Сегодня 26 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → телескоп
Быстрый переход

Космический телескоп «Евклид» прислал первые фотографии — каждая с массой новой информации

Предназначенный для изучения тёмной материи европейский космический телескоп «Евклид» (Euclid) прислал первые снимки. На них запечатлены скопление Персея, спиральная галактика IC 342, неправильная галактика NGC 6822, шаровое звёздное скопление NGC 6397 и туманность Конская Голова.

 Скопление Персея. Источник изображений: esa.int

Скопление Персея. Источник изображений: esa.int

Запущенный в космос 1 июля телескоп «Евклид» в ближайшие шесть лет будет изучать объекты на расстоянии до 10 млрд световых лет. Учёные планируют с его помощью построить самую большую трёхмерную космическую карту. Аппарат отличает возможность в одно действие создавать чёткое изображение огромной части неба.

Первый снимок — скопление галактик Персея. На изображение попали около 1000 галактик в скоплении Персея и более 100 000 галактик на заднем плане — некоторые из наиболее удалённых находятся на расстоянии 10 млрд световых лет от нас. Составив карту распределения и формы этих галактик, учёные смогут больше узнать о том, какой вклад в формирование Вселенной внесла тёмная материя. Скопление Персея — одна из самых массивных структур, известных во Вселенной, а находится она на расстоянии 240 млн световых лет от Земли.

 Спиральная галактика IC 342

Спиральная галактика IC 342

За время своей миссии «Евклид» получит изображения миллиардов галактик в попытке раскрыть механизмы влияния тёмной энергии и тёмной материи на них. Поэтому одним из объектов пристального внимания телескопа стала спиральная галактика IC 342, которая очень похожа на наш Млечный Путь.

 Неправильная галактика NGC 6822

Неправильная галактика NGC 6822

Большинство сформировавшихся в ранней Вселенной галактик, однако, не похожи на спираль — они имеют неправильную форму и небольшие размеры. Это строительные блоки для более крупных галактик вроде нашей, и многие из них располагаются относительно недалеко. Первая неправильная галактика, снимок которой был получен «Евклидом», — это NGC 6822, находящаяся на расстоянии «всего» 1,6 млн световых лет от Земли.

 Шаровое скопление NGC 6397

Шаровое скопление NGC 6397

Ещё один примечательный объект — шаровое скопление NGC 6397. Это второе по близости к Земле шаровое скопление, и находится оно на расстоянии 7800 световых лет от нас. Сегодня ни один телескоп, кроме «Евклида», не может получить изображение этого скопления за одно наблюдение и показать при этом такое количество звёзд. Звёзды в этом скоплении помогут учёным узнать нечто новое об истории Млечного Пути и о том, где находится тёмная материя.

 Туманность Конская Голова

Туманность Конская Голова

Последним на данный момент одним объектом наблюдения «Евклида» стала туманность Конская Голова в созвездии Ориона. В этой звёздной колыбели учёные надеются найти множество тусклых и прежде невиданных планет массой с Юпитер, коричневых карликов и полноценных молодых звёзд.

Первая серия снимков нового европейского космического телескопа доказала работоспособность аппарата, и каждый из них содержит массу новой информации о близлежащей Вселенной.

В данных космического телескопа «Кеплер» нашли неудачную копию Солнечной системы

Космический телескоп «Кеплер» (Kepler) перестал собирать данные в 2018 году, но всё ещё остаётся источником открытий. На сегодня данные «Кеплера» содержат самый большой набор экзопланет и кандидатов в экзопланеты. Учёные NASA заново проанализировали архив данных этого телескопа и представили обновлённый каталог звёзд, систем и экзопланет, среди которых обнаружились ранее неизвестные планеты.

 Система Кеплер-385 в представлении художника. Источник изображения: NASA/Daniel Rutter

Система Кеплер-385 в представлении художника. Источник изображения: NASA/Daniel Rutter

В частности, открытием нового издания каталога стала звёздная система Kepler-385. Ещё в 2014 году орбитальный телескоп обнаружил в этой системе четыре экзопланеты. Анализ с использованием новых данных по звёздам, прежде всего, с учётом собранных европейским астрометрическим телескопом «Гайя», позволил выявить в системе Kepler-385 ещё три дополнительные экзопланеты.

Телескоп «Кеплер», напомним, определял наличие экзопланет по методу транзита — по изменениям яркости звезды и оценке времени провалов яркости, когда невидимая в обычных условиях планета проходит перед диском родной звезды. Точность таких измерений растёт вместе с ростом точности измерения параметров звёзд.

В системе Kepler-385, которая отдалена от нас на 4670 световых лет, оказалось семь подтвержденных наблюдением планет, что делает её редкостью. Сегодня подобных многопланетных систем открыто очень мало.

Одна из ценностей такого открытия в том, что мы можем напрямую определить эксцентриситет орбит экзопланет. Для одиночной планеты, которая нам напрямую не видна, это сделать практически невозможно. Но для планетной системы с несколькими транзитами (планетами) форма орбит определяется относительно просто. Так, измерение орбит экзопланет системы Kepler-385 показало, что у них у всех почти круговые орбиты. Это подтвердило предыдущие выводы, основанные на моделировании, что чем больше в системе планет, тем менее вытянутые у них орбиты.

