Опрос
|
Быстрый переход
«Джеймс Уэбб» обнаружил сложную органику в очень ранней Вселенной, и она как «третьеклассник на пенсии»
06.06.2023 [11:19],
Геннадий Детинич
Обнаружить сложные органические молекулы всего через 1,5 млрд лет после Большого взрыва — «это как третьекласснику выйти на пенсию», прокомментировали событие учёные. Обнаружены не простые молекулы типа воды или углекислого газа, а найдены сложные соединения из сотен и тысяч атомов. На таком этапе развития Вселенной этого мало кто ожидал. Очевидно, близится время глубокого пересмотра наших теорий об эволюции звёзд, галактик и самой Вселенной. ![]() Синий объект — это галактическое скопление, оранжевый — далёкая галактика, наблюдаемая сквозь гравитационную линзу. Источник изображения: J. Spilker / S. Doyle, NASA, ESA, CSA Сделать открытие помогли возможности нового космического телескопа «Джеймс Уэбб» и хорошо известный эффект гравитационного линзирования. Гравитационная линза была создана удалённым от нас на 3 млрд световых лет массивным скоплением галактик. Гравитация этого скопления настолько сильно исказила вокруг себя пространство-время, что фоновые объекты далеко за ним появились вокруг него в сильно увеличенном виде. Так удачно совпало, что почти точно за скоплением в 12 млрд световых лет от нас находилась одиночная галактика SPT0418-47. Именно её изображение увеличила гравитационная линза от скопления. На снимке далёкая галактика превратилась в ореол, сияющий вокруг скопления. Простая математика позволяет вернуть галактике первоначальный вид и воссоздать её реальный образ. Спектральные приборы «Уэбба» позволили выделить в свете галактики SPT0418-47 сложные органические молекулы, которые на Земле обычно находятся в нефти. Обнаружить подобное в открытом космосе всего через 1,5 млрд лет после Большого взрыва — это было удивительно. Это указывает на то, что химические преобразования во Вселенной шли гораздо быстрее, чем это себе представляла земная наука. На тот момент Вселенная прошла только 10 % своего развития, а органики там не меньше чем в нашей галактике. Подобные вещества должны были быть в ней в следовых количествах и недоступны для определения земными приборами. Но «Уэбб» смог это сделать и ещё на шаг приблизил нас к пониманию эволюционных процессов во Вселенной. ![]() Принцип работы гравитационной линзы Новые наблюдения «Уэбба» обещают обнаружить сложные органические вещества в других галактиках ранней Вселенной и, возможно, на ещё более ранних этапах её развития. К сожалению, прибор телескопа для таких открытий начал деградировать. Ранее мы сообщали, что спектрометр среднего разрешения (MRS) инструмента MIRI на самых длинных волнах начал снижать пропускную способность (количество света, которое регистрируется датчиками). Если команда телескопа не найдёт решения проблемы, подобные наблюдения после 2024 года станут невозможными. На последних каплях топлива космический телескоп «Кеплер» обнаружил три экзопланеты
31.05.2023 [09:49],
Геннадий Детинич
Сборная группа астрономов сообщила о завершении анализа самых последних данных, полученных от космической обсерватории «Кеплер». Финальная научная кампания телескопа продлилась около двух недель, в последнюю из которых телескоп был почти неуправляемым. Но даже из такого набора данных учёные смогли вытянуть информацию о трёх новых обнаруженных экзопланетах. Телескоп выдавал результат до последней капли топлива в баках. ![]() Источник изображения: NASA Jet Propulsion Laboratory Обсерватория «Кеплер» создавалась для охоты за экзопланетами. Телескоп был запущен в 2009 году на орбиту вокруг Земли. Аппарат должен был следить за яркостью звёзд на северном небе, определяя наличие экзопланет по провалам в кривой блеска звёзд, когда планеты пересекали их диски. За четыре года «Кеплер» отследил кривые блеска 150 тыс. звёзд и обнаружил около 2000 экзопланет. На этом срок его миссии закончился, но научная работа не прекратилась — в баках обсерватории ещё оставалось топливо. Впрочем, проблема была не только в заканчивающемся горючем. За 4 месяца до завершения миссии у телескопа отказал один из гироскопов, а ещё через 10 месяцев после окончания топлива отказал второй (всего их было 4). Телескоп стало трудно ориентировать и удерживать в стабильном положении, и его на время отключили. Весной 2014 года «Кеплер» вернули к работе, решив задачу стабилизации оригинальным образом. Третьей «точкой опоры» стал солнечный ветер. Это не позволяло направлять телескоп куда вздумается, но в пару десятков мест неба «Кеплер» теперь мог смотреть с уверенностью. После этого телескоп работал ещё свыше четырёх лет, делая это «набегами», которые учёные стали называть кампаниями. Последняя кампания началась в августе 2018 года на почти сухих баках. Десять дней «Кеплер» собирал высококачественные данные и ещё неделю смог проработать с постоянной потерей стабилизации. 