Опрос
|
реклама
Быстрый переход
Учёные выяснили, когда молодые звёзды лишаются шанса обзавестись планетами
06.11.2024 [19:46],
Геннадий Детинич
Не всем звёздам везёт обзавестись собственным выводком планет. Во Вселенной могут сложиться условия, при которых протопланетные диски рассеиваются быстрее, чем появляется возможность сформироваться планетам. Это хорошо иллюстрирует звёздная ассоциация Лебедь OB2 (Cygnus OB2), за которой наблюдала группа астрономов. В зависимости от окружения протопланетные диски сохранились у 1–40 % молодых звёзд, хотя все они одного возраста. ![]() Область Лебедь OB2, где фиолетовым показано свечение в рентгене, а остальное в инфракрасном свете. Источник изображения: NASA Звёздная ассоциация Лебедь OB2 находится примерно в 4600 световых годах от Земли. Это не звёздное скопление, поскольку большинство звёзд не связаны гравитацией и со временем разлетятся по галактике (в скоплениях звёзды удерживаются гравитацией вместе). Население ассоциации представлено в основном молодыми и горячими звёздами, вокруг каждой из которых должен иметься протопланетный диск. Звёзды сами образовались из такого диска, и что-то, а зачастую очень много, всегда остаётся лишним. В то же время насыщенность пространства в области Лебедь OB2 молодыми звёздами создаёт некомфортные условия для планетообразующих дисков. Интенсивное излучение в ультрафиолете и рентгеновском диапазоне заставляет вещество дисков испаряться и уноситься прочь. Это явление называется фотоиспарением: газ в протопланетном диске нагревается и ионизируется, а внутреннее давление излучения от звезды выталкивает его из диска. В обычных условиях звёзды типа нашего Солнца могут развеять протопланетный диск за 5–10 млн лет. Горячие и яркие звёзды классов O и B делают это за более короткий промежуток времени, не оставляя, как показывает новое исследование, шансов для образования планет. Учёные создали составное изображение области Лебедь OB2 из снимков космической рентгеновской обсерватории «Чандра» (Chandra) и инфракрасной «Спитцер» (Spitzer). «Чандра» показывает области с интенсивным рентгеновским излучением, а «Спитцер» выявляет пыль (диски) и звёзды. Анализ изображения показал, что менее массивные звёзды в ассоциации, находящиеся в менее плотном окружении соседей, имеют протопланетные диски, которые были обнаружены у 40 % звёзд. Они не такие горячие, чтобы развеять пыль и газ вокруг себя. В более плотных звёздных группах протопланетные диски имелись только у 18 % звёзд. В самом экстремальном и плотном окружении протопланетные диски сохранились только у 1 % звёзд. Когда звёзд много, они яркие, горячие и расположены достаточно близко друг к другу, это не способствует образованию планет и зарождению жизни. Ещё одна монета в копилку знаний о том, где искать жизнь во Вселенной. Звёзд в ней так много, что наблюдательный ресурс нужно расходовать только после очень вдумчивого выбора. Система Веги оказалась планетарной пустыней
02.11.2024 [20:43],
Геннадий Детинич
Фильм «Контакт» 1997 года с Джоди Фостер в главной роли оказался пророческим. В системе Вега — одной из ярких звёзд в небе Земли — на первый взгляд никаких планет не обнаружено. Углублённый обзор системы Веги с помощью телескопов «Хаббл» и «Уэбб» показал равномерное распределение газа и пыли на ширину 160 млрд км без видимых следов планет, хотя вокруг аналогичной звезды Фомальгаут в абсолютно схожих условиях видны признаки трёх экзопланет. ![]() Изображение газопылевого диска системы Веги по данным «Хаббла» (слева) и «Уэбба» (справа). Источник изображения: NASA Учёные находятся в недоумении — одна и та же физика привела к абсолютно противоположному результату. Обоим звёздам по 450 млн лет. Обе имеют классические газопылевые протопланетные диски. В системе Фомальгаута в сплошном газопылевом диске обнаружены три чётко выраженных кольца, свидетельствующих о существовании там планет, которые буквально пропахали борозды в дисках. Газопылевой диск Веги остался ровным и гладким. Впрочем, один небольшой зазор фиксируется на расстоянии 60 а.е. от звезды, что соответствует двум расстояниям Нептуна от Солнца. Но где «веганские» Юпитер и Сатурн? Их нет! Уж планеты гиганты с расстояния 25 световых лет обнаружить проблем не составило бы. «С помощью телескопов "Хаббл" и "Уэбб" вы получаете очень чёткое изображение Веги. Это загадочная система, потому что она не похожа на другие околозвёздные диски, которые мы рассматривали, — сказал Андраш Гашпар (Andras Gáspár) из Университета Аризоны, член исследовательской группы. — Диск Веги гладкий, смехотворно гладкий». В допустимом диапазоне наблюдений «Хаббл» способен распознать свечение газопылевого диска Веги в ультрафиолете. На изображении выше оно слева. «Хаббл» показывает распределение буквально пыли — частичек, свойственных дыму. На правом изображении с «Уэбба» видно свечение более крупных частичек — как песок, излучающий тепло. В любом случае нет никаких следов объектов планетарного масштаба, что стало для исследователей настоящим сюрпризом, который заставит переосмыслить эволюцию планетарных дисков. Некоторые из них могут быть пустынями, а это снижает вероятность зарождения жизни в некоторых уголках Вселенной. Космический вертун: обнаружена нейтронная звезда с рекордной частотой вращения — 716 Гц