 Семь планет системы Кеплер-385: две чуть больше Земли, пять чуть меньше Нептуна

Семь планет системы Кеплер-385: две чуть больше Земли, пять чуть меньше Нептуна

С точки зрения поиска внеземной жизни все семь планет системы Kepler-385 вряд ли пригодны для этого в нашем понимании. Все они находятся слишком близко к своей звезде и, очевидно, получают сильнейшую долю излучения в виде тепла, ультрафиолета и радиации.

Новая редакция обновлённого каталога экзопланет, найденных телескопом «Кеплер», представляет собой самое структурированное по данным издание, которое поможет совершить ещё не одно астрономическое открытие не выходя из кабинета. Современные астрономические приборы собирают настолько много данных, что научные сообщества не успевают их обрабатывать даже с привлечением суперкомпьютеров.

NASA урежет бюджеты космического телескопа «Хаббл» и рентгеновской обсерватории «Чандра»

NASA рассматривает возможность сокращения бюджетов двух знаменитых космических телескопов: «Хаббл» (Hubble) и «Чандра» (Chandra) с целью оптимизации расходов астрофизических программ при текущих бюджетных ограничениях.

 Источник изображения: NASA

Источник изображения: NASA

13 октября на встрече с Комитетом по астрономии и астрофизике (CAA) Национальной академии наук Марк Клампин (Mark Clampin), директор отдела астрофизики NASA, заявил о вероятном сокращении операционных бюджетов рентгеновской обсерватории «Чандра» и космического телескопа «Хаббл».

Ожидается, что его отдел не получит нужного финансирования в размере почти $1,56 млрд на 2024 финансовый год из-за «Закона о фискальной ответственности 2023 года» (The Fiscal Responsibility Act of 2023), который ограничивает необоронные расходы на уровне 2023 года, предусматривая лишь 1-% увеличение на 2025 год.

Этот закон был подписан Президентом США Джо Байденом (Joe Biden) 3 июня и предусматривает приостановление установленного лимита государственного долга до конца 2024 года, что позволяет правительству продолжать заимствование средств. Однако этот закон также устанавливает лимиты на расходы в отношении невоенных направлений бюджета, фактически оставляя их на уровне 2023 финансового года для 2024 финансового года.

«Мы работаем с расчётом на то, что бюджеты на 2024 финансовый год останутся на уровне 2023. Это означает, что мы решили сократить бюджет миссий, находящихся в длительной эксплуатации, а это „Чандра“ и „Хаббл“», — сообщил Клампин.

 «Чандра» — это космическая обсерватория рентгеновских лучей, целью которой является изучение космических объектов, таких как чёрные дыры, кластеры галактик и остатки сверхновых звёзд (источник изображения:  J. Vaughan / NASA, CXC, SAO)

«Чандра» — это космическая обсерватория рентгеновских лучей, целью которой является изучение космических объектов, таких как чёрные дыры, кластеры галактик и остатки сверхновых звёзд (источник изображения: J. Vaughan / NASA, CXC, SAO)

Клампин отказался уточнять, на какую сумму будут сокращены бюджеты этих космических обсерваторий или какие последствия это повлечёт. Он лишь уточнил, что предложенные сокращения ещё находятся на стадии изучения, отметив, что за последнюю неделю смог внести положительное изменение для рентгеновской обсерватории «Чандра».

«Чандра» и «Хаббл» являются двумя самыми дорогостоящими миссиями NASA в области астрофизики после космического телескопа «Джеймс Уэбб» (JWST). В бюджетном предложении на 2024 финансовый год NASA запросила $93,3 млн для космического телескопа «Хаббл» и $68,7 млн для рентгеновской обсерватории «Чандра», что соответствует бюджетам предыдущих лет. Вместе они составляют чуть более 10 % всего финансирования NASA в области астрофизических исследований на весь 2024 финансовый год.

Следует отметить, что «Чандра» и «Хаббл» являются одними из старейших миссий NASA, запущенных в 1999 и 1990 годах соответственно. Клампин предположил, что именно возраст обоих телескопов является одной из причин для сокращения их бюджетов. «У „Чандра“ сейчас много проблем. Его становится всё труднее эксплуатировать», — заявил он. По его словам, несмотря на то, что у «Хаббл» таких проблем не наблюдается, он работает уже долгое время и занимает значительную долю бюджета по астрофизике.

Космическая обсерватория «Евклид» к работе не готова — этому мешают три проблемы, но угрозы для миссии нет

Европейское космическое агентство сообщило, что «охотник за тёмной материей», как неофициально называют космическую обсерваторию «Евклид» (Euclid), к работе пока не готов. Период ввода в эксплуатацию продлён на неопределённое время для решения трёх неожиданно возникших проблем. Они не угрожают проведению миссии, но могут усложнить наблюдения неба.