30 октября 2018 года телескоп официально отправлен на пенсию. За почти девять лет наблюдений он открыл свыше половины из надёжно зарегистрированных за пределами нашей системы 5000 экзопланет. И даже последние дни работы телескопа принесли открытия — расшифрованные данные рассказали об открытии двух экзопланет и одного кандидата в экзопланеты. Интересно добавить, что к анализу последних данных «Кеплера» привлекли астрономов-любителей. Энтузиасты охотно тратят личное время на ручной анализ данных. Именно благодаря им были сделаны открытия в последних данных «Кеплера», для чего потребовалось глазами просмотреть кривые блеска почти 33 тыс. звёзд. Две подтвержденные планеты — это K2-416 b, которая примерно в 2,6 раза больше Земли и обращается вокруг своей звезды примерно каждые 13 дней, и K2-417 b — чуть более крупная планета, которая более чем в три раза больше Земли и обращается вокруг своей звезды каждые 6,5 дней. Из-за размера и близости к своим звёздам обе планеты относятся к классу «горячих мини-нептунов». Они расположены на расстоянии около 400 световых лет от Земли. Планета-кандидат EPIC 246251988 b — это самая большая из трёх планет. Она почти в четыре раза больше Земли. Эта планета размером с Нептун и обращается она по орбите вокруг своей звезды примерно за 10 дней. От Земли до неё 1200 световых лет. «Мы обнаружили, вероятно, последние планеты, когда-либо открытые "Кеплером", в данных, полученных, когда космический аппарат буквально работал на износ, — сказал Эндрю Вандербург, доцент физики факультета астрофизики и космических исследований имени Кавли Массачусетского технологического института. — Сами планеты не особенно необычны, но их нетипичное открытие и историческое значение делают их интересными». «Джеймс Уэбб» обнаружил необычную чёрную дыру в древней галактике — она впятеро массивнее, чем должна
30.05.2023 [18:38],
Руслан Авдеев
Астрономы использовали беспрецедентные возможности космического телескопа «Джеймс Уэбб» для обнаружения настоящего монстра звёздного мира. Выявленная чёрная дыра оказалась столь беспрецедентно массивной, что, вероятно, остановила процесс образования новых звёзд в древней галактике GS-9209. ![]() "Джеймс Уэбб", иллюстрация. Источник изображения: NASA Команда учёных из Эдинбургского университета использовала «Джеймс Уэбб», чтобы изучить одну из самых отдалённых галактик — GS-9209 находится в 25 млрд световых лет от Земли. В ходе исследования, результаты которого опубликованы в журнале Nature, выяснилось, что галактика интересна не только этим. По данным учёных, речь идёт о т.н. «массивной покоящейся галактике», всего через 800 млн лет после Большого взрыва сформировавшей столько же звёзд, сколько имеется в Млечном пути. Хотя GS-9209 имеет примерно столько же звёзд с общей массой, равной приблизительно 40 млрд масс Солнца, размером галактика в 10 раз меньше нашей. «Джеймс Уэбб» помог учёным выяснить, что главный виновник того, что образование звёзд в чужой галактике прекратилось, — сверхмассивная чёрная дыра в центре GS-9209, которая в 5 раз массивнее, чем должна была бы быть в соответствии с современными научными представлениями — исходя из числа светил в галактике. По словам учёных, такая чёрная дыра оказалась «большим сюрпризом» и ещё одним подтверждением одной из теорий, согласно которой сверхмассивные чёрные дыры могут мешать появлению новых звёзд. В процессе аккреции они интенсивно испускают высокоэнергетическое излучение, которое нагревает газ и буквально «выталкивает» его из галактик, в результате чего новые звёзды не возникают из-за нехватки основного «строительного материала». Тот факт, что данная чёрная дыра столь массивна, может означать, по мнению учёных, что она была «очень активна в прошлом», поглощая огромное количество газа и пыли и, вероятно, светилась как квазар, а вся энергия, выделенная в процессе аккреции, вероятно, серьёзно повлияла на процесс звездообразования во всей галактике, не давая газу превратиться в новые звёзды. «Джеймс Уэбб» чрезвычайно эффективен не только на длинных, но и на весьма коротких дистанциях. Относительно недавно он обнаружил гигантский ледяной гейзер на спутнике Сатурна — Энцеладе, что поможет учёным сделать немало открытий, связанных с этим небольшим, покрытым льдом миром. Объединение данных «Чандры», «Уэбба» и других телескопов показали невиданные ранее красоты Вселенной
24.05.2023 [12:00],
Геннадий Детинич
NASA поделилось новыми видами на красоты космоса, которые нам продолжает открывать телескоп «Джеймс Уэбб». Но одних только данных «Уэбба» было бы недостаточно для раскрытия множества нюансов бесконечного многообразия Вселенной. А вот объединив их с данными рентгеновской обсерватории NASA «Чандра» и рядом других инструментов удалось воссоздать картины космоса, которые человеческий глаз никогда бы не увидел. Данные с инфракрасных датчиков «Уэбба» были дополнены снимками «Чандры» в рентгеновском диапазоне, а также данными, полученными телескопами «Хаббл» (видимый свет), «Спитцер» (инфракрасный свет), космическим телескопом Европейского космического агентства XMM-Newton (рентгеновский свет) и телескопом Европейской южной обсерватории New Technology Telescope (оптический свет). Для восприятия изображений человеческим глазом снимки были раскрашены в видимые нашему глазу цвета. Рентгеновский диапазон раскрашен фиолетовым, а инфракрасный и видимый от синего до красного и оранжевого. Объект NGC 346 — это звёздное скопление в соседней галактике, Малом Магеллановом