31.10.2024 [20:32],
Геннадий Детинич
Астрономы из Дании в ходе наблюдения за двойной рентгеновской системой обнаружили признаки рекордной характеристики у центрального партнёра — нейтронной звезды, вокруг которой вращается белый карлик. Одна из зарегистрированных термоядерных вспышек на объекте сопровождалась колебанием интенсивности на частоте 716 Гц. Это означает, что нейтронная звезда вращается вокруг своей оси с частотой 716 оборотов в секунду, что на сегодня является абсолютным рекордом. ![]() NICER на МКС. Источник изображения: NASA Двойная система 4U 1820-30 является одним из самых привлекательных кандидатов для наблюдения. Она удалена от Земли на 26 тыс. световых лет в направлении центра Млечного Пути и расположена в созвездии Стрельца. Белый карлик находится очень близко к нейтронной звезде и совершает один оборот вокруг неё за 11 минут. Диаметр нейтронной звезды составляет примерно 12 км, а её масса — в 1,4 раза больше солнечной. Такая система называется барстером. Нейтронная звезда перетягивает массу компаньона, а когда та накапливается до критического уровня, происходит термоядерный взрыв, сопровождающийся рентгеновской вспышкой. За системой велось наблюдение рентгеновским телескопом NASA NICER, установленным на МКС. Группа DTU Space из Технического университета Дании создавала систему наведения для этого инструмента. Из 15 зарегистрированных термоядерных взрывов один указал на возможную скорость вращения нейтронной звезды — 716 оборотов в секунду. Ранее была обнаружена только одна нейтронная звезда с такой же скоростью вращения — радиопульсар PSR J1748−2446ad. Впрочем, рекордную скорость вращения 4U 1820-30 ещё предстоит подтвердить в будущих наблюдениях. Тем не менее полученные данные вносят ещё больше ясности в природу нейтронных звёзд. «Хаббл» запечатлел «звёздный вулкан», извергающий яркий газ
20.10.2024 [23:26],
Анжелла Марина
Космический телескоп «Хаббл» сделал эффектный красочный снимок крупным планом двух близлежащих звёзд в созвездии Водолея, которые находились в тесном контакте на протяжении столетий. Космическая обсерватория продемонстрировала сложное взаимодействие звёздного дуэта. ![]() Источник изображения: Hubble (NASA) На новом изображении видна эффектная туманность в форме песочных часов, образовавшаяся в результате многовекового взаимодействия двух звёзд: компактного, оставшегося практически в неизменном виде белого карлика (горячая сгоревшая звезда) и его звезды-компаньона, холодного красного гиганта, который увеличился до размеров, превышающих размеры нашего Солнца более чем в 400 раз, и меняющего свою температуру и яркость 750 раз за период примерно в 390 земных дней. Эта звёздная система, известная как R Aquarii (R Водолея), находится на расстоянии около 710 световых лет от Земли в созвездии Водолея. Она относится к симбиотическому классу переменных звёзд, что по аналогии с биологическим термином «симбиоз» означает сосуществование двух различных объектов — совершенно разных типов звёзд — в тесной близости друг к другу. Белый карлик, вращаясь вокруг красного гиганта с орбитальным периодом в 44 года, в момент приближения сбрасывает вещество на его поверхность, время от времени взрываясь, как «гигантская водородная бомба». В результате этого взрыва в космос выбрасываются искривлённые потоки светящегося газа, которые, по описанию учёных, выглядят как «сошедший с ума садовый разбрызгиватель для поливки газона». Выброшенный материал устремляется в космос со скоростью более 1,6 миллиона километров в час. Для примера учёные приводят расстояния от Земли до Луны, которое преодолевается за 15 минут! Процесс наглядно демонстрирует, как Вселенная перераспределяет продукты термоядерного синтеза, которые образуются глубоко внутри звёзд и выбрасываются обратно в космос. Причём некоторые из этих продуктов включают более тяжёлые элементы, такие как углерод, азот и кислород, являющиеся важнейшими строительными блоками планет, подобных нашей. Будучи одной из ближайших симбиотических звёзд, R Водолея была тщательно изучена с помощью множества космических и наземных телескопов. Например, телескоп «Хаббл» начал наблюдать за ней вскоре после запуска на орбиту в 1990 году. Десять лет спустя рентгеновская обсерватория «Чандра» начала отслеживать изменения рентгеновского излучения туманности, главным образом излучаемого её узловатой струёй и ударными волнами, которые R Водолея генерирует при столкновении с окружающим веществом. На основании этих наблюдений астрономы предполагают, что последний раз извержения белого карлика произошли в конце 1970-х годов, и предположительно, следующий взрыв может произойти не ранее 2470 года. Последний снимок звёздной системы, сделанный «Хабблом», показывает, что в результате воздействия мощных магнитных полей и силы самого взрыва выброшенный материал образовал спиральный узор и распространился на расстояние более 400 миллиардов километров, что в 24 раза превышает диаметр нашей Солнечной системы, и по мнению команды «Хаббла» «поистине невероятен даже по астрономическим меркам». Покадровые снимки R Водолея, сделанные за последние 10 лет, демонстрируют изменения яркости звёздной пары, вызванные сильными пульсациями красного гиганта, а также драматическую эволюцию окружающей туманности. Охота за тёмной материей началась: опубликован первый процент космического атласа телескопа «Евклид»
16.10.2024 [11:06],
Геннадий Детинич
Европейское космическое агентство (ESA) опубликовало первый фрагмент космического атласа, полученного с помощью космической обсерватории «Евклид» (Euclid). Изображение соответствует всего одному проценту будущего каталога, в который в деталях войдут все видимые на глубину 10 млрд световых лет галактики, а на нём уже содержится 100 млн объектов — звёзд и галактик, 14 млн их которых уже можно использовать для поиска тёмной материи и тёмной энергии. ![]() Источник изображения: ESA «Евклид» собирает свет в оптическом и инфракрасном диапазонах. Поэтому он заглядывает сквозь облака газа и пыли, в деталях получая изображения галактик на огромную глубину. Форма и размеры галактик дадут представление о скоплениях и форме облаков и сгустков тёмной материи, которые, собственно, позволили сначала появиться звёздам, а потом и галактикам. Также на основе новых данных учёные получат лучшее представление о динамике расширения Вселенной на протяжении последних 10 млрд лет, что станет шагом к сбору данных о тёмной энергии, которая заставляет Вселенную ускоренно расширяться. Представленный фрагмент будущего атласа «Евклида» содержит данные 260 наблюдений, сделанных в период с 25 марта по 8 апреля 2024 года. Всего за две недели «Евклид» охватил 132 квадратных градуса южной части неба, что более чем в 500 раз превышает площадь неба, покрываемую полной Луной. В марте 2025 года будут опубликованы первые 53 квадратных градуса обзора. Данные обзора за первый год наблюдений опубликуют в 2026 году. Сбор данных продлится до 2030 года и охватит примерно треть неба. Но уже сейчас в данных «Евклида» достаточно информации, чтобы по его наблюдениям можно было начать работать. Астрономы засекли 55 убегающих звёзд в окрестностях нашей галактики — такие объекты сильно влияют на эволюцию Вселенной
11.10.2024 [13:51],
Геннадий Детинич
Новая работа астрономов на базе наблюдений европейского астрометрического спутника «Гайя» (Gaia) вскрыла недооценку влияния на эволюцию Вселенной блуждающих звёзд. Исследование было направлено на оценку возможностей «Гайи» создавать 3D-карту не только Млечного Пути, но также соседних карликовых галактик за её пределами. Изучение звёзд в Большом Магеллановом Облаке обнаружило 55 «беглянок» и их существенный вклад в ионизацию окружающего газа. ![]() Художественное представление убегающих звёзд. Источник изображения: Danielle Futselaar, James Webb Space Telescope Исследователи наблюдали за одной из самых больших соседних зон звездообразования — туманностью Тарантул и, конкретно, изучали звёзды в относительно молодом скоплении R136. Это скопление интересно тем, что в нём обнаружена самая массивная из известных на сегодня звёзд (R136a1), масса которой превышает 200 масс Солнца. Самому скоплению примерно 2 млн лет. От Земли оно удалено на 158 тыс. световых лет. Собранные «Гайей» данные говорят, что из этого скопления прочь улетают как минимум 55 звёзд-гигантов. Астрономы выделили две волны беглянок. Первая начинает отсчёт примерно через 200 тыс. лет после начала массового рождения звёзд в скоплении, а вторая — через 1,8 млн лет. Первая волна звёзд направлена во все стороны от центра скопления, что говорит об одном механизме запуска, тогда как вторая сформировала чётко направленный вектор в одном (северном) направлении. Учёные полагают, что первая волна звёзд получила ускорение, выбросившее их из родного скопления, в первые тысячи лет после