Опрос
|
реклама
Быстрый переход
«Стимпанковский» термоядерный реактор канадской General Fusion получил первую плазму
11.03.2025 [18:15],
Геннадий Детинич
Компания General Fusion из Бернаби, Британская Колумбия (Канада), сообщила о получении первой плазмы на экспериментальном термоядерном реакторе Lawson Machine 26 (LM26). Запуск реактора знаменует собой начало 96-недельного эксперимента, который должен привести к переходу так называемой точки безубыточности — состояния, при котором выделяемая в процессе термоядерного синтеза энергия, равна энергии на запуск и поддержание реакции. ![]() Источник изображения: General Fusion На создание демонстратора LM26 ушло 16 месяцев. Это не первый и не последний прототип реактора перед созданием коммерческой термоядерной установки. Компания General Fusion стремится к этой цели более 20 лет с момента своего основания в 2002 году, оставаясь пока на значительном расстоянии от главной задачи — создания термоядерной установки хотя бы с нулевым выходом. Получение первой плазмы на LM26 даёт надежду на успешный эксперимент. Если всё пойдёт по плану, точка безубыточности будет достигнута в 2026 году. Следует отметить, что точка безубыточности может быть научной и коммерческой. В первом случае учитывается только та энергия, которая затрачена непосредственно на поджиг термоядерного топлива. Эту точку впервые удалось достичь на установке National Ignition Facility (NIF) в США. В случае коммерческой точки безубыточности учитывается энергия всей системы, которая значительно превышает энергию, необходимую лишь для запуска термоядерной реакции. Этого пока не удалось достичь никому в мире. Установка LM26 частично использует метод, применённый в NIF. В американской инерциальной системе поджига дейтерий-тритиевого топлива давление создаётся множеством сфокусированных лазерных лучей. В случае магнитно-инерционного синтеза (Magnetized Target Fusion, MTF) General Fusion давление на топливо создают одновременно магнитное поле и физическое сжатие рубашки внутри рабочей камеры реактора. Магнитное поле в момент искры сжимает образовавшуюся в реакторе плазму, а дополнительное давление создаёт ударная волна от сжимающейся рубашки. Интересно, что рубашка сжимается под действием паровых поршней — настоящий стимпанк. В коммерческом термоядерном реакторе General Fusion рубашка будет состоять из жидкого металла — сплава лития и свинца. Она будет выполнять сразу несколько функций: задерживать нейтроны, возникающие во время ядерного синтеза, служить защитным экраном от радиации, а также работать в качестве теплоносителя, передающего тепло для последующей выработки энергии. В демонстрационной установке LM26 рубашка представляет собой оболочку из твёрдого лития, которую сжимают электромагниты. Идею MTF-реактора предложили американские учёные ещё в 1970-х годах. Однако им не удалось добиться в нём устойчивой термоядерной реакции. В General Fusion считают, что проблема заключалась в недостаточно точном управлении поршнями, обеспечивающими сжатие оболочки и плазмы. Современные вычислительные системы способны решать такие задачи, и компания обещает доказать это уже в ближайший год. В США выбрана площадка для первой термоядерной электростанции
28.02.2025 [19:35],
Геннадий Детинич
Стартап Helion Energy сообщил, что выбрал участок для строительства первой в США термоядерной электростанции. Документы на площадку ещё не подписаны. Для запуска процесса предстоит получить одобрение местной общины, встреча с представителями которой состоится в марте. Разработчик уверен в своём выборе и скорейшем одобрении проекта, поскольку рассчитывает начать строительство уже этим летом. ![]() Источник изображения: Helion Energy Площадка выбрана в городе Малага, штат Вашингтон. Руководство компании в марте проведёт презентацию проекта и ответит на вопросы представителей общины. Поскольку термоядерные реакторы считаются практически безопасными и производят незначительное количество радиоактивных отходов (и это не отработанное