Облаке, на расстоянии около 200 000 световых лет от Земли. «Уэбб» показывает шлейфы и струи газа и пыли, которые звезды и планеты используют в качестве исходного материала в процессе своего формирования. Фиолетовое облако в левой части изображения — это данные «Чандры» — представляет собой остатки взрыва сверхновой массивной звезды. Также «Чандра» показывает молодые, горячие и массивные звёзды, которые раздувают вещество в пространстве вокруг себя. Снимки включают данные «Хаббла» и «Спитцера», а также вспомогательные данные XMM-Newton и Телескопа новых технологий ESO. ![]() NGC 167. (Рентген: фиолетовый; оптический: красный, зеленый, синий; инфракрасный: красный, зеленый, синий) Объект NGC 1672 — это спиральная галактика, но особая, которая относится к так называемым «зарешечённым» спиралям. В близких к центру областях таких галактик рукава из звёзд в основном выстроены в прямую линию, а не изгибаются спиралью. Данные «Чандры» высвечивают компактные объекты, такие как нейтронные звёзды или чёрные дыры, которые вытягивают материал из звёзд-компаньонов, а также остатки взорвавшихся звёзд. Дополнительные данные «Хаббла» (оптический свет) помогают заполнить изображения центральной части спиральных рукавов пылью и газом, а данные «Уэбба» дополнили изображения рукавов. Туманность M16 (туманность Орла или Мессье 16) также называют «Столпами творения» за характерные облака пыли и газа в виде колонн. На датчиках «Уэбба» эти тёмные столбы газа и пыли очень хорошо видны, как и скрытые в них несколько молодых звёзд, которые только формируются. Датчики «Чандры», показывают там же молодые звёзды в виде точек — они испускают большое количество рентгеновского излучения. ![]() Галактика M74. (Рентген: фиолетовый; оптический: оранжевый, голубой, синий; инфракрасный: зеленый, желтый, красный, пурпурный) Наконец, галактика M74 (Мессье 74). Она такая же спиральная, как наш Млечный Путь. Мы видим её с отличного угла зрения — как на ладони. Она находится на расстоянии около 32 млн световых лет от нас. Галактику Мессье 74 прозвали призрачной галактикой, потому что она сравнительно тусклая и незаметная в небольшие телескопы. «Уэбб» показывает в ней газ и пыль в инфракрасном диапазоне, а данные «Чандры» высвечивают высокоэнергетическую активность звёзд в рентгеновском диапазоне. Оптические данные «Хаббла» показывают дополнительные звезды и пыль в виде пылевых полос. Недалеко от нас обнаружено недостающее звено в эволюции чёрных дыр — невидимый объект промежуточной массы
24.05.2023 [10:24],
Геннадий Детинич
Благодаря телескопу «Хаббл» астрономы получили новые доказательства присутствия недалеко от Земли чёрной дыры промежуточной массы — редчайшего объекта во Вселенной, который уверенно ещё никогда не обнаруживал себя. Объект найден в шаровом звёздном скоплении всего в 6000 световых годах от нашей системы. По космическим меркам — это словно соседний двор. ![]() Шаровое скопление, в котором был обнаружен загадочный объект промежуточной массы. Источник изображения: ESA/Hubble, NASA Забавно, что чёрные дыры промежуточной массы — это тайна в квадрате. Мы и сами чёрные дыры не можем увидеть — свет и электромагнитное излучение в целом не вылетают за их горизонты событий. Мы детектируем эти объекты по косвенным наблюдениям в виде тяготения к ним звёзд или по излучению перегретых дисков аккреции, а моделирование ставит в этом вопросе окончательную точку. Именно моделирование отсеивает чёрные дыры из череды невидимых карликов, нейтронных звёзд и прочего, что в силу ограниченной чувствительности могут не увидеть наши телескопы. И среди множества обнаруженных невидимых объектов — чёрных дыр — нет ни одной уверенно трактуемой, как чёрной дыры промежуточной массы. Есть маленькие чёрные дыры массой до 100 масс Солнца, массивные чёрные дыры с массой от сотен тысяч масс Солнца, а также сверхмассивные — от миллиона масс Солнца. Чёрных дыр в промежутке от 100 до 100 000 солнечных масс в природе не наблюдаются, а они должны быть! Впрочем, пару кандидатов в чёрные дыры промежуточной массы (среди сотни миллионов обнаруженных маленьких чёрных дыр только в нашей галактике) астрономы нашли. Это объекты 3XMM J215022.4-055108, который «Хаббл» помог открыть в 2020 году, и HLX-1, обнаруженный ещё в 2009 году. Оба они находятся в плотных звёздных скоплениях на окраинах других галактик. Каждый из этих кандидатов имеет массу до нескольких десятков тысяч солнечных масс. Также целый ряд чёрных дыр, вероятно, с промежуточной массой, был открыт рентгеновской обсерваторией NASA «Чандра», но к этим открытиям всё ещё множество вопросов. Наконец, астрономы воспользовались услугами «Хаббла», чтобы поохотиться на неуловимые чёрные дыры промежуточной массы в наших окрестностях. Как сказано выше, обнаруживаются они косвенно, например, по круговому движению звёзд в определённых регионах, где нет видимого центра. Такие вещи лучше наблюдать как можно ближе, чтобы наверняка исключить тусклые объекты и более точно рассчитать круговые траектории видимых объектов. «Хаббл» направили на ядро Мессье 4 (М4) — шарового звёздного скопления в 6000 световых годах от Земли. На видео показано, как звёзды движутся по кругу вокруг