 Источник изображений: ESA

Источник изображений: ESA

Обсерватория «Евклид» была запущена в начале июня этого года на ракете Falcon 9. К концу июля она добралась к месту базирования — точке Лагранжа L2 на удалении около 1,5 млн км за Землёй, частично прикрывшись ею как зонтиком от Солнца. На этом хорошие новости закончились. Первые тестовые снимки показали, что на некоторых из них присутствует неожиданная засветка от Солнца. По горячим следам сообщалось, что в свето- и теплоизоляции камер возникла щель, куда могли попадать лучи Солнца.

Как теперь пояснили в ЕКА, засветка происходит от отражения Солнца от распорки двигательной установки (см. фото ниже), что хорошо видно на представленных снимках. Удивительно, как этот момент не учли при проектировании обсерватории. Понадеялись на изоляцию? Но она, как видим, не спасла чувствительные приборы телескопа от порчи засветкой. Этой напасти можно избежать, если в процессе производства снимков ориентировать телескоп с учётом аномалии.

По оценке специалистов, засветка портит около 10 % изображений. Казалось бы, что это немного, но камера обсерватории наводится на новый участок неба каждые 75 минут. За шесть лет работы обсерватории набежит уйма времени на коррекцию, что наверняка сократит срок работы телескопа. В целом миссия обсерватории будет выполнена, но, похоже, с менее желаемым результатом.

Второй неожиданной проблемой стали сбои в системе точного наведения телескопа. Приборы наведения на целевые звёзды в ряде случаев их не находили. Происходило это с тусклыми звёздами, чему мешал, например, свет от ярких галактик. Для решения этой проблемы специалисты миссии переписали программы работы блока наведения на цель и в ближайшее время намерены испытать апгрейд на обсерватории в реальных условиях.

Третьей проблемой снова стало наше Солнце. Датчики камер телескопа защищены от высокоэнергетических частиц и космических лучей. Но на ряде тестовых снимков «Евклида» образовались засветки от попадания таких частиц. Всему виной растущая активность нашей звезды, заявили учёные. На Солнце происходит всё больше и больше вспышек, как и растёт их сила, что начинает сильнее и чаще бомбардировать датчики обсерватории. Прогнозируется, что высокоэнергетические частицы испортят не больше 3 % снимков. В принципе, при наличии критического уровня засветки от частиц испорченные изображения участков неба можно будет переснять, а также убрать из обработки засвеченные пиксели. Неприятно, но работать можно. Спутники Starlink создают больше похожих проблем для наблюдений с Земли, и ничего.

Обсерватория «Евклид» должна проработать шесть лет. За это время она сделает снимки 30 % неба, меняя кадр каждые 75 минут. Это будет колоссальный объём данных, который будет касаться, в первую очередь, картографирования и классификации галактик на глубину до 10 млрд лет. Точное определение положения галактик в пространстве-времени позволит ещё точнее измерить скорость расширения Вселенной и массу вещества в ней, включая неуловимую тёмную материю.

Учёные сфотографировали галактику с огромным полярным кольцом из водорода

Расположенный в Австралии радиотелескоп ASKAP помог получить изображение галактики NGC 4632, расположенной в 56 млн световых лет от Земли и обладающей полярным кольцом — ореолом из холодного водорода и других составляющих, который вращается перпендикулярно самой галактике.

 Источник изображения: CSIRO/ASKAP

Источник изображения: CSIRO/ASKAP

Окружающий NGC 4632 газообразный водород невидим для оптических телескопов, но его наблюдение не представляет сложностей для работающей в радиодиапазоне обсерватории ASKAP, расположенной в Западной Австралии. Полученное учёным комбинированное изображение сочетает данные этого радиотелескопа и снимок с телескопа «Субару» (Subaru) на Гавайях.

Изображение было идентифицировано как галактическое полярное кольцо в рамках публикации первого массива данных пилотного исследования WALLABY. По мнению учёных, оно доказывает, что галактики с полярными кольцами более распространены, чем считалось ранее — их может быть от 1 % до 3 % от общего числа.

 Источник изображения: CSIRO/ASKAP

Есть несколько гипотез, претендующих на объяснение механизмов формирования галактических полярных колец. Одна гласит, что галактика может захватывать вещество другой проходящей в относительной близости галактики — оно измельчается, а смесь газа, пыли и звёздного вещества принимает непрозрачный аморфный вид. Другая предполагает, что газообразный водород перемещается по линиям космической паутины и образует вокруг близлежащих галактик усеянные звёздами кольца, как это произошло с NGC 4632.

В рамках проекта WALLABY было также обнаружено полярное кольцо вокруг галактики NGC 6156, но в обоих случаях эти факты ещё ожидают подтверждения. Радиотелескоп ASKAP выступает предшественником массива Square Kilometer Array (SKA), который будет изучать Эпоху реионизации Вселенной — строительство его австралийской части началось в декабре 2022 года. Несмотря на название, площадь массива значительно превысит 1 км², а возведение планируют завершить в 2028 году.

Япония успешно запустила лунный аппарат SLIM и космический телескоп XRISM

Японское агентство аэрокосмических исследований (JAXA) успешно запустило ракету H-IIA, на борту которой в космос отправились лунный аппарат SLIM и рентгеновский телескоп XRISM. Ракета стартовала с площадки Космического центра Танэгасима 7 сентября в 8:42 по местному времени (2:42 мск). Это произошло на 10 дней позже, чем планировалось, из-за неблагоприятных погодных условий.

