждённым спектрометром, подключённым к телескопу DKIST. С помощью коронографа исследователи могли изолированно от поверхности наблюдать атмосферу Солнца и одновременно снимать её спектр в ближнем инфракрасном диапазоне. В частности, исследователей интересовал спектр железа в атмосфере звезды. Существует такое явление, как эффект Зеемана. Он описывает расщепление спектральных линий атомов в магнитном поле.

 Карта магнитных полей солнечной короны

Карта магнитных полей солнечной короны

Спектрометр легко выявляет расщепление линий вплоть до определения поляризации линий магнитного поля. Всё это позволяет в подробностях увидеть распределение линий напряжённости в короне. Если мы знаем, как распределены линии магнитных полей в атмосфере Солнца, то можем предсказать появление, размеры и очертания пятен на Солнце, интенсивность вспышек и направления выбросов корональной массы. Солнце станет предсказуемым. Это будет своего рода победа над ним.

«Картирование напряженности магнитного поля в короне — фундаментальный научный прорыв не только для исследований солнечной системы, но и для астрономии в целом, — говорят авторы исследования. — Это начало новой эры, когда мы поймем, как магнитные поля звёзд влияют на планеты здесь, в нашей собственной солнечной системе, и в тысячах экзопланетных систем, о которых мы теперь знаем».

NASA собрало ядро космического телескопа «Нэнси Грейс Роман» — задержек с запуском не предвидится

В NASA сообщили, что сборка ядра космической обсерватории «Нэнси Грейс Роман» в целом завершена. Целевой датой запуска остаётся май 2027 года. Критических проблем и задержек не предвидится. На очереди начало монтажа оборудования и приборов на шину космического аппарата, который доставит оборудование примерно туда, где сейчас работает космическая обсерватория им. Джеймса Уэбба.

 Источник изображений: NASA

Источник изображений: NASA

Ядро или шина обсерватории представляет собой шестигранный каркас с корпусом шириной 4 м и высотой 2 м. В этот каркас будут встроены двигательные, питающие и управляющие обсерваторией узлы, после чего будет смонтировано 2,4-м главное зеркало. Небольшие по сравнению с зеркалом «Уэбба» размеры (у последнего оно 6,5-метровое) не должны смущать. Зеркало у «Роман» такое же, как и у «Хаббла», чего достаточно для качественных и детальных обзоров неба, но у «Роман» будет невероятное преимущество по сравнению с этими двумя телескопами — он сможет за раз делать снимок в 100 раз большего участка неба, чем «Хаббл».

Широкое поле зрения новому телескопу обеспечит 288-Мп матрица. Каждые сутки эта обсерватория будет передавать на Землю по 1,4 Тбайт данных. Для сравнения, «Уэбб» отправляет учёным до 60 Гбайт данных в сутки, а «Хаббл» — по 3 Гбайт. Широкий охват поможет делать множество открытий, в том числе быстрых переходных процессов. Например, это важно для открытия новых экзопланет методом транзита.

Обсерватория будет обладать чувствительностью в оптическом диапазоне и в ближнем инфракрасном диапазоне, для чего она будет отправлена в точку Лагранжа L2. Её инфракрасные датчики не должны страдать от лишнего нагрева, предполагая постоянное охлаждение до -178 °C. Требования не такие жёсткие, как для чисто инфракрасного «Уэбба», но всё равно лучше «Роман» держать подальше от Солнца.

«Охотник за астероидами» NEOWISE завершил миссию и вскоре сгорит в атмосфере

Космический инфракрасный телескоп NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) NASA завершил работу на орбите в рамках длившейся более 10 лет миссии по планетарной обороне, включавшей поиск и изучение астероидов и комет, в том числе тех, которые могут представлять угрозу для Земли. В минувший четверг специалисты NASA перевели космический аппарат в «спящий режим», дав команду выключить передатчик.

 Источник изображения: NASA/JPL-Calteсh

Источник изображения: NASA/JPL-Calteсh

Как и планировалось ранее, работа по сбору научных данных была прекращена 31 июля, после чего телескоп отправил на Землю последние собранные данные и снимки.