рождения, когда в их орбитах был хаос. Вторую волну мог запустить эффект от слияния скопления R136 с другим скоплением, что произошло уже на этапе зрелости. ![]() Данные по убегающим из скопления звёздам за 3 млн лет. Источник изображения: Mitchel Stoop / Nature 2024 По факту переоценки оказалось, что родное скопление покинули до трети самых массивных звёзд — это больше, чем предсказывают модели. Беглянки внесли измеряемый вклад в ионизацию газа как в туманности, так и за её пределами (уж на сколько успели отлететь): от 10 % внутри от числа самых ярких звёзд и до 20 % снаружи. До сих пор при прогнозировании эволюции Вселенной вклад звёзд-беглянок в реионизацию газа в первый миллиард лет после Большого взрыва никак не учитывался. Между тем этот фактор мог оказать существенное влияние на скорость развития звёзд, галактик и самой Вселенной. Приливное разрушение звезды чёрной дырой впервые напрямую связали с квазипериодическими вспышками в рентгене
11.10.2024 [10:01],
Геннадий Детинич
Учёные впервые наблюдали серию квазипериодических вспышек в мягком рентгеновском диапазоне от сверхмассивной чёрной дыры вскоре после обнаруженного там же события приливного разрушения звезды чёрной дырой. Ранее столь однозначной связи между этими двумя явлениями не было, что оставляло пространство для научных споров. ![]() Художественное представление приливного разрушения звезды чёрной дырой. Источник изображения: NASA «Представьте себе пловца, который постоянно ныряет в бассейн и создаёт всплеск каждый раз, когда входит в воду, — пояснил суть проблемы Мэтт Николл (Matt Nicholl) из Королевского университета в Белфасте, Великобритания, ведущий автор исследования, опубликованного в текущем номере журнала Nature. — Звезда в этом сравнении похожа на ныряльщика, а диск [аккреции] — на бассейн, и каждый раз, когда звезда ударяется о поверхность, она создает огромный "всплеск" газа и рентгеновских лучей. Вращаясь вокруг чёрной дыры, звезда повторяет это снова и снова». Разрушившее звезду приливное явление, известное как AT2019qiz, было впервые обнаружено в 2019 году широкоугольным оптическим телескопом Паломарской обсерватории. В 2023 году астрономы использовали рентгеновский телескоп «Чандра» и телескоп «Хаббл» для изучения последствий разрушения — следов упавшей на чёрную дыру материи в виде активности её аккреционного диска. Данные «Чандры» были получены в ходе трёх наблюдений, каждое из которых продолжалось 4–5 часов. Общая экспозиция, составившая примерно 14 часов, показала слабый сигнал в начале и в конце наблюдений и очень сильный сигнал в середине цикла. Наблюдения с помощью приборов NICER, обсерватории Swift и индийского телескопа AstroSat позволили установить, что после разрушения звезды в приливном событии AT2019qiz из области чёрной дыры примерно каждые 48 часов исходили слабые вспышки в мягком рентгеновском диапазоне. ![]() Рентгеновские изображения AT2019qiz, полученные 9 и 10 декабря 2023 года. Источник изображения: Matt Nicholl / Nature 2024 Данные обсерватории «Хаббл» в ультрафиолетовом диапазоне помогли понять, насколько увеличился аккреционный диск чёрной дыры за счёт новой порции материи. Учёные предполагают, что диск аккреции увеличился настолько, что в него стал нырять компактный объект — звезда или чёрная дыра, которая вращается по орбите вокруг чёрной дыры, разорвавшей звезду. Помимо того, что учёные могут прояснить один из механизмов возникновения квазипериодических вспышек в рентгеновском диапазоне у чёрных дыр, проделанная работа может помочь получить более чёткое представление о размерах и динамике изменения аккреционного диска у конкретных чёрных дыр. Европейские астрономы создали самую подробную в истории инфракрасную карту Млечного Пути
27.09.2024 [11:45],
Геннадий Детинич
Учёные Южной европейской обсерватории представили самую подробную из когда-либо созданных инфракрасных карт нашей галактики Млечный Путь. Карта содержит примерно в 10 раз больше объектов, чем ранее. Новый атлас будет десятилетиями служить учёным источником бесценных данных о нашем ближнем звёздном окружении, что приведёт к множеству удивительных открытий. Работа по картированию объектов Млечного Пути велась в два этапа с 2010 года по первую половину 2023 года. Международная команда учёных под руководством сотрудников Южной Европейской обсерватории использовала для наблюдений телескоп VISTA в Чили, в пустыне Атакама. Данные собирались в инфракрасном диапазоне с помощью камеры VIRCAM, что позволяло видеть сквозь пыль и газ, обнаруживать относительно холодные объекты — бурые карлики и блуждающие планеты, а также новорождённые звёзды в коконах из газопылевых облаков. Собранные учёными изображения охватывают область