 Ракета H-IIA. Источник изображения: mhi.com

Ракета H-IIA. Источник изображения: mhi.com

Оба космических аппарата вышли на расчётные орбиты по графику менее чем через час после старта. Если всё пойдёт по плану, через несколько месяцев SLIM (Smart Lander for Investigating Moon — «Умный посадочный модуль для исследования Луны») произведёт первую в истории Японии мягкую посадку на Луну — это будет высокоточная или «точечная» посадка. Миссия призвана подтвердить жизнеспособность технологии посадки с ограниченными ресурсами, которая проложит дорогу для будущих исследовательских проектов во всей Солнечной системе.

SLIM — небольшой космический корабль габаритами 2,4 × 2,7 × 1,7 м. При взлёте его масса была 700 кг, но 70 % из них пришлись на топливо. Аппарат пройдёт долгий, но экономичный путь до Луны и выйдет на лунную орбиту через три или четыре месяца. Ещё около месяца он будет наблюдать за лунной поверхностью, после чего попытается произвести посадку в 300-метровом кратере Шиоли на 13 градусах южной широты на видимой стороне Луны.

 Лунный модуль SLIM. Источник изображения: jaxa.jp

Лунный модуль SLIM. Источник изображения: jaxa.jp

Предполагается, что технология точечной посадки поможет прилунить аппарат в радиусе 100 м от целевой точки. «Человек совершит качественный сдвиг по направлению к возможности совершать посадку там, где мы хотим, а не там, где легко сесть, как это было раньше», — рассказали в JAXA. На борту SLIM находятся два мини-зонда, которые окажутся на поверхности Луны после посадки. Они помогут проследить за состоянием посадочного модуля, сделать снимки места посадки и обеспечить связь с Землёй.

Предыдущие две японские лунные миссии завершились неудачами: кубсат OMOTENASHI не смог добраться до поверхности Луны, а посадочный модуль HAKUTO-R разбился. Успеха с посадками на Луну за всю историю человечества добились СССР, США, Китай и не так давно Индия, поэтому в случае успеха миссия SLIM станет исторической не только для Японии.

 Телескоп XRISM. Источник изображения: jaxa.jp

Телескоп XRISM. Источник изображения: jaxa.jp

Но всё же основной полезной нагрузкой ракеты является не SLIM, а рентгеновский космический телескоп XRISM (X-Ray Imaging and Spectroscopy Mission — «Миссия по рентгеновской визуализации и спектроскопии»), построенный в рамках совместного проекта JAXA с американским NASA и европейским ЕКА.

Низкоорбитальная обсерватория поможет изучать Вселенную в высокоэнергетическом рентгеновском диапазоне. Аппарат поможет в исследовании крупнейших структур во Вселенной, в определении механизмов распределения материи и формирования галактик со сверхмассивными чёрными дырами в центрах. Это позволит лучше понять механизмы формирования и эволюции Вселенной, пояснили в ЕКА. XRISM будет работать совместно с другими рентгеновскими телескопами: американскими «Чандра» (Chandra) и NuSTAR, а также европейским XMM-Newton.

Телескоп «Джеймс Уэбб» сделал инфракрасные снимки спиральной галактики «Водоворот»

Космический телескоп «Джеймс Уэбб» (JWST) представил поразительное изображение спиральной галактики M51, известной как «Водоворот» (Whirlpool). Этот космический портрет, созданный на основе данных инфракрасных камер телескопа (MIRI и NIRCam), в том числе с использованием данных Европейского космического агентства (ESA), демонстрирует величественные спиральные рукава галактики, которая находится на расстоянии 27 млн световых лет от Земли.

 Источник изображений: A. Adamo (Stockholm University) / ESA, Webb, NASA, CSA, FEAST JWST team

Источник изображений: A. Adamo (Stockholm University) / ESA, Webb, NASA, CSA, FEAST JWST team

Галактика M51, также известная как NGC 5194 или галактика «Водоворот», отличается от других спиральных галактик своими чётко выраженными и хорошо развитыми спиральными рукавами. На представленном изображении тёмно-красные области отображают тёплую пыль, пронизывающую галактику. Красные участки демонстрируют свет, преобразованный сложными молекулами, образующимися на пылинках, в то время как оранжевые и жёлтые оттенки выявляют области ионизированного газа, созданные недавно образовавшимися звёздными скоплениями.

 M51 — объединённый снимок с MIRI и NIRCam

M51 — объединённый снимок с MIRI и NIRCam

Галактика M51 находится в созвездии «Гончие Псы» (Canes Venatici) и взаимодействует со своим соседом — карликовой галактикой NGC 5195. Это взаимодействие делает их одной из наиболее изученных пар галактик на ночном небе. Считается, что гравитационное воздействие меньшего соседа M51 отчасти ответственно за формирование её выразительных спиральных рукавов.