«Миссия NEOWISE стала необычайно успешной историей, поскольку она помогла нам лучше понять наше место во Вселенной, отслеживая астероиды и кометы, которые могут быть опасны для нас на Земле», — отметила Никола Фокс (Nicola Fox), заместитель администратора Управления научных миссий NASA.

Завершение миссии было связано с тем, что орбита космического телескопа начала быстро снижаться под действием усилившейся солнечной активности. Как ожидается, он сгорит в атмосфере в конце 2024 или начале 2025 года. Первоначально использовавшийся в рамках миссии WISE (Wide-field Infrared Survey Explorer) телескоп из-за отсутствия охладителя нашёл применение для мониторинга активности астероидов и комет в рамках миссии NEOWISE.

За время работы на низкой околоземной орбите NEOWISE выполнил 1,45 млн инфракрасных измерений более 44 000 объектов Солнечной системы. Из более чем 3000 обнаруженных околоземных объектов 215 были впервые выявлены с помощью NEOWISE. В рамках миссии также было обнаружено 25 новых комет, включая знаменитую комету C/2020 F3 NEOWISE, обнаруженную с помощью космического телескопа 27 марта 2020 года.

В настоящее время NASA работает над созданием нового «охотника за астероидами» — инфракрасного космического телескопа NEO Surveyor (Near Earth Object Surveyor), который, как ожидается, будет запущен в середине 2028 года.

Вторая жизнь орбитального телескопа NASA WISE оборвётся 8 августа, а в декабре он сгорит в атмосфере

В последний день июля 2024 года официально завершилась расширенная научная работа орбитального инфракрасного телескопа NASA WISE (NEOWISE). Телескоп был запущен в космос в 2009 году как инструмент для поиска слабых и сильных инфракрасных источников во Вселенной. В 2013 году после долгого сна телескоп начал работать на планетарную оборону Земли, выискивая опасные для неё астероиды. Сегодня его служба окончена и вскоре он сгорит в атмосфере.

 Источник изображений: planetary.org

Источник изображений: planetary.org

Команда на полное отключение телескопа NEOWISE будет отдана 8 августа 2024 года. В зависимости от активности Солнца, влияющей на размеры атмосферы Земли, телескоп сгорит в её плотных слоях в период с декабря 2024 года по февраль 2025 года. Фактически всё время с 2013 года телескоп работал сверх первоначальной программы и был полезен науке намного дольше, чем планировали разработчики.

Запаса криогенного водорода на борту обсерватории WISE хватило на год работы сверхчувствительных инфракрасных датчиков телескопа. Обсерватория запускалась для поиска интересных объектов, невидимых в оптическом диапазоне. Например, WISE открыл самые близкие к земле коричневые карлики всего в 6,5 световых годах от Земли, которые уже не планеты, но ещё не звёзды, и поэтому тусклы для оптического обнаружения, а также ряд ярчайших за историю наблюдений инфракрасных галактик. Также WISE смог отследить 150 тыс. астероидов в главном поясе между Марсом и Юпитером (инфракрасное излучение даёт наиболее полную картину рельефа этих объектов).

Истощение запасов хладагента привело к завершению программы WISE и отправке телескопа в режим сна в 2010 году. К 2013 году команда телескопа и приглашённые учёные разработали и воплотили в жизнь новую программу обсерватории — NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer), благо ничего нового в космос запускать было не нужно, требовалось лишь обновить бортовое ПО и вернуть телескоп в работу.

Целью расширенной научной программы NEOWISE стал поиск и изучение околоземных астероидов. Без экстремального охлаждения датчиков телескоп мог использовать только два инфракрасных диапазона из четырёх, но этого оказалось достаточно для удивительно продуктивной работы инструмента и исследователей.

Более того, на основе практики охоты NEOWISE за околоземными астероидами была разработана более совершенная космическая платформа для целей преимущественно планетарной обороны — NEO Surveyor. Ожидается, что телескоп NEO Surveyor будет запущен в космос в 2027 году, после чего отправится в точку Лагранжа L1. У него не будет хладагента для охлаждения инфракрасных датчиков. Система защиты от Солнца будет строиться на тщательно продуманном экранировании, включая использование для этого солнечных панелей.