невидимого центра масс в течение 12 лет наблюдений (для этого использованы архивы телескопа). Моделирование показало, что это с чрезвычайно большой вероятностью может быть только чёрная дыра промежуточной массы, которая была оценена в 800 солнечных масс. «Хаббл» поставил точку в этой загадке и стал инструментом, который предоставил самые убедительные на сегодня доказательства существования чёрных дыр промежуточной массы. Поскольку чёрные дыры промежуточной массы в шаровых скоплениях были долго неуловимы, астрономы сделали оговорку: «Хотя мы не можем полностью утверждать, что это центральная точка гравитации [компактный объект], мы можем показать, что она очень мала. Она слишком мала, чтобы мы могли объяснить это иначе, чем одиночной чёрной дырой. Как вариант, может существовать звёздный механизм, о котором мы просто не знаем, по крайней мере, в рамках нынешней физики». Детектор гравитационных волн LIGO начал новый цикл наблюдений после 3 лет модернизации
23.05.2023 [16:04],
Геннадий Детинич
Уникальный в своём роде прибор — лазерный интерферометр LIGO — приступил к четвёртой по счёту научной вахте. Он будет вести наблюдения рекордно долго — полтора года, что почти в два раза дольше предыдущего цикла работы. LIGO построен для детектирования гравитационных волн, которые он же и открыл, хотя эти явления были предсказаны Эйнштейном более 100 лет назад. Теперь таких событий будет регистрироваться ещё больше. ![]() Художественное представление о гравитационных волнах. Источник изображения: personal.soton.ac.uk Модернизация позволила значительно повысить чувствительность интерферометра. Сделаны как аппаратные улучшения — построен дополнительный резонатор длиной 300 м, так и программные. Резонатор снизит уровень шумов детектора, а новый алгоритм станет ещё лучше выискивать полезный сигнал среди шума. В совокупности улучшения позволят детектировать ещё более слабые гравитационные волны — либо от слияния объектов меньшей массы, либо расположенные ещё дальше от нас. Следует сказать, что алгоритм поиска гравитационного события — это само по себе произведение искусства. Программе необходимо перебрать миллионы комбинаций теоретически возможных трактовок зарегистрированного сигнала, чтобы понять, что именно уловил детектор. Это необходимо сделать достаточно быстро, чтобы в режиме реального времени попытаться отыскать на небе источник события. Обсерватория LIGO может лишь приблизительно указать участок неба, откуда пришли гравитационные волны и он очень большой — примерно как 400 полных лун. Вместе с LIGO искать источники событий будет комплекс телескопов BlackGEM в Европейской южной обсерватории в Чили. Недавно для этого запущены три роботизированных телескопа, а всего их будет 15. Привязать к гравитационному сигналу наблюдения объектов в видимом диапазоне и в радиодиапазоне — это высший пилотаж в астрономии. За прошедшие годы с момента открытия гравитационных волн восемь лет назад было зарегистрировано только одно такое событие, хотя всего было зарегистрировано до 100 гравитационных явлений. «Сбор информации по нескольким каналам об одном событии — астрофизика нескольких сообщений — подобен добавлению цвета и звука к чёрно-белому немому фильму и может обеспечить гораздо более глубокое понимание астрофизических явлений», — заявляют астрономы. Повысить точность детектирования направления на гравитационное явление может работа нескольких интерферометрических лабораторий одновременно. С 2015 года вместе с двумя детекторами LIGO в США начала работать гравиметрическая обсерватория Virgo в Италии. Именно коллаборация LIGO-Virgo первой зафиксировала гравитационные волны, за что была дана Нобелевская премия. С началом нового цикла наблюдений, который официально стартует 24 мая, вместе с LIGO и Virgo начнёт работать обсерватория Kamioka Gravitational Wave Detector (KAGRA) в Японии, что ещё сильнее повысит точность регистрации, хотя японский детектор сам по себе не такой чувствительный. К 2030 году, о чём рано говорить, но всё же, должна быть построена установка-близнец LIGO в Индии. Это даст ещё более широкую базу для детектирования направления на гравитационные события. Сам по себе детектор LIGO — это строение в виде буквы L с каждым плечом около 4 км. По каждому из плеч циркулирует лазерный луч с многократным отражением. Если через объект проходит гравитационная волна, то она, как положено искажающему пространство-время сигналу, делает одно плечо короче, а другое — длиннее. В результате лазерный импульс в каждом плече пролетит разное расстояние и детекторы это зафиксируют. По разнице можно будет понять, что произошло и примерно в каком участке неба. Появление этого инструмента сродни такой революции в астрономии, как внедрение радиотелескопов. Теперь нам есть чем «пощупать» Вселенную кроме оптики и радио. И это уже принесло и ещё принесёт свои плоды. 50 оттенков золотого: представлены самые детальные фото Солнца — 20 км на пиксель
23.05.2023 [09:57],
Геннадий Детинич