Наблюдение M51 телескопом «Джеймс Уэбб» является частью серии исследований под названием «Обратная связь в возникающих экстрагалактических звёздных скоплениях» (FEAST). Цель FEAST — изучить взаимодействие между звёздным обратным связыванием и формированием звёзд в условиях, отличных от нашей галактики — Млечного Пути. Понимание этого процесса критически важно для создания точных универсальных моделей формирования звёзд.

До запуска телескопа «Джеймс Уэбб» другие обсерватории, такие как радиотелескоп «ALMA» в Чили и «Хаббл», дали представление о формировании звёзд либо на начальном этапе (отслеживая плотные газовые и пылевые облака, где будут формироваться звёзды), либо после того, как звёзды уничтожили свою родную газовую и пылевую среду своей энергией. Телескоп «Джеймс Уэбб» открывает новое окно в ранние стадии формирования звёзд, позволяя учёным наблюдать звёздные скопления, выходящие из своего родного облака в галактиках за пределами группы галактик, к которой принадлежит Млечный Путь.

Эти наблюдения помогут учёным лучше понять циклы формирования звёзд и механизмы, регулирующие обогащение галактик металлами, а также узнать временные рамки формирования планет и коричневых карликов. Ведь после того как из новообразованных звёзд удаляются пыль и газ, материал, необходимый для создания планет, полностью исчезает. Этот факт делает изучаемые процессы ещё более уникальными и интересными, подчёркивая их особую ценность для учёных.

Учёные впервые наблюдали с Земли загадочное тёмное пятно в атмосфере Нептуна

Пятна в атмосферах планет-гигантов — это обычное явление. Мало кто не слышал о знаменитом Большом красном пятне на Юпитере. Но не все они доступны для наблюдения с Земли. Похожее пятно в атмосфере Нептуна обнаружилось только приборами космического аппарата «Вояджер-2» в 1989 году, когда он пролетал рядом с этой далёкой планетой. Позже пятно в атмосфере Нептуна увидел космический телескоп «Хаббл». И лишь теперь его впервые засекли с земного телескопа.

 Изображение Нептуна, полученное на четырёх длинах волн. Источник изображения: ESO

Изображение Нептуна, полученное на четырёх длинах волн. Источник изображения: ESO

Пронаблюдать за загадочным пятном в атмосфере Нептуна удалось с помощью Очень большого телескопа Европейской южной обсерватории, который в виде четырёх разнесённых и синхронизированных оптических телескопов разместился на горе Серро-Параналь в Чили. Более того, команда по изучению атмосферы Нептуна использовала для получения данных многоканальный спектрометр MUSE. Этот прибор позволил разложить отражённый от Нептуна свет на несколько длин волн и, тем самым, рассказал об особенностях его атмосферы на разных высотах.

Новые наблюдения позволили сделать вывод, что пятна — это не просветы в облаках, как на Земле. По всей видимости, это потемнение частиц в атмосфере Нептуна в процессе происходящих там химических и физических процессов. Лёд и аэрозоли смешиваются ниже основного слоя видимой дымки, и это приводит к потемнению ниже уровня дымки.

Также неожиданно вскрылось, что рядом с большим синим пятном в атмосфере планеты на той же высоте обнаружилось яркое пятно, которое не было видно при наблюдении из космоса. Ранее нечто подобное наблюдалось при обнаружении высотных метановых облаков в атмосфере Нептуна, но новое «яркое глубинное облако» оказалось на той же высоте, что и тёмное пятно, а значит, оно имеет другую природу, пока не объяснённую учёными.

Возможность наблюдения за атмосферой Нептуна с Земли позволит астрономам получить больше информации о происходящих там процессах, освободив космические обсерватории для работы с глубинами Вселенной.

Газ туманности Кольцо сотни лет размешивала по кругу звезда-компаньон

Группа астрономов представила новые и самые детальные изображения туманности Кольцо, полученные с помощью камер ближнего и среднего инфракрасного диапазона космической обсерватории «Джеймс Уэбб». Чувствительные датчики «Уэбба» помогли обнаружить неизвестные ранее детали в строении туманности, что приоткрыло детали её строения. Похоже, у образовавшей туманность звезды был партнёр по системе.

 Источник изображений: NASA / ESA / CSA

Туманность Кольцо в ближнем инфракрасном диапазоне (нажмите для увеличения). Источник изображений: NASA / ESA / CSA

Туманность Кольцо находится от нас на расстоянии 2,5 тыс. световых лет. Это достаточно близко, чтобы на её примере изучать строение и эволюцию подобных объектов. Тысячу лет назад там была завершающая свой жизненный цикл звезда, раздувшаяся до красного гиганта. Затем звезда сбросила свою оболочку, а всё что от неё осталось — это белый карлик, горячее, но остывающее ядро.

Детальные снимки «Уэбба» в ближнем и среднем инфракрасном диапазоне выявили крайне сложную структуру в разлетающемся облаке газа оболочки умирающей звезды. Для взорвавшегося круглого объекта картина наблюдающихся турбулентностей очень и очень сложная.