За более чем 14 лет работы телескоп WISE с программой NEOWISE выполнил 1,45 миллиона инфракрасных измерений более чем 44 000 объектов Солнечной системы. Космический телескоп также обследовал более 3000 космических объектов, 215 из которых он обнаружил сам, в том числе первый в истории троянский астероид Земли — 2010 TK7, представляющий собой 300-метровую скалу, которая движется впереди нашей планеты в точке Лагранжа L4.

«Джеймс Уэбб» доказал обнаружение самой древней известной галактики во Вселенной

В журнале Nature вышла первая из трёх статей, в которой учёные сообщили о получении убедительных доказательств обнаружения самой древней галактики в истории наблюдений. Галактика JADES-GS-z14-0 существовала менее чем через 300 млн лет после Большого взрыва. Это не укладывается в голове у учёных — настолько больших, ярких и развитых галактик в те времена просто не должно было быть.

 Источник изображения: NASA

Источник изображения: NASA

«В январе 2024 года прибор NIRSpec наблюдал за этой галактикой, JADES-GS-z14-0, в течение почти десяти часов, и когда спектр был впервые обработан, были получены однозначные доказательства того, что у галактики действительно было красное смещение 14,32, что побило предыдущий рекорд самой удаленной галактики»,пояснили астрономы Стефано Карниани (Stefano Carniani ) из Высшей нормальной школы в Италии и Кевин Хайнлайн (Kevin Hainline) из Университета Аризоны.

Спектрограф NIRSpec ближнего инфракрасного диапазона в составе космической обсерватории им. Джеймса Уэбба способен определить величину красного смещения объекта, отсеяв, например, волны того же диапазона естественного происхождения — от химических и физических процессов в звёздах. Только после спектрального анализа объекта, например, галактики, можно делать вывод о его удалённости. После такого анализа галактика JADES-GS-z14-0 определена как самая древняя (или самая юная, смотря, откуда считать) в истории наблюдений.

Протяжённость галактики JADES-GS-z14-0 оценивается минимум в 1600 световых лет. Это говорит о том, что свет в основном исходит от молодых звёзд, а не от массивной чёрной дыры в её центре. Масса галактики превышает несколько сотен миллионов масс Солнца. Это примерно 10 % от массы нашей галактики Млечный Путь. Казалось бы, мелочь. Но эта «мелочь» была не по годам развита во времена Рассвета Вселенной, когда не должно было быть галактик такого размера и массы.

«Джеймс Уэбб» позволил нам заглянуть во времена, когда Вселенная была окутана туманом из атомарного водорода, рассеивавшего видимый свет и не позволяющий учёным заглянуть вглубь времён. Увиденное там бросило вызов земной науке. Динамика эволюции звёзд и галактик превысила все теоретические расчёты. В галактике JADES-GS-z14-0, например, обнаружено так много пыли и тяжёлых элементов (в астрономии это всё, что тяжелее гелия), что это невозможно сегодня объяснить. Для этого должны были жить и умереть много поколений тяжёлых звёзд, что для времени через 300 млн лет после Большого взрыва представляется просто невероятным.

Астрофизики обнаружили связь между разрушением углеводородной пыли и эволюцией галактик

Группа японских астрофизиков обнаружила связь между разрушением углеводородной пыли и эволюцией галактик. Исследование, основанное на анализе данных 138 галактик, показало, что алифатические компоненты углеводородной пыли разрушаются быстрее в условиях сильного радиационного излучения и ударных волн, характерных для активных этапов жизни галактик.

 Источник изображения: Copilot

Источник изображения: Copilot

Углеводородная пыль является одним из основных компонентов межзвёздной пыли и состоит преимущественно из полициклических ароматических углеводородов (ПАУ) и алифатических углеводородов. Хотя учёные предполагают, что эта пыль подвергается воздействию межзвёздного излучения и ударных волн, детальные механизмы этих процессов до сих пор оставались не до конца изученными.

В ходе исследования, о котором сообщил портал Astrobiology.com, учёные из астрономического сообщества Японии проанализировали взаимосвязь между светимостью, излучаемой углеводородной пылью, и общей инфракрасной светимостью (LIR) для 138 галактик. Используя данные ближнего инфракрасного диапазона 2,5-5 мкм, полученные с помощью космического телескопа AKARI, они определили светимость ароматических углеводородов на длине волны 3,3 мкм (Laromatic) и алифатических углеводородов на длине волны 3,4-3,6 мкм (Laliphatic).