Национальный научный фонд США представил серию снимков Солнца, сделанных солнечным телескопом им. Дэниела Иноуэ (Daniel K. Inouye Solar Telescope, DKIST). Каждый пиксель на картинке соответствует 20 км солнечной поверхности. Это самые детальные изображения нашей звезды. Что в этом интересного? Земная наука плохо представляет себе физику процессов на Солнце и для неё каждый такой снимок — это путь к удивительным открытиям. В целом учёные сходятся, что в основе «работы» Солнца и звёзд как мы это видим, лежат законы квантовой физики. Вероятностный характер квантово-механических явлений (конкретно — туннельный эффект) позволяет идти термоядерным реакциям внутри звёзд медленно и верно. Вопреки распространённому мнению, только лишь колоссальных давления и температуры в ядре звёзд недостаточно для запуска термоядерной реакции. Необходим квантовый переход, чтобы протоны водорода преодолели электромагнитное отталкивание и сблизились до начала сильных взаимодействий. Но это всё крайне сложная физика. Детальные изображения Солнца со всеми его тонкими структурами (размерами от полутысячи до полутора тысяч км) позволяют точнее представить модель конвективных процессов на нашей звезде и с высочайшей точностью проследить за миграцией магнитных полей. Телескоп «Иноуэ», как показали первые полученные им изображения, может помочь в разгадке циклической активности Солнца и тайну такой же периодической смены его магнитных полюсов. Классическая физика в этом вполне может помочь и данные телескопа станут для учёных ценнейшим подспорьем в этом деле. Наконец, это просто красиво. В максимальном разрешении все изображения можно найти на сайте Национального научного фонда США. В NASA завершили сборку 288-Мп камеры космического телескопа «Роман» — её поле зрения в 100 раз больше, чем у «Хаббла»
17.05.2023 [09:41],
Геннадий Детинич
В NASA сообщили, что 288-Мп мультиспектральный датчик изображений установлен в камеру Wide Field Instrument (WFI), которая станет основой космического телескопа «Нэнси Грейс Роман» (WFIRST). Телескоп «Роман» будет за раз делать снимок в 100 раз большего участка неба, чем способен «Хаббл», но с тем же уровнем детализации. Это будет невообразимый по возможностям инструмент, запуск которого ожидается в мае 2027 года. ![]() Последний штрих — установка защитной крышки на массив датчиков. Источник изображения: NASA/Chris Gunn Массив датчиков с электроникой или Focal Plane System (FPS) разработан инженерами Центра космических полетов NASA им. Годдарда в Гринбелте, штат Мэриленд, и специалистами компании Teledyne Scientific & Imaging в Камарилло, штат Калифорния. Команда NASA также разработала электронику и собрала FPS. Непосредственно сборкой камеры Wide Field Instrument (WFI) занимаются инженеры компании Ball Aerospace в Боулдере, штат Колорадо. Некоторое время назад массив датчиков был доставлен в сборочный центр и на днях его установили в прибор. Массив состоит из 18 отдельных матриц изображения, каждая из которых имеет разрешение 16,8 Мп. Все вместе они будут делать огромные инфракрасные снимки неба, каждый из которых по полю зрения будет в сто раз превышать кадр, сделанный «Хабблом». ![]() Завершится сборка камеры WFI установкой систем охлаждения. Датчики инфракрасного телескопа должны надёжно охлаждаться до очень и очень низких температур, без чего свет от далёких звёзд и галактик просто не получить. В частности, рабочая температура датчиков должна быть -178 °C. Тепло будет отводить массив радиаторов, который рассеет его в открытое пространство. ![]() Телескоп «Нэнси Грейс Роман» в представлении художника После установки радиаторов камера «Роман» будет готова к термальным вакуумным испытаниям, которые пройдут этим летом. Для интеграции камеры в состав обсерватории она будет возвращена в центр NASA, что ожидается весной будущего года. Запуск обсерватории, напомним, предварительно намечен на май 2027 года. Работу космического телескопа «Чандра» намерены продлить на десятки лет, отправив к нему сервисную миссию
17.05.2023 [08:20],
Руслан Авдеев
Спустя почти четверть века после запуска, знаменитый телескоп «Чандра» агентства NASA, работающий в рентгеновском диапазоне, может получить первое сервисное обслуживание непосредственно в космосе. В последние 18 месяцев Northrop Grumman изучает возможность отправки к телескопу сервисной миссии, способной продлить срок его работы на десятилетия. ![]() «Чандра» в представлении художника. Источник изображения: NASA Обслуживание «Чандры» — не единственная амбициозная миссия, находящаяся в разработке. В частности, частные компании рассматривают возможность отправить космические аппараты к телескопам «Хаббл» и «Спитцер». Для каждой из миссий характерны свои проблемы. «Хаббл» находится довольно близко от Земли, но шаттл, предназначавшийся для его обслуживания, уже не используется. «Спитцер» находится очень далеко от нашей планеты, на расстоянии двух астрономических единиц, (определяющих дистанцию от Земли до Солнца). Впрочем, телескоп уже отключён и намерение вернуть его в строй может пойти только на пользу. Для сравнения, «Чандра» находится относительно далеко от Земли и всё ещё функционирует, поэтому реализация проекта может быть довольно интересна как учёным, так и общественности. Возможность миссии впервые была озвучена в ходе Космического симпозиума Годдарда в марте 2022 года. Предполагается участие дочернего