неба, эквивалентную 8600 полным лунам. Объём собранных данных превысил 500 Тбайт, что стало самым крупным наблюдательным проектом, когда-либо осуществлённым с помощью телескопа ESO. Учёные сделали более 200 тысяч снимков Млечного Пути, на которых запечатлено более 1,5 миллиарда объектов. «Мы сделали так много открытий, что навсегда изменили представление о нашей галактике», — сообщил Данте Миннити (Dante Minniti), астрофизик из Университета Андреса Белло в Чили, который руководил проектом. Проделанная работа тем более ценна, что наблюдения в течение 420 ночей, включая повторные съёмки одних и тех же участков, позволили проследить за движением звёзд в пространстве и, таким образом, создать частично трёхмерную карту звёзд в нашей галактике. Учёные также смогли обнаружить больше переменных звёзд, которые являются своеобразной шкалой времени во Вселенной, позволяя точно определять расстояния до объектов. Наконец, инфракрасный диапазон помог заглянуть вглубь Вселенной, в ту область, которую закрывает яркая и насыщенная объектами и пылью центральная часть Млечного Пути. Подготовка проекта уже привела к появлению 300 научных работ. Использование материалов нового атласа обещает ещё больше исследований и открытий, которые будут удивлять нас в ближайшие годы и в будущем. Самое приятное, что картирование Млечного Пути продолжится на новом уровне. Телескопы ESO вскоре получат новые и ещё более чувствительные приборы для ещё более детального изучения нашего ближайшего звёздного окружения. Наметился прорыв в изучении физики Солнца — учёные научились делать карты магнитных полей его атмосферы
21.09.2024 [15:52],
Геннадий Детинич
Учёные из Национальной солнечной обсерватории США (NSO) представили первые в мире детальные карты магнитных полей солнечной атмосферы (короны). Проделанная работа — это только начало тотального картирования магнитосферы короны. Это новый уровень в изучении физики нашей родной звезды, который позволит прогнозировать едва ли ни все явления на Солнце от пятен до корональных выбросов, а это путь к предсказанию космической погоды в нашей системе. ![]() Источник изображения: NASA/SDO Новаторские карты магнитных полей в атмосфере Солнца смог получить новый и самый большой в мире наземный солнечный телескоп им. Дэниела Иноуэ (Daniel K. Inouye Solar Telescope, DKIST). Он начал научную работу в феврале 2022 года и уже добыл самые детализированные снимки нашей звезды, где разрешение каждого пикселя соответствовало 20 км. Казалось бы, что нам искать фактически под микроскопом на Солнце? Тем не менее учёные имеют более-менее полное представление о масштабных физических процессах на нашей звезде, но в мелочах не способны разобраться даже сегодня. Для выявления магнитных линий (полей) в короне Солнца учёные воспользовались криогенно охлаждённым спектрометром, подключённым к телескопу DKIST. С помощью коронографа исследователи могли изолированно от поверхности наблюдать атмосферу Солнца и одновременно снимать её спектр в ближнем инфракрасном диапазоне. В частности, исследователей интересовал спектр железа в атмосфере звезды. Существует такое явление, как эффект Зеемана. Он описывает расщепление спектральных линий атомов в магнитном поле. ![]() Карта магнитных полей солнечной короны Спектрометр легко выявляет расщепление линий вплоть до определения поляризации линий магнитного поля. Всё это позволяет в подробностях увидеть распределение линий напряжённости в короне. Если мы знаем, как распределены линии магнитных полей в атмосфере Солнца, то можем предсказать появление, размеры и очертания пятен на Солнце, интенсивность вспышек и направления выбросов корональной массы. Солнце станет предсказуемым. Это будет своего рода победа над ним. «Картирование напряженности магнитного поля в короне — фундаментальный научный прорыв не только для исследований солнечной системы, но и для астрономии в целом, — говорят авторы исследования. — Это начало новой эры, когда мы поймем, как магнитные поля звёзд влияют на планеты здесь, в нашей собственной солнечной системе, и в тысячах экзопланетных систем, о которых мы теперь знаем». NASA собрало ядро космического телескопа «Нэнси Грейс Роман» — задержек с запуском не предвидится
20.09.2024 [10:52],
Геннадий Детинич