Кроме того, на основе данных фотометрии, произведённой телескопами AKARI, WISE и IRAS, были построены модели спектральных распределений энергии галактик, что позволило оценить их общую инфракрасную светимость и интенсивность радиационного поля.

Анализ показал, что галактики с более высокой инфракрасной светимостью демонстрируют более низкое соотношение светимостей алифатической и ароматической компонент. Также была обнаружена антикорреляция между этим соотношением и интенсивностью радиационного поля. Примечательно, что низкие значения наблюдались преимущественно в галактиках, находящихся в процессе слияния, что может говорить о том, что в таких галактиках алифатические компоненты разрушаются быстрее, чем ароматические.

Полученные результаты показали, что углеводородная пыль, предположительно, подвергается разложению под воздействием ударных волн и радиации в процессе слияния галактик, а соотношение светимостей алифатической и ароматической компонент, вероятно, уменьшается в подобных экстремальных межзвёздных условиях, поскольку алифатические компоненты химически слабее ароматических.

Исследование вносит важный вклад в понимание эволюции межзвёздной среды и процессов, происходящих в галактиках на разных стадиях их эволюции. Дальнейшие наблюдения и теоретические работы помогут уточнить механизмы обработки углеводородной пыли и их роль в эволюции галактик.

Европейская южная обсерватория показала эпичную стройку Чрезвычайно большого телескопа

Сегодня в чилийской пустыне Атакама в разгаре работы по созданию купола Чрезвычайно большого телескопа и ложа для 200-тонного 39-метрового зеркала. Строительная техника и краны кажутся игрушечными на фоне колоссального сооружения. Проект стартовал 10 лет назад и движется к своему завершению через четыре года. Это будет крупнейший на Земле оптический телескоп, который расширит горизонты наших знаний о Вселенной.

 Источник изображения: ESO

Источник изображения: ESO

Представители Европейской южной обсерватории (ESO) поделились кадрами со стройки объекта, сделанными в прошлом месяце. На снимках мы видим, прежде всего, гигантский купол, который будет оборудован раздвижными створками. На время жаркого дня или пылевых бурь телескоп будет прятаться за ними и за теплоизоляционной обшивкой купола. Всё сооружение будет покрыто теплоизоляцией для сохранения более-менее стабильной температуры внутри помещения до наступления ночи.

Внутри купола создаётся специальное ложе для самого большого в мире зеркала. Оно должно выдержать 200 т и будет компенсировать перепады температур и вибрации, вызванные, например, сильным ветром. Кроме того регулироваться будет каждый сегмент составленного из 798 шестиугольных кусочков зеркала. Каждый сегмент будет иметь собственный модуль с системой выравнивания.

Также оптика телескопа будет иметь адаптивную лазерную подстройку для компенсации турбулентностей в атмосфере. Система будет следить за четырьмя искусственными звёздами в небе, и тысячу раз в секунду подстраивать одно из зеркал в оптической системе телескопа под завихрения воздуха в зоне обзора. Всего оптическая система телескопа будет включать шесть зеркал вместе с основным. Первый свет обсерватория рассчитывает получить в 2028 году, что будет на 4 года позже первоначальных планов.

NASA опубликовала 25 снимков в честь 25-летия телескопа «Чандра» — скоро его могут отправить на пенсию

В честь 25-й годовщины пребывания в космосе рентгеновского телескопа «Чандра» (Chandra) NASA опубликовало 25 снимков, полученных с помощью этого инструмента, с которыми общественность ранее не знакомили. Не исключено, что из-за сокращения бюджета NASA работу обсерватории придётся в скором времени свернуть.

 Источник изображения: nasa.gov

Источник изображения: nasa.gov

Телескоп «Чандра» был запущен на борту космического челнока «Колумбия» (Columbia) 23 июля 1999 года — с тех пор аппарат прислал множество потрясающих снимков, включая изображение самой далёкой чёрной дыры из когда-либо наблюдавшихся. Обсерватория помогла сделать некоторые открытия, о которых учёные до её запуска даже не подозревали. Опубликованные в честь юбилея 25 снимков — лишь малая часть материалов, полученных за 25 000 сессий наблюдения, которые «Чандра» провела за время своего пребывания в космосе. Астрономы продолжают использовать данные телескопа совместно со снимками других мощных обсерваторий, включая «Джеймса Уэбба» (JWST) и Imaging X-ray Polarimetry Explorer (IXPE).