топливо, а преимущественно оболочка рабочей камеры), компания не ожидает сложностей с согласованием. Более того, округ получит дешёвую электроэнергию и дополнительные поступления в бюджет. Интересно, что выработка электроэнергии реактором Helion рассматривается как приятное дополнение. Главной продукцией синтеза должен стать изотоп гелий-3 — топливо для термоядерных реакторов. Реактор Polaris, прототип которого был завершён в начале осени 2024 года, сможет ежегодно вырабатывать до 20 тонн гелия-3. При этом его электрическая мощность составит 50 МВт, и на её покупку уже заключён контракт с компанией Microsoft. Фактически будущая электростанция в Малаге будет обслуживать серверы этого технологического гиганта. Компания Helion Energy смело смотрит в будущее и уверена, что сможет реализовать проект в 30-х годах. Конструкция реактора Polaris (это уже восьмой прототип) — одна из самых уникальных и новаторских. Для съёма энергии планируется использовать эффект электромагнитной индукции: динамика плазмы в магнитном поле внутри реактора будет воздействовать на магнитное поле внешних магнитов, генерируя электричество во внешних обмотках. Никаких тепловых съёмников и турбин — всё максимально просто, компактно и с минимальным количеством узлов. На этих инновациях Helion Energy собрала миллиарды инвестиций. Только в январе 2025 года компания привлекла очередной пакет финансирования в размере $425 млн. По итогам нового раунда капитализация Helion выросла до $5,245 млрд. Успешная компания верит в себя и в свои технологии и заражает этой уверенностью партнёров. Европейский стартап пообещал положительную термоядерную реакцию в элегантном стеллараторе через шесть лет
26.02.2025 [21:18],
Геннадий Детинич
Молодая европейская компания Proxima Fusion представила проект термоядерного реактора Stellaris, запуск которого обещает осуществить в течение ближайших шести лет. Компанию организовали физики, ранее работавшие над проектом немецкого стеллатора Wendelstein 7-X. Имея за плечами годы работы в сфере термоядерных реакторов, они уверены в скором успехе, обещая добиться положительной термоядерной реакции уже в 2031 году. ![]() Источник изображений: Proxima Fusion По словам разработчика, Stellaris станет первой в мире реализацией интегрированной концепции коммерческой термоядерной электростанции, рассчитанной на непрерывную и надёжную работу. Подробно о проекте компания рассказала в свежей статье, опубликованной в журнале Fusion Engineering and Design. В основе проекта лежит передовая вычислительная оптимизация конструкции реактора (включая работу ИИ и нейросетей), высокотемпературные сверхпроводящие (HTS) магниты и квазиизодинамическая (QI) технология стелларатора, что в совокупности приближает термоядерную энергетику к этапу коммерциализации. Проект Stellaris основан на результатах исследовательского эксперимента Wendelstein 7-X (W7-X) в Германии — самого продвинутого в мире прототипа стелларатора QI, который создал Институт физики плазмы Макса Планка при поддержке Федерального правительства Германии и ЕС. Стоимость проекта составила более €1,3 млрд (около $1,4 млрд). С помощью прототипа стелларатора Alpha («Альфа») компания Proxima Fusion готова продемонстрировать чистую энергию термоядерного синтеза к 2031 году. В интервью EE Times генеральный директор Proxima Fusion Франческо Скиортино (Francesco Sciortino) отметил, что в течение следующего десятилетия будет проложен чёткий путь к термоядерному синтезу в энергосистеме, что позволит обеспечить энергетическую безопасность Европы и удовлетворить потребности мира в энергии. ![]() Стелларатор и токамак — это одни из старейших и наиболее изученных типов термоядерных установок, каждая из которых представляет собой разновидность реализации термоядерного синтеза с магнитным удержанием. В стеллараторах и токамаках используются мощные магниты, создающие сильное магнитное поле, которое удерживает горячую плазму в определённой конфигурации. В токамаке применяется симметричная