подразделения Northrop Grumman — компании SpaceLogistics. Вероятна отправка к «Чандре» специально разработанного космического буксира. Было заявлено, что SpaceLogistics может отправить предложение NASA уже к концу 2022 года, хотя дальнейшие планы пока не раскрываются. Сервисное обслуживание не только позволит изучать Вселенную в рентгеновском диапазоне, что невозможно на поверхности Земли из-за атмосферных помех, но и работать «в связке» с телескопом «Хаббл». Известно, что «Чандра» использовался для перепроверки изображений «Хаббла». Ещё в 2021 году отмечалось, что в числе ключевых приоритетов США предусмотрено строительство рентгеновского телескопа, но оно имеет меньший приоритет, чем телескопы, оптимизированные для изучения Вселенной в инфракрасном, оптическом и ультрафиолетовом диапазонах. В SpaceLogistics посчитали, что возможность сохранить работоспособность «Чандры» за относительно небольшие деньги будет привлекательна для NASA — миссия позволит произвести дозаправку телескопа и организовать действия для сохранения точности измерений с помощью его инструментов. Гравитационные детекторы получили «глаза» — к работе приступили первые роботизированные телескопы BlackGEM
17.05.2023 [08:17],
Геннадий Детинич
Европейская южная обсерватория (ESO) сообщила о начале работы первых трёх телескопов BlackGEM, которые в оптическом диапазоне будут искать источники гравитационных волн. Детекторы гравитационных волн LIGO и Virgo не могут указать точку в небе, где произошло слияние чёрных дыр или нейтронных звёзд, а без этого информация о событии неполная. Восполнять этот недостаток будет массив BlackGEM, который с огромной скоростью будет осматривать южное небо. ![]() Источник изображения: ESO Всего массив будет состоять из 15 телескопов. У каждого из них сравнительно небольшое зеркало — всего 65 см. Тем не менее, за счёт расположения — на высокогорном плато в Чили (в Ла Силла) — обзор и разрешение обещают быть превосходными по сравнению с даже большими телескопами в других местах. В лучшем случае, детекторы LIGO и Virgo могут определять участок неба, откуда пришли зафиксированные гравитационные волны, площадью около 400 полных лун. Массив BlackGEM должен быстро осмотреть этот участок и зафиксировать все видимые быстрые изменения. Если роботизированные телескопы обнаружат изменения в зоне наблюдения, цель для детального изучения будет передана на по-настоящему большие телескопы. Определение направления на источники гравитационных волн станет не единственной задачей комплекса BlackGEM. Массив будет определять другие быстрые переходные процессы, например, искать взрывы сверхновых в Южном полушарии, а также выявлять потенциально опасные для Земли астероиды и кометы. Космический телескоп «Спитцер» намерены «воскресить» — по техническим причинам его выключили в 2020 году
16.05.2023 [13:31],
Геннадий Детинич
Последнюю из четырёх «Великих обсерваторий» NASA — инфракрасный телескоп «Спитцер» — пришлось отключить три года назад. Телескоп находится на противоположной от нас стороне относительно Солнца, что сделало невозможным поддержку с ним связи. Восстановить канал связи и возобновить научную работу телескопа намерен стартап Rhea Space Activity. На днях он получил грант от Космических сил США на разработку спутника-спасателя. Но миссия начнётся нескоро. ![]() Космическая обсерватория «Спитцер». Источник изображения: NASA «Спитцер» (Spitzer Space Telescope) был выведен на гелиоцентрическую орбиту. Он удалялся от Земли со скоростью до 15 млн км в год. Сейчас он отошёл от Земли примерно на 2 а.е. (астрономические единицы), что означает, что он находится в два раза дальше, чем Земля от Солнца. Для своего времени это был наимощнейший инфракрасный телескоп. Работа инфракрасных датчиков поддерживалась активной системой охлаждения на жидком гелии, запас которого иссяк через 7,5 лет непрерывной работы. Но даже после этого телескоп продолжал работать в режиме «тёплой миссии» — данные вполне нормально можно было принимать по двум оставшимся каналам в более коротковолновом диапазоне. Проблема крылась в другом: для связи с Землёй телескоп необходимо было развернуть в пространстве, а это подставляло чувствительные научные приборы под разрушительные лучи Солнца. И в определённый момент телескоп отключили, хотя он мог бы продолжать работу. Компания Rhea Space Activity разработала проект по «воскрешению» телескопа. На самом деле, ничего сложного спутнику-спасателю делать не предстоит. Ему не нужно попадать на борт обсерватории. Фактически — это будет ретранслятор, который поможет создать канал связи телескопа с Землёй. На это же намекают его предполагаемые габариты — куб со сторонами метр на метр. На завершение разработки миссии компания Rhea Space Activity получила $250 000. Ожидается, что спутник будет запущен в 2026 году и долетит до телескопа три года спустя. Это будет не единственная его миссия. По дороге аппарат будет вести наблюдения за вспышками на Солнце. По прибытию к телескопу спутник совершит его облёт на удалении от 100 до 50 км и проведёт оценку состояния телескопа. Может так статься, что воскрешать уже будет нечего. Космос — это агрессивная среда. «Я думаю, это было бы довольно амбициозно... но очень здорово, если бы мы смогли это осуществить», — сказал глава компании астрофизик Шон Усман (Shawn Usman). Отметим, просто так рассчитывать на грант в четверть миллиона долларов США нельзя. За этой компанией стоят Смитсоновская астрофизическая обсерватория, Лаборатория прикладной физики Университета Джона Хопкинса, Blue Sun Enterprises и Lockheed Martin. Судя по такому авторитетному составу поддержки миссия, скорее всего, состоится. «Джеймс Уэбб» открывает новый сезон научной работы — теперь в его прицел попадут даже астероиды