Но сокращение бюджета NASA ставит под угрозу будущее космической обсерватории, невзирая на все её успехи. Американским чиновникам приходится бороться со сложными бюджетными решениями и делать непростой выбор, чтобы изыскать средства на разработку новых телескопов, рассказал глава отдела астрофизики NASA Марк Клэмпин (Mark Clampin). Исследователи не допускают и мысли, что в ближайшее время «Чандру» могут вывести из эксплуатации. Но даже если это и случится, обсерватория уже заслужила звание одной из самых продуктивных миссий NASA: за 25 лет проведённые с участием «Чандры» исследования легли в основу более 700 докторских диссертаций и более 10 000 статей в рецензируемых изданиях.

Метеорит и солнечная буря едва не лишили нас астрометрического спутника «Гайя»

Европейское космическое агентство сообщило, что астрометрический спутник «Гайя» (Gaia) подвергся ударам космической стихии. Его защитную оболочку пробил микрометеороид, а сильнейшая солнечная буря в мае этого года вывела из строя критически важный для работы обсерватории ПЗС-датчик. Инженеры вернули спутник к работе, хотя объём получаемых им данных, похоже, сильно сократился.

 Источник изображений: ESA

Источник изображений: ESA

Спутник «Гайя» размещён в точке Лагранжа L2 (в тени Земли на противоположной от Солнца стороне). Его огромное поле ПЗС-матрицы и два телескопа ежесекундно получают данные о миллионах звёзд, позволяя следить за их скоростями движения и направлениями. Фактически «Гайя» создаёт трёхмерную динамическую карту нашей галактики и даже заглядывает за её границы. Значение этих данных невозможно переоценить, и во многом даже не изучено, настолько содержательный массив информации они собой представляют.

В апреле в защитный кожух спутника ударил микрометеороид. Он вошёл под «неправильным» углом и с высокой скоростью, которую кожух не смог скомпенсировать. В земной атмосфере такая пылинка моментально бы испарилась. Но для «Гайи» её удар имел последствия. Через проделанное микрометеороидорм отверстие стал попадать рассеянный солнечный свет, что создавало на матрице ложные срабатывания — она стала показывать несуществующие звёзды.

Пока инженеры решали проблему снижения чувствительности матрицы спутника для компенсации повреждения, возникла новая проблема. В мае из строя вышла ПЗС-матрица, которая работала как контрольная для отсеивания ложных срабатываний по звёздам. Инженеры точно не могут назвать причину отказа, но связывают её (по времени) с сильнейшей за многие годы солнечной бурей, эффект от которой в виде сияний был виден даже в Краснодарском крае. Спутник проработал почти вдвое дольше отведённых ему 6 лет, и электроника могла существенно износиться под постоянным космическим излучением.

 Вехи в 10-летней работы спутника «Гайя»

Вехи в 10-летней работы спутника «Гайя»

Поэтому вслед за решением проблемы гашения рассеянного солнечного света через дыру в защитном кожухе, инженеры снижали порог чувствительности основной матрицы, чтобы исключить появление ложных звёзд. Работы по восстановлению обсерватории были успешно завершены. Более того, проведённая заново калибровка телескопов повысила точность измерений до уровня, которого ранее у спутника ещё не было. Сегодня обсерватория каждые сутки передаёт на Землю данные в объёме 25 Гбайт. Их было бы намного больше, если бы бортовое оборудование не работало бы на компенсацию ложных срабатываний. Но даже этот поток данных — бесценный вклад в изучение Вселенной.

«Джеймс Уэбб» показал космического пингвина с яйцом — снимок приурочен ко второй годовщине работы телескопа

В минувший четверг космическая инфракрасная обсерватория им. Джеймса Уэбба (James Webb) отметила два года научной работы. Сделанный телескопом юбилейный снимок был посвящён этой дате и раскрыл все возможности инфракрасных приборов «Уэбба»: камер ближнего и среднего инфракрасного диапазонов. Благодаря им снимок двух далёких сталкивающихся галактик — Пингвина и Яйца — заиграл новыми красками и деталями.