В NASA сообщили, что сборка ядра космической обсерватории «Нэнси Грейс Роман» в целом завершена. Целевой датой запуска остаётся май 2027 года. Критических проблем и задержек не предвидится. На очереди начало монтажа оборудования и приборов на шину космического аппарата, который доставит оборудование примерно туда, где сейчас работает космическая обсерватория им. Джеймса Уэбба. ![]() Источник изображений: NASA Ядро или шина обсерватории представляет собой шестигранный каркас с корпусом шириной 4 м и высотой 2 м. В этот каркас будут встроены двигательные, питающие и управляющие обсерваторией узлы, после чего будет смонтировано 2,4-м главное зеркало. Небольшие по сравнению с зеркалом «Уэбба» размеры (у последнего оно 6,5-метровое) не должны смущать. Зеркало у «Роман» такое же, как и у «Хаббла», чего достаточно для качественных и детальных обзоров неба, но у «Роман» будет невероятное преимущество по сравнению с этими двумя телескопами — он сможет за раз делать снимок в 100 раз большего участка неба, чем «Хаббл». ![]() Широкое поле зрения новому телескопу обеспечит 288-Мп матрица. Каждые сутки эта обсерватория будет передавать на Землю по 1,4 Тбайт данных. Для сравнения, «Уэбб» отправляет учёным до 60 Гбайт данных в сутки, а «Хаббл» — по 3 Гбайт. Широкий охват поможет делать множество открытий, в том числе быстрых переходных процессов. Например, это важно для открытия новых экзопланет методом транзита. ![]() Обсерватория будет обладать чувствительностью в оптическом диапазоне и в ближнем инфракрасном диапазоне, для чего она будет отправлена в точку Лагранжа L2. Её инфракрасные датчики не должны страдать от лишнего нагрева, предполагая постоянное охлаждение до -178 °C. Требования не такие жёсткие, как для чисто инфракрасного «Уэбба», но всё равно лучше «Роман» держать подальше от Солнца. ![]() «Охотник за астероидами» NEOWISE завершил миссию и вскоре сгорит в атмосфере
10.08.2024 [23:54],
Владимир Мироненко
Космический инфракрасный телескоп NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) NASA завершил работу на орбите в рамках длившейся более 10 лет миссии по планетарной обороне, включавшей поиск и изучение астероидов и комет, в том числе тех, которые могут представлять угрозу для Земли. В минувший четверг специалисты NASA перевели космический аппарат в «спящий режим», дав команду выключить передатчик. ![]() Источник изображения: NASA/JPL-Calteсh Как и планировалось ранее, работа по сбору научных данных была прекращена 31 июля, после чего телескоп отправил на Землю последние собранные данные и снимки. «Миссия NEOWISE стала необычайно успешной историей, поскольку она помогла нам лучше понять наше место во Вселенной, отслеживая астероиды и кометы, которые могут быть опасны для нас на Земле», — отметила Никола Фокс (Nicola Fox), заместитель администратора Управления научных миссий NASA. Завершение миссии было связано с тем, что орбита космического телескопа начала быстро снижаться под действием усилившейся солнечной активности. Как ожидается, он сгорит в атмосфере в конце 2024 или начале 2025 года. Первоначально использовавшийся в рамках миссии WISE (Wide-field Infrared Survey Explorer) телескоп из-за отсутствия охладителя нашёл применение для мониторинга активности астероидов и комет в рамках миссии NEOWISE. За время работы на низкой околоземной орбите NEOWISE выполнил 1,45 млн инфракрасных измерений более 44 000 объектов Солнечной системы. Из более чем 3000 обнаруженных околоземных объектов 215 были впервые выявлены с помощью NEOWISE. В рамках миссии также было обнаружено 25 новых комет, включая знаменитую комету C/2020 F3 NEOWISE, обнаруженную с помощью космического телескопа 27 марта 2020 года. В настоящее время NASA работает над созданием нового «охотника за астероидами» — инфракрасного космического телескопа NEO Surveyor (Near Earth Object Surveyor), который, как ожидается, будет запущен в середине 2028 года. Вторая жизнь орбитального телескопа NASA WISE оборвётся 8 августа, а в декабре он сгорит в атмосфере
02.08.2024 [12:42],
Геннадий Детинич
В последний день июля 2024 года официально завершилась расширенная научная работа орбитального инфракрасного телескопа NASA WISE (NEOWISE). Телескоп был запущен в космос в 2009 году как инструмент для поиска слабых и сильных инфракрасных источников во Вселенной. В 2013 году после долгого сна телескоп начал работать на планетарную оборону Земли, выискивая опасные для неё астероиды. Сегодня его служба окончена и вскоре он сгорит в атмосфере. ![]() Источник изображений: planetary.org Команда на полное отключение телескопа NEOWISE будет отдана 8 августа 2024 года. В зависимости от активности Солнца, влияющей на размеры атмосферы Земли, телескоп сгорит в её плотных слоях в период с декабря 2024 года по февраль 2025 года. Фактически всё время с 2013 года телескоп работал сверх первоначальной программы и был полезен науке намного дольше, чем планировали разработчики. Запаса криогенного водорода на борту обсерватории WISE хватило на год работы сверхчувствительных инфракрасных датчиков телескопа. Обсерватория запускалась для поиска интересных объектов, невидимых в оптическом диапазоне. Например, WISE