13.05.2023 [15:13],
Геннадий Детинич
Институт исследований космоса с помощью космического телескопа (STScI) объявил об утверждении программы второго года общих наблюдений с помощью обсерватории «Джеймс Уэбб». Из 1600 поданных с начала года заявок отобрано 249, рассчитанных на 5000 часов прямой работы телескопа и 1215 часов параллельных наблюдений. Выбор сбалансирован по широкому спектру научных тем — от астероидов и экзопланет до космологии. ![]() Источник изображения: NASA Всего заявки на наблюдения подавало более чем 5450 учёных из 52 стран, включая США, страны-члены ЕКА (Европейского космического агентства) и Канаду. Заявки охватывали все темы астрономии и астрофизики — от тел Солнечной системы, экзопланет, остатков сверхновых и сливающихся нейтронных звёзд до близких и далёких галактик, сверхмассивных чёрных дыр в центрах галактик и крупномасштабной структуры Вселенной. В совокупности поданные заявки потребовали бы более 35 000 часов работы телескопа, что значительно превышает выделенные 5000 часов работы обсерватории. Отбор заявок методом двойного анонимного экспертного обзора (DAPR) проводили 225 приглашённых экспертов, а также 350 членов Комитета по распределению рабочего времени телескопов и команды «Джеймса Уэбба» в STScI и NASA. Метод DAPR был введён в 2016 году и подразумевает, что эксперты ничего не знают о подающих заявки учёных и учёные не знают, кто занимается отбором и по какой теме. Утверждается, что это сразу возымело эффект. Например, выросло число одобренных заявок от руководителей-студентов и женщин. Кроме общих часов, наблюдения второго года будут включать 12 больших финансируемых властями программ общей длительностью 1650 часов. Из примерно 5000 часов общих наблюдений 48 % времени будет отдано малым программам (менее 25 ч), 35 % — средним (от 25 до 75 ч) и 17 % крупным (более 75 ч). Отобранные заявки были подготовлены более чем 2088 исследователями из 41 страны, включая 38 штатов и территорий США, 14 стран-членов ЕКА и 6 провинций Канады. Десять процентов заявок подготовлены возглавляющими свои проекты студентами. ![]() Первый год наблюдений «Джеймса Уэбба» был насыщен открытиями. Новый год обещает оказаться ещё более интересным. Год спустя учёные намного лучше понимают, чего можно ждать от нового телескопа и как его лучше использовать. Миллион снимков в одном изображении — Европейская южная обсерватория поделилась панорамой «питомника» звёзд
12.05.2023 [12:37],
Геннадий Детинич
Расположенная в Чили Европейская южная обсерватория представила изображение звёздных яслей, составленный из более миллиона фотографий неба. Уникальность снимка не только в годах сбора информации для него, но также в способности передать видимый и невидимый человеческому глазу инфракрасный свет. Без последней возможности мы не могли бы заглянуть вглубь облаков из космической пыли, где и рождаются молодые звёзды. Любуйтесь! Данные о нескольких регионах звездообразования собрал обзорный телескоп VISTA. У него небольшое зеркало — всего 4,1 м, но широкое — на три полных Луны — поле обзора. Это позволяет за ночь сделать снимки неба всего Южного полушария. Телескоп введён в строй в 2009 году. Он выдаёт колоссальный объём информации. Инструмент такого рода способен выявлять быстро происходящие явлений от вспышек сверхновых до астероидов и комет в Солнечной системе. Его затмит только телескоп им. Веры Рубин, когда начнёт работать в следующем году. «На этих изображениях мы можем обнаружить даже самые слабые источники света, например, звёзды, гораздо менее массивные, чем Солнце, открывая объекты, которые никто раньше не видел, — сказал Стефан Мейнгаст (Stefan Meingast), астроном из Венского университета в Австрии и ведущий автор нового исследования, опубликованного в журнале Astronomy & Astrophysics. — Это позволит нам понять процессы, которые превращают газ и пыль в звёзды». Звёзды образуются, когда облака газа и пыли сжимаются под действием собственной гравитации, но детали того, как это происходит, не до конца понятны. Сколько звёзд рождается из облака? Насколько они массивны? Сколько звёзд будут иметь планеты? Наблюдения с помощью VISTA позволяет собирать данные в наилучшей доступной динамике. Мы сможем видеть, как отдельные звёзды покидают место рождения и это сделает оценки их параметров наиболее точными. Данные VISTA дополнят данные европейского астрометрического спутника «Гайа» (Gaia). У «Гайи» только работа в видимом диапазоне. Она не может заглянуть внутрь облаков из пыли и газа. Оба инструмента помогут создать наиболее полный и точный каталог объектов в нашей галактике и даже за её пределами, и это даст основу для множества новых открытий. «Джеймс Уэбб» разглядел далёкий мир, окутанный паром, туманами и облаками