Более того, за пределами чётко выраженного кольца «Уэбб» помог различить ранее невидимые концентрические дуги количеством до 10 штук. Для планетарных туманностей такого раньше не наблюдалось. Чтобы образовать подобные выбросы газа звезда должна была сбрасывать оболочку несколько раз с периодом 280 лет. Что-то в этом не так. По всей видимости, считают астрономы, что у центральной звезды был партнёр по системе и, судя по результатам наблюдений, он должен был вращаться по орбите, удалённой на расстояние эквивалентное расстоянию от Земли до Плутона, и как ложечкой в чашке кофе с молоком таким вот образом «размешивать» газ из сброшенной оболочки.

 Изображение туманности Кольцо в ближнем инфракрасном диапазоне (нажмите для увеличения)

Изображение туманности Кольцо в среднем инфракрасном диапазоне (нажмите для увеличения)

Также новые наблюдения позволили учёным выявить в туманности около 20 тыс. водородных «пузырей» глобул и обнаружить «шипы» по периферии кольца, направленные от звезды наружу. Похоже, что шипы образовались в тени особенно плотных областей газа оболочки, где излучение ядра не смогло разрушить определённый тип молекулярных соединений. Но в целом, вся та красота, которая представлена на снимках туманности Кольцо — это результат ионизации газа сброшенной оболочки ультрафиолетовым излучением центрального ядра. Человеческому глазу такие красоты недоступны, поэтому изображения раскрашены в привычные нам краски.

«Хаббл» запечатлел уникальное изображение скопления галактик Абель 3322 через гравитационное линзирование

Космический телескоп «Хаббл» (Hubble) прислал изображение космического скопления галактик Абель 3322 (Abel 3322), которое было увеличено благодаря уникальному явлению гравитационного линзирования.

 Источник изображения: ESA, Hubble, NASA

Источник изображения: ESA, Hubble, NASA

Гравитация этого скопления, основная часть которого, как полагают учёные, происходит от тёмной материи, действует как космическая увеличительная линза. Она искажает и усиливает свет от далёких галактик, находящихся за ней. Благодаря способности телескопа «Хаббл» регистрировать эффект гравитационного линзирования, у астрономов появляется уникальная возможность исследовать далёкий космос.

 Пример использования гравитационного линзирования телескопом «Хаббл». Источник изображения: D. Player (STScI) / ESA, Hubble, NASA

Пример использования гравитационного линзирования телескопом «Хаббл». Источник изображения: D. Player (STScI) / ESA, Hubble, NASA

NASA утверждает, что наблюдение за такими скоплениями галактик, как Абель 3322, расположенным в созвездии Живописца (Pictor constellation) на расстоянии примерно 2,6 млрд световых лет от Земли, сможет расширить наше понимание взаимодействия тёмной и обычной материи. Это также поможет лучше использовать мощные гравитационные «телескопы» для увеличения объектов в глубоком космосе.

Для получения этого изображения на борту телескопа «Хаббл» использовались два инструмента: Wide Field Camera 3 (WFC3) и Advanced Camera for Surveys (ACS). Первый способен регистрировать электромагнитное излучение от ультрафиолетового до видимого света. Второй был спроектирован для обследования больших участков неба на различных длинах волн с эффективностью, в 10 раз превосходящей его предшественника.

Знание местоположения таких гравитационных линз, как Абель 3322, в будущем поможет в наблюдениях не только с помощью телескопа «Хаббл», но и телескопа «Джеймс Уэбб» (James Webb Space Telescope). Эти открытия подчёркивают неоценимую роль космических телескопов в расширении наших горизонтов и понимании вселенной.

Наука встала на паузу: крупная кибератака парализовала работу 10 телескопов в Чили и на Гавайях

В начале августа на сеть телескопов в Чили и на Гавайях, которыми управляет координационный центр наземной астрономии NOIRLab Национального научного фонда США (NSF), была проведена кибератака. Угроза была настолько серьёзной, что персонал вынужден был закрыть удалённый доступ ко всей сети от Чили до Гавайев. Телескопы могли быть физически повреждены и эта брешь всё ещё не закрыта. Все дистанционные наблюдения прекращены. Наука встала на паузу.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Об инциденте центр NOIRLab сообщил 1 августа. Его компьютерные системы позволяют астрономам дистанционно управлять множеством других наземных оптических телескопов помимо сети управления телескопами «Джемени».

Непосредственно был атакован телескоп Gemini North («Джемени Север») Обсерватории Джемини на Гавайях (его 8,1-метровый близнец находится в Чили). «Быстрая реакция группы кибербезопасности NOIRLab и группы наблюдения позволила предотвратить повреждение обсерватории», — говорится в пресс-релизе центра. Телескоп в Чили также был отключён от сети в целях безопасности.

Но уже 9 августа центр объявил об отключении также сегмента компьютерной сети Среднемасштабных обсерваторий (MSO) на Серро-Тололо и Серро-Пачон в Чили. Это сделало невозможными удалённые наблюдения на 4-метровом телескопе имени Виктора Бланко (Víctor M. Blanco) и телескопе SOAR (Southern Astrophysical Research Telescope). Тем самым NOIRLab остановила наблюдения и на восьми других телескопах в Чили.