открыл самые близкие к земле коричневые карлики всего в 6,5 световых годах от Земли, которые уже не планеты, но ещё не звёзды, и поэтому тусклы для оптического обнаружения, а также ряд ярчайших за историю наблюдений инфракрасных галактик. Также WISE смог отследить 150 тыс. астероидов в главном поясе между Марсом и Юпитером (инфракрасное излучение даёт наиболее полную картину рельефа этих объектов). Истощение запасов хладагента привело к завершению программы WISE и отправке телескопа в режим сна в 2010 году. К 2013 году команда телескопа и приглашённые учёные разработали и воплотили в жизнь новую программу обсерватории — NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer), благо ничего нового в космос запускать было не нужно, требовалось лишь обновить бортовое ПО и вернуть телескоп в работу. ![]() Целью расширенной научной программы NEOWISE стал поиск и изучение околоземных астероидов. Без экстремального охлаждения датчиков телескоп мог использовать только два инфракрасных диапазона из четырёх, но этого оказалось достаточно для удивительно продуктивной работы инструмента и исследователей. Более того, на основе практики охоты NEOWISE за околоземными астероидами была разработана более совершенная космическая платформа для целей преимущественно планетарной обороны — NEO Surveyor. Ожидается, что телескоп NEO Surveyor будет запущен в космос в 2027 году, после чего отправится в точку Лагранжа L1. У него не будет хладагента для охлаждения инфракрасных датчиков. Система защиты от Солнца будет строиться на тщательно продуманном экранировании, включая использование для этого солнечных панелей. За более чем 14 лет работы телескоп WISE с программой NEOWISE выполнил 1,45 миллиона инфракрасных измерений более чем 44 000 объектов Солнечной системы. Космический телескоп также обследовал более 3000 космических объектов, 215 из которых он обнаружил сам, в том числе первый в истории троянский астероид Земли — 2010 TK7, представляющий собой 300-метровую скалу, которая движется впереди нашей планеты в точке Лагранжа L4. «Джеймс Уэбб» доказал обнаружение самой древней известной галактики во Вселенной
30.07.2024 [09:44],
Геннадий Детинич
В журнале Nature вышла первая из трёх статей, в которой учёные сообщили о получении убедительных доказательств обнаружения самой древней галактики в истории наблюдений. Галактика JADES-GS-z14-0 существовала менее чем через 300 млн лет после Большого взрыва. Это не укладывается в голове у учёных — настолько больших, ярких и развитых галактик в те времена просто не должно было быть. ![]() Источник изображения: NASA «В январе 2024 года прибор NIRSpec наблюдал за этой галактикой, JADES-GS-z14-0, в течение почти десяти часов, и когда спектр был впервые обработан, были получены однозначные доказательства того, что у галактики действительно было красное смещение 14,32, что побило предыдущий рекорд самой удаленной галактики», — пояснили астрономы Стефано Карниани (Stefano Carniani ) из Высшей нормальной школы в Италии и Кевин Хайнлайн (Kevin Hainline) из Университета Аризоны. Спектрограф NIRSpec ближнего инфракрасного диапазона в составе космической обсерватории им. Джеймса Уэбба способен определить величину красного смещения объекта, отсеяв, например, волны того же диапазона естественного происхождения — от химических и физических процессов в звёздах. Только после спектрального анализа объекта, например, галактики, можно делать вывод о его удалённости. После такого анализа галактика JADES-GS-z14-0 определена как самая древняя (или самая юная, смотря, откуда считать) в истории наблюдений. Протяжённость галактики JADES-GS-z14-0 оценивается минимум в 1600 световых лет. Это говорит о том, что свет в основном исходит от молодых звёзд, а не от массивной чёрной дыры в её центре. Масса галактики превышает несколько сотен миллионов масс Солнца. Это примерно 10 % от массы нашей галактики Млечный Путь. Казалось бы, мелочь. Но эта «мелочь» была не по годам развита во времена Рассвета Вселенной, когда не должно было быть галактик такого размера и массы. «Джеймс Уэбб» позволил нам заглянуть во времена, когда Вселенная была окутана туманом из атомарного водорода, рассеивавшего видимый свет и не позволяющий учёным заглянуть вглубь времён. Увиденное там бросило вызов земной науке. Динамика эволюции звёзд и галактик превысила все теоретические расчёты. В галактике JADES-GS-z14-0, например, обнаружено так много пыли и тяжёлых элементов (в астрономии это всё, что тяжелее гелия), что это невозможно сегодня объяснить. Для этого должны были жить и умереть много поколений тяжёлых звёзд, что для времени через 300 млн лет после Большого взрыва представляется просто невероятным. Астрофизики обнаружили связь между разрушением углеводородной пыли и эволюцией галактик