тороидальная вакуумная камера, окружённая магнитными катушками. Важную роль играет также электрический ток, протекающий внутри плазмы и создающий дополнительное магнитное поле. В стеллараторах используется другой подход: удержание плазмы обеспечивается исключительно внешними катушками, без необходимости индуцирования тока внутри самой плазмы. Исторически это достигалось с помощью сложных изогнутых магнитов, что и являлось основной технической сложностью стеллараторов. В то же время стеллараторы обеспечивают значительно больше степеней свободы и, по сравнению с токамаками, позволяют добиться высокой оптимизации. Хотя на сегодняшний день токамаки лидируют в области термоядерной энергетики, успешное создание стелларатора Stellaris, если Proxima Fusion сдержит обещания, ознаменует начало новой эры в развитии термоядерных технологий. В компании подчёркивают, что разработка современных стеллараторов во многом зависит от вычислительной оптимизации, которая позволяет быстрее вносить изменения в проект ещё до начала строительства. Proxima Fusion фильтрует возможные концепции проектирования и создаёт суррогатные модели для тестирования с использованием современных методов, включая нейронные сети, основанные на физических законах, и другие технологии машинного обучения. Такой подход ускоряет разработку, позволяя эффективно исследовать несколько конструкций параллельно. Тем не менее, оптимизация стеллараторов остаётся сложной междисциплинарной задачей, требующей учёта множества факторов в области науки, компьютерного моделирования и физики плазмы. Для достижения наилучших результатов в производстве термоядерной энергии необходимо тщательно анализировать научные и технические компромиссы, что представляет собой серьёзный вызов. Во многом компактность будущей установки Stellaris будет обеспечена высокотемпературными сверхпроводящими магнитами (HTS). Это станет ключевым нововведением, повышающим эффективность и уменьшающим габариты реактора. Благодаря более мощным магнитным полям HTS-технология позволит значительно сократить размеры установки. Кроме того, по данным Proxima Fusion, HTS-магниты обладают большей стабильностью и менее чувствительны к температурным колебаниям по сравнению с низкотемпературными сверхпроводниками. Это упрощает требования к криогенным условиям и снижает энергопотребление системы. Чтобы в течение следующего десятилетия внедрить термоядерную энергетику в энергосистему, компания Proxima Fusion активно ищет финансирование, партнёров и работает над получением разрешений от регулирующих органов. К 2027 году компания намерена завершить проектирование «Альфы» — первого в мире термоядерного устройства, демонстрирующего коэффициент Q>1 (чистую выработку энергии) в стабильном состоянии. В настоящее время ведётся сбор средств для создания прототипа модели Stellaris. Во Франции зажгли «искусственное солнце» на рекордные 22 минуты — на 25 % дольше, чем в Китае
19.02.2025 [14:17],
Геннадий Детинич
Учёные из Франции на 25 % превзошли последнее достижение китайских коллег в сфере удержания плазмы в термоядерном реакторе типа токамак. Установка WEST института CEA проработала в течение 22 минут, тогда как китайский токамак EAST «горел» 17 минут 46 секунд. Европейские исследователи продемонстрировали возможность достижения устойчивой термоядерной реакции, хотя их эксперимент носил академический характер. ![]() Источник изображений: CEA Установка WEST была введена в строй в 1988 году как реактор Tore Supra. С 2010 по 2013 год она прошла существенную модернизацию и после неё получила новое название — WEST, где буква W является химическим обозначением вольфрама, из которого изготовлено внутреннее покрытие рабочей камеры реактора. Поскольку реактор был модернизирован относительно недавно, он всё ещё не достиг своего предельного потенциала. Однако даже на данном этапе проведённые на нём эксперименты по удержанию высокотемпературной плазмы впечатляют. В ходе последнего эксперимента, как сообщили в