 Комбинированный снимок галактик Arp 142. Источник изображения: NASA; ESA; CSA; STScI

Комбинированный снимок галактик Arp 142. Источник изображения: NASA; ESA; CSA; STScI

Галактики Пингвин и Яйцо (Arp 142) удалены от нас на 326 млн световых лет. Они расположены в созвездии Гидра на расстоянии около 100 тыс. световых лет одна от другой. Около 25–75 млн лет назад произошло сближение эллиптической (NGC 2937) и спиральной галактики (NGC 2936): Яйца и Пингвина. Первая своей гравитацией размотала вторую и через сотни миллионов лет они сольются в одну галактику.

 Сенимок прибором MIRI (средний инфракрасный диапазон)

Снимок прибором MIRI (средний инфракрасный диапазон)

Гравитационное взаимодействие двух галактик превратило спиральную галактику в подобие пингвина с клювом и хвостом, охраняющего своё яйцо. В облаках пыли и газа, вымываемых гравитацией из спиральной галактики, проявились вспышки звездообразоания. Эллиптическая галактика, вызвавшая всё это движение, напротив, населена старыми звёздами и обе они окружены похожим на дымку туманным ореолом из полициклических ароматических углеводородов.

 Сенимок тех же галактик телескопом «Хаббл»

Снимок тех же галактик телескопом «Хаббл»

Космический телескоп NASA NEOWISE для фотоохоты на астероиды скоро завершит работу и сгорит в атмосфере

Миссия NASA NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) завершится 31 июля. В течение 14 лет космический телескоп, специально предназначенный для наблюдения за астероидами, вёл непрерывный мониторинг их активности. Из-за повышающейся солнечной активности космический аппарат, не оснащённый двигателями, не сможет оставаться на орбите и сгорит в атмосфере в конце 2024 или начале 2025 года. Его преемник, NEO Surveyor, будет запущен лишь в сентябре 2027 года.

 Источник изображений: planetary.org

Источник изображений: planetary.org

Первоначально запущенный как WISE (Wide-field Infrared Survey Explorer) в 2009 году, космический корабль значительно превзошёл первоначальные научные цели по исследованию и обнаружению объектов, сближающихся с Землёй (ОСЗ). Миссия дважды продлялась, последний раз в 2013 году, после чего она стала называться NEOWISE. Основной задачей космического телескопа был поиск, отслеживание и сканирование ОСЗ в инфракрасном диапазоне отражённого солнечного света.

Наблюдая за небом с низкой околоземной орбиты в течение более 14 лет, NEOWISE выполнил 1,45 миллиона инфракрасных измерений более чем 44 000 объектов Солнечной системы. Космический телескоп также обследовал более 3000 космических объектов, 215 из которых он обнаружил сам, в том числе первый в истории троянский астероид Земли — 2010 TK7 представляет собой 300-метровую скалу, которая движется в 60 ° впереди нашей планеты, в точке Лагранжа.

«Космический корабль превзошёл все ожидания и предоставил огромные объёмы данных, которые научное сообщество будет использовать в ближайшие десятилетия, — заявил руководитель проекта NEOWISE Джозеф Хант (Joseph Hunt). — Учёные и инженеры, работавшие над проектом, также создали базу знаний, которая поможет информировать будущие миссии по инфракрасному исследованию».

«После разработки новых методов поиска и определения характеристик ОСЗ, скрытых в огромных объёмах данных инфракрасных исследований, NEOWISE стал ключевым фактором, помогающим нам разрабатывать и эксплуатировать инфракрасный космический телескоп следующего поколения», — уверена главный исследователь NEOWISE и NEO Surveyor из Калифорнийского университета в Лос-Анджелесе Эми Майнцер (Amy Mainzer).