27.07.2024 [20:43],
Анжелла Марина
Группа японских астрофизиков обнаружила связь между разрушением углеводородной пыли и эволюцией галактик. Исследование, основанное на анализе данных 138 галактик, показало, что алифатические компоненты углеводородной пыли разрушаются быстрее в условиях сильного радиационного излучения и ударных волн, характерных для активных этапов жизни галактик. ![]() Источник изображения: Copilot Углеводородная пыль является одним из основных компонентов межзвёздной пыли и состоит преимущественно из полициклических ароматических углеводородов (ПАУ) и алифатических углеводородов. Хотя учёные предполагают, что эта пыль подвергается воздействию межзвёздного излучения и ударных волн, детальные механизмы этих процессов до сих пор оставались не до конца изученными. В ходе исследования, о котором сообщил портал Astrobiology.com, учёные из астрономического сообщества Японии проанализировали взаимосвязь между светимостью, излучаемой углеводородной пылью, и общей инфракрасной светимостью (LIR) для 138 галактик. Используя данные ближнего инфракрасного диапазона 2,5-5 мкм, полученные с помощью космического телескопа AKARI, они определили светимость ароматических углеводородов на длине волны 3,3 мкм (Laromatic) и алифатических углеводородов на длине волны 3,4-3,6 мкм (Laliphatic). Кроме того, на основе данных фотометрии, произведённой телескопами AKARI, WISE и IRAS, были построены модели спектральных распределений энергии галактик, что позволило оценить их общую инфракрасную светимость и интенсивность радиационного поля. Анализ показал, что галактики с более высокой инфракрасной светимостью демонстрируют более низкое соотношение светимостей алифатической и ароматической компонент. Также была обнаружена антикорреляция между этим соотношением и интенсивностью радиационного поля. Примечательно, что низкие значения наблюдались преимущественно в галактиках, находящихся в процессе слияния, что может говорить о том, что в таких галактиках алифатические компоненты разрушаются быстрее, чем ароматические. Полученные результаты показали, что углеводородная пыль, предположительно, подвергается разложению под воздействием ударных волн и радиации в процессе слияния галактик, а соотношение светимостей алифатической и ароматической компонент, вероятно, уменьшается в подобных экстремальных межзвёздных условиях, поскольку алифатические компоненты химически слабее ароматических. Исследование вносит важный вклад в понимание эволюции межзвёздной среды и процессов, происходящих в галактиках на разных стадиях их эволюции. Дальнейшие наблюдения и теоретические работы помогут уточнить механизмы обработки углеводородной пыли и их роль в эволюции галактик. Европейская южная обсерватория показала эпичную стройку Чрезвычайно большого телескопа
27.07.2024 [19:05],
Геннадий Детинич
Сегодня в чилийской пустыне Атакама в разгаре работы по созданию купола Чрезвычайно большого телескопа и ложа для 200-тонного 39-метрового зеркала. Строительная техника и краны кажутся игрушечными на фоне колоссального сооружения. Проект стартовал 10 лет назад и движется к своему завершению через четыре года. Это будет крупнейший на Земле оптический телескоп, который расширит горизонты наших знаний о Вселенной. ![]() Источник изображения: ESO Представители Европейской южной обсерватории (ESO) поделились кадрами со стройки объекта, сделанными в прошлом месяце. На снимках мы видим, прежде всего, гигантский купол, который будет оборудован раздвижными створками. На время жаркого дня или пылевых бурь телескоп будет прятаться за ними и за теплоизоляционной обшивкой купола. Всё сооружение будет покрыто теплоизоляцией для сохранения более-менее стабильной температуры внутри помещения до наступления ночи. ![]() Внутри купола создаётся специальное ложе для самого большого в мире зеркала. Оно должно выдержать 200 т и будет компенсировать перепады температур и вибрации, вызванные, например, сильным ветром. Кроме того регулироваться будет каждый сегмент составленного из 798 шестиугольных кусочков зеркала. Каждый сегмент будет иметь собственный модуль с системой выравнивания. ![]() Также оптика телескопа будет иметь адаптивную лазерную подстройку для компенсации турбулентностей в атмосфере. Система будет следить за четырьмя искусственными звёздами в небе, и тысячу раз в секунду подстраивать одно из зеркал в оптической системе телескопа под завихрения воздуха в зоне обзора. Всего оптическая система телескопа будет включать шесть зеркал вместе с основным. Первый свет обсерватория рассчитывает получить в 2028 году, что будет на 4 года позже первоначальных планов. |