NOIRLab не сообщила никаких подробностей о случившемся даже своим сотрудникам. В центре отказались ответить на запрос Science о том, не является ли этот инцидент атакой типа «выкуп», когда хакеры требуют деньги за возврат информации или контроля над объектом. Представитель NOIRLab сообщил Science, что сотрудники центра, занимающиеся информационными технологиями, «работают круглосуточно, чтобы вернуть телескопы в небо».

В отсутствии дистанционного доступа наблюдения можно вести по старинке: сидя ночами в кресле перед окулярами или приборами телескопов. Но персонал телескопов «сбился с ног», обслуживая заявки учёных. Пока проблема не решена, а что-то прогнозировать в условиях тотальной секретности, которой придерживается NOIRLab, невозможно, научные группы формируют коллективы из аспирантов для дальних командировок для непосредственной работы на местах.

Кто и зачем атаковал сеть обсерваторий, неизвестно. Это могло быть чистой случайностью, не исключают специалисты. Но очевидно, что открытость научных сетей, без которой трудно работать глобально, сыграла с научным сообществом злую шутку. И с этим определённо что-то придётся делать.

«Хаббл» запечатлел космического гиганта — массивное скопление галактик в 2,6 млрд световых лет от Земли

Космический телескоп «Хаббл» (Hubble) прислал снимок величественного космического левиафана — гигантского скопления галактик 2MASX J05101744-4519179. Этот далёкий космический объект поражает своей яркостью в рентгеновском спектре и может стать ключом к пониманию взаимодействия тёмной и обычной материи во Вселенной.

 Источник изображения: H. Ebeling / ESA, Hubble, NASA

Источник изображений: H. Ebeling / ESA, Hubble, NASA

В центре изображения, сделанного телескопом, расположено галактическое скопление 2MASX J05101744-4519179, которое находится в созвездии Живописца (Pictor constellation), на расстоянии около 2,6 млрд световых лет от Земли. Изучение таких объектов позволяет глубже понять эволюцию и взаимодействие тёмной материи и обычной (барионной) материи в галактических скоплениях. Тёмная материя — это невидимая часть Вселенной, которая не излучает свет, но оказывает гравитационное воздействие на видимые объекты. Обычная материя — это всё, что мы можем наблюдать: звёзды, планеты, галактики.

Подобные галактические скопления действуют как мощные гравитационные «телескопы», усиливающие изображение далёких объектов благодаря гравитационному линзированию. Знание местоположения таких «линз» важно для будущих наблюдений не только с помощью телескопа «Хаббл», но и телескопа «Джеймс Уэбб» (James Webb Space Telescope).

Для создания этого изображения были использованы два инструмента телескопа «Хаббл»: Wide Field Camera 3 (WFC3) и Advanced Camera for Surveys (ACS). Оба они являются инструментами третьего поколения, предоставляя высокое качество изображения. Они позволяют получать изображения больших участков ночного неба, но работают в немного разных диапазонах электромагнитного спектра. WFC3 охватывает спектр от ультрафиолетового до видимого света и ближнего инфракрасного, в то время как ACS оптимизирован для наблюдений в видимом свете.

Открытие галактического скопления 2MASX J05101744-4519179 — это не просто очередное космическое открытие. Это шаг вперёд в понимании структуры Вселенной, взаимодействия её объектов и роли гравитации в формировании космического ландшафта. Такие исследования подтверждают важность продолжения космических миссий и развития технологий наблюдения за далёким космосом.

Европейская космическая обсерватория ARIEL по изучению атмосфер экзопланет прошла критическую проверку и готова раскрывать тайны далёких миров

Специалисты Европейского космического агентства завершили предварительную экспертизу проекта ARIEL (Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey), который в будущем займётся изучением атмосфер экзопланет. В целом конструкция аппарата и полезной нагрузки космической обсерватории признаны как отвечающие задачам миссии и не имеющие изъянов. На очереди критический обзор дизайна проекта и начало изготовления платформы и приборов.

 Источник изображения: ESA/STFC RAL Space/UCL/Europlanet-Science Office

Источник изображения: ESA/STFC RAL Space/UCL/Europlanet-Science Office

На борту обсерватории ARIEL будут оптический и инфракрасный телескопы, спектрометры и ряд других приборов и сопутствующих систем. Проект был утверждён для разработки в 2018 году, чтобы уже десять лет спустя он мог начать работу. Теперь отправка обсерватории в космос ожидается не раньше 2029 года, если не будет новых переносов. Завершение предварительной экспертизы дизайна ARIEL даёт надежду, что в дальнейшем сроки будут соблюдены.

«Это действительно большой шаг для миссии, и мы очень довольны результатом, — сказала Тереза Люфтингер (Theresa Lueftinger), научный сотрудник проекта ARIEL в ЕКА. — Команда ЕКА, команда по полезной нагрузке консорциума ARIEL и компания Airbus приложили огромное количество труда и усилий для успешного достижения этой важной вехи, и сотрудничество прошло чрезвычайно успешно. Все элементы были собраны вместе и оценены, и теперь мы знаем, что миссия осуществима, и мы можем заниматься наукой».