CEA, реактор WEST удерживал плазму в течение 22 минут, что стало новым мировым рекордом, ранее принадлежавшим китайским учёным. Однако на этом информация обрывается — французские исследователи не раскрыли дополнительных деталей эксперимента. Стоит отметить, что китайские учёные также не раскрывают всю информацию, позволяющую объективно оценить их достижения в области удержания термоядерной плазмы. Для поддержания термоядерной реакции в земных условиях температура ионной плазмы в рабочей камере реактора должна быть не ниже 100 млн °C. Пока что китайским исследователям удалось разогреть до такой температуры только электронную плазму, что является менее сложной задачей. Французские учёные, установившие новый рекорд, также не предоставили данных о температуре в рабочей камере. Поэтому остаётся лишь ждать соответствующих публикаций в научных журналах. ![]() Плазма в рабочей камере реактора Несмотря на недосказанность, практическая ценность эксперимента очевидна — он направлен на отработку режимов и материалов, которые могут найти применение в международном термоядерном проекте ITER. Поэтому любой вклад в это общее дело представляет большую ценность. В Китае зажгли «искусственное солнце» на рекордные 17 мин 46 с — оно было в 6,6 раз горячее настоящего Солнца
21.01.2025 [19:00],
Геннадий Детинич
20 января 2025 года китайский экспериментальный термоядерный реактор EAST установил новый рекорд по удержанию электронной плазмы. Реакция поддерживалась 1066 секунд, что без малого в три раза дольше предыдущего рекорда. Почти всё это время температура плазмы была в районе 100 млн °C, что в шесть раз больше, чем в ядре нашей звезды. Недавно реактор завершил очередной этап модернизации и готов к новым рекордам. ![]() Experimental Advanced Superconducting Tokamak снаружи. Источник изображения: SCMP Предыдущий рекорд реактор EAST (Experimental Advanced Superconducting Tokamak или токамак HT-7U), расположенный в городе Хэфэй провинции Аньхой, установил в апреле 2023 года. Тогда термоядерная реакция на установке поддерживалась 403 секунды с температурой плазмы 100 млн °C. Увеличение времени непрерывной работы реактора до 1000 секунд считается ключевым для достижения последующих целей как по увеличению времени поддержки высочайшей температуры плазмы, так и по повышению верхнего предела температуры. Для запуска термоядерной реакции в Солнце сверхвысокие температуры не нужны. В ядре звезды «всего» 15 млн °C. Для сближения ионов водорода и запуска синтеза гелия ядра атомов должны сблизиться до включения в работу сильного ядерного взаимодействия, преодолев электрическое отталкивание. Кроме температуры в этом помогает сильная гравитация — масса самого Солнца (это воздействие также эквивалентно давлению). На Земле в камере реактора развить такое давление невозможно, поэтому приходится «давить» на ядра повышением температуры. И заявленные китайскими учёными 100 млн °C мало для запуска реакции на Земле. Во всех предыдущих случаях речь шла о температуре электронной плазмы. В связи с рекордами китайских термоядерных установок об ионной плазме никогда отдельно не сообщалось. В то же время до 100 млн °C необходимо нагреть именно ионную плазму — это лишённые электронов ядра, которые, собственно, и вступают в реакцию синтеза. По каким-то причинам китайская сторона не спешит рассказывать о рекордах в разогреве ионной плазмы. И всё же, новая планка высоты взята. Почти 18 минут реактор EAST поддерживал в камере температуру 100 млн °C. Это важно как с точки зрения поддержания стабильности установки (плазмы), так и с позиций отработки технологий и поиска новых методов работы с реактором, материалами и прочим, без чего невозможно движение вперёд. Термоядерный реактор всего за $10 млн удерживал плазму при 300 000 °С в течение 20 с
12.11.2024 [19:35],
Сергей Сурабекянц