 360-градусный обзор окружающей Вселенной составленный с помощью NEOWISE / Источник изображения: NASA

360-градусный обзор окружающей Вселенной составленный с помощью NEOWISE / Источник изображения: NASA

Приближающийся солнечный максимум, самый высокий уровень солнечной активности за примерно 11-летний цикл Солнца, привёл к завершению миссии NEOWISE. Повышенная солнечная активность нагревает атмосферу Земли и заставляет её расширяться. Это создаёт большее сопротивление спутникам, вращающимся вокруг Земли, а поскольку NEOWISE не оснащён двигательной установкой, он не сможет оставаться на орбите и 8 августа будет переведён в режим гибернации, затем начнёт постепенно приближаться к Земле и сгорит в её атмосфере.

На основе собранных данных и опыта эксплуатации космического «охотника за астероидами» NEOWISE, в NASA проектируют новый инфракрасный космический телескоп NEO Surveyor (Near Earth Object Surveyor). Согласно заявлению агентства, он будет запущен в конце 2027 года и продолжит развитие стратегии планетарной защиты.

Изготовлен последний сегмент зеркала для самого большого телескопа в истории Земли

Чрезвычайно большой телескоп Европейской Южной обсерватории (ESO ELT), строящийся в чилийской пустыне Атакама, стал на шаг ближе к завершению. Немецкая компания SCHOTT успешно доставила для обработки заготовку для последнего из 949 сегментов, заказанных для основного зеркала телескопа. При диаметре более 39 метров это зеркало станет самым большим когда-либо изготовленным для телескопа.

 Источник изображений: ESO

Источник изображений: ESO

Чаша основного зеркала (M1) Чрезвычайно большого телескопа состоит из 798 шестиугольных сегментов, каждый толщиной около 5 см и шириной 1,5 м. Вместе они будут собирать столько света, что превысят возможности глаза человека в десятки миллионов раз. Для облегчения обслуживания и ремонта главного зеркала уже после его ввода в строй изготовлено дополнительно 133 сегмента. Сверх того, ESO закупила 18 запасных сегментов, в результате чего их общее количество достигло 949.

Оптическая система телескопа ELT будет состоять из пяти зеркал, где помимо главного зеркала M1 будет ещё четыре зеркала намного меньшего диаметра. Все зеркала уже отлиты и подготавливаются к работе.

Каждый сегмент главного зеркала отлит из уникального стеклокерамического материала ZERODUR компании SCHOTT. Обсерватория стала крупнейшим заказчиком на этот материал с низким коэффициентом теплового расширения, поскольку в пустыне на высокогорном плато, где будет работать телескоп, происходят сильные суточные колебания температуры окружающего воздуха. Прежде чем приступить к отливу и подготовке сегментов главного зеркала, компания SCHOTT провела множество экспериментов на месте, чтобы убедиться в правильности выбора материала и технологий его обработки. Всего было произведено свыше 230 т материала.

На предприятии SCHOTT заготовка проходит первичную подготовку — термообработку медленным охлаждением и первичное шлифование. Финальное шлифование сегментов и их порезка на шестиугольники из круглой заготовки производится во Франции компанией Safran Reosc. Точность шлифовки не допускает неровностей свыше 10 нм. Кроме этих компаний, в изготовлении сегментов гигантского зеркала участвуют также голландская компания VDL ETG Projects BV (производство рамы для крепления сегмента в составе чаши зеркала), немецко-французский консорциум FAMES (разработка и производство 4500 датчиков, для отслеживания положения каждого сегмента в зеркале), немецкая компания Physik Instrumente (разработка и производство 2500 приводов для выравнивания положения каждого сегмента с точностью в пределах нескольких нанометров), а также датская DSV, которая перевозит сегменты за 10 тыс. км в Чили.

Уже в Чили на производстве недалеко от стройплощадки ELT сегменты зеркала покрываются серебром и укрываются на хранение до начала сборки.

 ELT в представлении художника

ELT в представлении художника

Строительство телескопа ELT стартовало в 2014 году. Предполагалось, что телескоп начнёт работу с 2024 года, но пандемия и другие непредвиденные обстоятельства затянули выполнение работ. Год назад в ESO сообщили, что телескоп и сопутствующее оборудование готовы на 50 %. Это позволяет рассчитывать, что телескоп ELT, равного которому на Земле ещё не было, начнёт научную работу в 2028 году.


window-new
Soft
Hard
Тренды 🔥