Космическая обсерватория ARIEL будет изучать составы атмосфер 1000 экзопланет, а также звёзды-хозяйки систем, где находятся эти миры. Изучаться будет не только химический состав атмосфер (преимущественно горячих экзопланет и суперземель), но также структура и динамика облачных покровов как в течение местных суток, так и в течение года. Сбор данных об атмосферах 1000 экзопланет поможет понять эволюцию атмосфер и планет и, в конечном итоге, лучше разобраться в вопросах поведения атмосферы Земли, как и упрочить основу под программами поиска внеземной жизни.

На очереди критический обзор дизайна проекта ARIEL, станции и полезной нагрузки, после которого десятки европейских институтов и NASA начнут изготовление научных приборов для обсерватории и вспомогательного оборудования. Шасси для обсерватории изготовит компания Airbus вместе с партнёрами, а ракету, запуск и обслуживание обеспечит ЕКА.

Вселенная показала вопросительный знак — «Джеймс Уэбб» запечатлел пару сливающихся галактик необычной формы

Космический телескоп «Джеймс Уэбб» (JWST) озадачил общественность, прислав две недели назад снимок объекта Хербига — Аро 46/47. Это были туманности в области формирования двух молодых звёзд. Снимок, как обычно, невероятно прекрасен, но внимание на нём привлёк не объект наблюдения, а нечто иное, также попавшее в объектив телескопа — другой объект, напоминающий по форме вопросительный знак.

 Источник изображений: webbtelescope.org

Источник изображений: webbtelescope.org

Учёные склонны считать, что этим объектом может оказаться пара галактик, находящихся в процессе слияния, и на вопросительный знак они похожи только с точки зрения «Джеймса Уэбба». Работники Научного института космического телескопа склонны считать, что одна из галактик могла изменить форму в процессе взаимодействия с другой. Возможно, этот объект попал на снимок впервые, и понадобится произвести дополнительное наблюдение, чтобы с какой-то уверенностью делать утверждения о его природе.

Доцент Иллинойсского университета Мэтт Каплан (Matt Caplan) склонен винить в таком эффекте силы приливного разрушения — по его мнению, они могли исказить форму галактики в верхней части «вопросительного знака». Эту версию косвенно подтверждает цвет некоторых других галактик в этой области, а подобная раздвоенная форма типична для слияний.

Снимок опубликован 26 июля. Главным объектом на нём является пара молодых звёзд в облаке пыли и газа — вещество выбрасывается и поглощается ими в процессе формирования. Сам газопылевой диск невидим, но его тень можно разглядеть в двух конусообразных областях рядом со звёздами. Формироваться эти звёзды будут ещё несколько миллионов лет.

Крупнейший в Евразии солнечный телескоп начали строить в Бурятии — он получит 2-тонное зеркало из астроситалла

Институт солнечно-земной физики Сибирского отделения РАН (ИСЗФ СО РАН) в Республике Бурятия у границы с Монголией приступил к строительству крупнейшего на континенте солнечного телескопа-коронографа. Это самый сложный и наиболее дорогостоящий инструмент будущего Национального гелиогеофизического комплекса.

 Источник изображения: Кирилл Вериго/ТАСС

Источник изображения: Кирилл Вериго/ТАСС

«Проектирование телескопа закончилось в прошлом году. Мы получили положительное заключение Главгосэкспертизы, разрешение на строительство. И в этом году вышло распоряжение правительства РФ о начале строительства уникального научного инструмента — солнечного телескопа. В этом году мы планируем только подготовку строительной площадки. В начале следующего года будут привлечены субподрядные организации на определённые виды работ», — сообщил в беседе с журналистами Сергей Олемской, первый заместитель директора ИСЗФ, добавив, что телескоп будет самым большим в Евразии.

Строительство телескопа будет проходить на территории Саянской солнечной обсерватории ИСЗФ, которая находится вблизи посёлка Монды в Бурятии. Стоимость реализации проекта составляет 36 млрд рублей, а ввести новый телескоп в строй планируется в 2030 году. Отмечается, что для строительства телескопа потребуется больше времени, чем для возведения других объектов комплекса. Сам же телескоп предназначен для изучения магнитных полей и цикла солнечной активности. Он поможет учёным изучить тонкую структуру фотосферы, которая недоступна при наблюдении с помощью телескопов малого диаметра и орбитальных обсерваторий.

Телескоп представляет собой сложнейший комплекс приборов, позволяющий осуществлять проведение спектрального анализа и получать уникальные данные о магнитных полях и движении вещества, а также изучать причины возникновения солнечных вспышек, корональных выбросов массы и др. Ожидается, что этот инструмент поможет в решении фундаментальных и прикладных научных задач.

Оптическая схема телескопа включает в себя 13 зеркал с главным зеркалом диаметром 3 м, изготовленным из астроситалла. Речь идёт о стеклокерамическом материале толщиной 12 см. При этом масса зеркала составит более 2 т. Высота всей конструкции составит 42 м, а её вес — 120 т. В рамках этого проекта помимо башни телескопа будут построены здание для технологического оборудования, лабораторный и административный корпуса.


window-new
Soft
Hard
Тренды 🔥