Новозеландская компания OpenStar была основана Рату Матаирой (Ratu Mataira) в 2021 году в его квартире в Веллингтоне. А теперь стартап сообщил, что смог создать и удерживать плазменное облако температурой около 300 000 °С в течение 20 секунд в своём экспериментальном реакторе. Матаира утверждает, что вместе со своими сотрудниками добился такого результата на пути к полноценному термоядерному синтезу за два года, потратив менее $10 млн. ![]() Один из элементов реактора. Источник изображения: OpenStar Для ядерного синтеза требуются гораздо более высокие температуры, но OpenStar подчёркивает оригинальную масштабируемую конструкцию реактора, пригодную для коммерциализации. Перспектива термоядерного синтеза, при котором изотопы водорода сталкиваются внутри плазмы, высвобождая огромные объёмы энергии, манила исследователей на протяжении десятилетий. ![]() Источник изображений: ft.com В последние годы значительное финансирование направлялось на стартапы в области термоядерного синтеза — инвесторы делают ставку на то, что этот процесс может обеспечить дешёвую, экологически чистую энергию. Однако технология всё ещё находится в стадии разработки, и эксперты пока не называют сроков её коммерческого успеха. Несколько других проектов термоядерного синтеза, включая ITER во Франции, китайский испытательный реактор Fusion Engineering и JT-60SA в Японии, используют конструкцию «токамака», впервые разработанную советскими учёными в 1950-х годах. Устройство формирует облако плазмы внутри камеры в форме пончика, удерживаемое мощными внешними магнитами. ![]() Матаира утверждает, что в своей конструкции реактора ему удалось «вывернуть конструкцию токамака наизнанку». Вместо внешних магнитов он использовал левитирующий высокотемпературный сверхпроводящий магнит, расположенный внутри перегретой плазмы. Плазма удерживается внутри вакуумной камеры в пределах силовых линий магнита с севера на юг. «Основная инженерная задача заключается в том, как заставить магнит, окружённый плазмой, работать достаточно долго», — сообщил Матаира. Сейчас левитирующий магнит работает от батареи, которая требует подзарядки через 80 минут. Такая конструкция реактора впервые была разработана учёными Массачусетского технологического института. По мнению Матаиры она лучше масштабируется, чем реакторы токамак, потому что её легче модифицировать. «Строительство токамака похоже на строительство корабля в бутылке, — пояснил Матаира. — Каждое принятое решение по проектированию влияет на все остальные системы». ![]() Деннис Уайт (Dennis Whyte), профессор Массачусетского технологического института и соучредитель американской компании Commonwealth Fusion Systems, занимающейся термоядерным синтезом, заявил, что он «в восторге» от построенного OpenStar реактора. По его мнению, «это добавляет захватывающую возможность к разнообразным подходам к термоядерному синтезу». Глава OpenStar ожидает, что термоядерный синтез уже через шесть лет может стать коммерческой технологией. «Мы с энтузиазмом относимся к термоядерному синтезу, так как он может способствовать декарбонизации энергетического сектора, а для этого существует огромный дефицит времени», — сказал Матаира. Стоит отметить, что ещё в 1987 году Новая Зеландия приняла закон о создании безъядерной зоны в своих территориальных морских, сухопутных и воздушных пространствах. В стране нет атомных электростанций. Однако Матаира утверждает, что исследования OpenStar соответствуют законам страны о радиационной безопасности. Он уверен, что общественность осознает различие между ядерным делением и термоядерным синтезом, который не создаёт радиоактивных отходов. На сегодняшний день стартап финансируется локальными новозеландскими инвесторами, но планирует в первом квартале 2025 года привлечь от $500 млн до $1 млрд. Холодный термоядерный синтез заработал — экспериментальный реактор стартапа ENG8 вышел в плюс
19.10.2024 [19:33],
Геннадий Детинич