12.05.2023 [08:27],
Геннадий Детинич
Используя приборы телескопа «Джеймс Уэбб», учёные изучили атмосферу далёкой экзопланеты необычным способом. Инопланетный мир оказался покрыт плотным туманом, дымкой или облаками. Это могла быть планета-океан, и таких может быть множество во Вселенной. ![]() Экзопланета GJ 1214 b в представлении художника. Источник изображения: NASA/JPL-Caltech/R. Hurt (IPAC) Исследователи направили телескоп в сторону экзопланеты GJ 1214 b. Это так называемый мининептун — планета промежуточной массы между Нептуном и Землёй. Наши наблюдения показывают, что это один из самых распространённых из зарегистрированных на сегодня типов экзопланет. Система красного карлика GJ 1214 находится в 40 световых годах от нас и была изучена ранее. Об атмосфере GJ 1214 b также было известно, что она парообразная. Однако состав атмосферы в целом был неизвестен. «Уэбб» помог собрать больше данных по атмосфере этой экзопланеты и сделал это необычным образом. Обычно подсказку о химическом и физическом составе атмосферы экзопланеты мы получаем транзитным способом, когда планета проходит по диску своей звезды и часть спектра её света поглощается атмосферой. По провалам в спектральных линиях мы можем узнать, какими газами богат воздух экзопланеты. В случае наблюдения за GJ 1214 b приборы «Уэбба» использовались для фиксации температуры планеты в течение её полного орбитального периода, благо она делает полный оборот вокруг своего «солнца» всего за 1,6 суток. Выяснилось, что разница между температурами на дневной и ночной сторонах экзопланеты очень большая: днём она достигала 279 °C, а ночью — 165 °C. Подобная разница возможно только в том случае, если в атмосфере преобладают тяжёлые молекулы, например, воды или метана. Нюанс в том, что звезда-хозяин бедна на такие элементы и экзопланета, скорее всего, сформировалась вдали от неё и приближалась к ней постепенно. Учёные предполагают, что GJ 1214 b могла сразу сформироваться как мир, богатый водой и льдами — как водный мир. Это дало ей впоследствии парообразную атмосферу. Это те кусочки головоломки, которые помогут в итоге сложить более полную картину об одних из самых часто встречающихся во Вселенной экзопланет. Без инструментов «Уэбба» подобное наблюдение сделать было невозможно. И оно будет не единственным. Только так можно будет увидеть всю картину целиком. При обзоре системы Фомальгаута «Уэбб» искал астероиды, а нашёл планеты
09.05.2023 [07:57],
Геннадий Детинич
Ближайшая к нам молодая звезда Фомальгаут своим ярким сиянием тысячелетиями завораживала наших предков и не могла оставить равнодушными современных астрономов, вооружённых передовыми телескопами. Это позволило ещё в 1983 году обнаружить вокруг звезды пылевое кольцо наподобие нашего пояса Койпера, но в два раза больше. Учёные не могли упустить случая рассмотреть инопланетный пояс астероидов с помощью «Джеймса Уэбба» и сильно удивились увиденному. ![]() Источник изображения: NASA, ESA, CSA Полученная «Уэббом» картинка системы Фомальгаута показала наличие там сложной внутренней структуры пылевых колец, кроме обнаруженного там ранее внешнего пояса. «Уэбб» работает в инфракрасном диапазоне и способен в деталях наблюдать нагретые тела и области. Исследователи были очень удивлены, когда увидели сильную неоднородность в структуре внутреннего пылевого диска. «Рассматривая узоры в этих кольцах, мы можем сделать небольшой набросок того, как должна выглядеть планетная система, как если бы мы могли сделать достаточно детальный снимок, чтобы увидеть предполагаемые планеты», — сказал Андраш Гаспар (András Gáspár) из Аризонского университета в Тусоне и ведущий автор новой статьи, описывающей эти результаты. Вскоре после образования планет в системе остаётся ещё много пыли и каменных тел различного размера — астероидов и зародышей планет. Всё это лежит, в основном, в плоскости огромного диска из пыли и камней, среди которых вращаются планеты. По сути, это оставшийся после образования планет мусор. Планеты как самые массивные тела на своих орбитах своей гравитацией формируют пояса астероидов, что издали выглядит как ярко выраженное кольцо на «мусорном» диске из пыли и камней. Именно такую структуру впервые в системе Фомальгаута помог обнаружить «Уэбб» и, как уверены учёные, эта же методика поможет обнаружить внутренние пылевые кольца в других системах, что даст представление об их планетарных структурах даже без прямого обнаружения экзопланет. Попутно «Уэбб» разгадал прошлую загадку — якобы обнаруженную «Хабблом» во внешнем пылевом кольце экзопланету. Это образование стало ещё больше с прошлого наблюдения, что заставляет предположить, что это последствия столкновения крупных астероидов с последующим разлётом обломков. Это оказалась не экзопланетой, а расширяющимся взрывом после столкновения. ![]() Облако пыли, которое раньше ошибочно приняли за планету Представленная работа с анализом структуры пылевого кольца системы Фомальгаута подана для публикации в престижном журнале Nature, но ещё не прошла рецензирование и не дошла до печати. |