Удивительная новость пришла из Гибралтара. Местная компания ENG8 создала и показала в работе автономную и компактную установку по получению энергии от реакции холодного термоядерного синтеза. Эксперты с мировым именем подтвердили, что установка EnergiCells выдаёт в три раза больше энергии, чем тратит на холодный ядерный синтез. Установка работает без внешних источников питания и является первым в мире источником термоядерной энергии. ![]() Коллаж interestingengineering.com. Источник изображения: interestingengineering.com \ ENG8 Валерия Тютина (Valeria Tyutina), генеральный директор ENG8, сказала: «В то время как горячий термоядерный синтез борется за получение чистой энергии, технология катализируемого термоядерного синтеза значительно продвинулась вперед и предлагает жизнеспособный источник доступной энергии с нулевым уровнем выбросов для развития мировой экономики. Наша технология доступна для массового производства, поэтому каждый житель планеты может иметь доступ к своему собственному независимому источнику энергии». По всей видимости, речь идёт об электрохимически индуцированном ядерном синтезе, в ходе которого в электролитической ячейке происходит слияние изотопов водорода на электродах в присутствии катализатора. «Энергетические элементы соединяют ядра водорода, производя фотоны или свет, а также непосредственно электроны или электричество. В настоящее время они производят электроэнергию в масштабе от милливатт до десятков киловатт», — как объясняет работу элемента EnergiCells пресс-релиз компании. Инвестор поручил разобраться с изобретением учёного с мировым именем, Жан-Полю Бибериану (Jean-Paul Biberian), в активе у которого более 80 работ в сфере LENR (low-energy nuclear reactions, низкоэнергетических ядерных реакций). После экспертизы учёный заявил: «Технология способна обеспечить непрерывную работу, производя киловатты выходной энергии, при этом чистая выходная мощность в три раза превышает потребляемую». По словам Тютиной, у компании есть несколько промышленных заказчиков, которые доверяют этой технологии и проявили интерес к оборудованию EnergiCell мощностью от 3 МВт до 8 ГВт. Ранее представители компании делали доклады на европейских конференциях по энергетике, заверяя коллег, что технология EnergiCell не имеет побочных последствий и не производит вредных выбросов. Эксплуатация энергетических объектов с установками EnergiCell будет не дороже эксплуатации электростанций на ископаемом топливе за исключением того, что топливо не придётся покупать. Установки производят электричество и тепло. Специальная настройка допускает генерацию водорода и кислорода. На одном из последних семинаров генеральный директор Международного общества ядерных исследований конденсированных сред (ISCMNS) Алан Смит (Alan Smith), сказал: «Если бы мне пришлось делать ставку на то, какие компании LENR первыми выйдут на рынок, ENG8 вошла бы в число двух лучших». «Наши автономные энергетические ячейки обладают потенциалом для децентрализации производства энергии, обезуглероживания экономики и снижения цен на энергоносители. Это не просто продукт; это кардинальный сдвиг в сторону создания более чистой и устойчивой энергетики и более справедливого мира», — заявили в компании. Японский токамак JT-60SA установил рекорд по объёму удерживаемой плазмы — 160 кубометров
06.10.2024 [17:57],
Владимир Фетисов
Крупнейший в мире термоядерный реактор JT-60SA, созданный в рамках совместного проекта Японии и Европы, сумел достичь объёма плазмы в 160 м³. На сегодняшний день это достижение является мировым рекордом, и оно было официально зафиксировано представителями Книги рекордов Гиннесса. ![]() Источник изображения: interestingengineering.com Экспериментальное устройство JT-60SA известно как крупнейший в мире токамак. Она находится в городе Нака в префектуре Ибараки в Японии. Установка была запущена в прошлом году с целью скорейшего начала практического применения энергии термоядерного синтеза. В ходе одного из экспериментов на JT-60SA, проведённого в начале сентября, учёными был достигнут объём плазмы в 160 м³, что значительно превосходит предыдущий рекорд в 100 м³ плазмы. Об этом сообщили в Японском национальном институте квантовых и радиологических наук. В дальнейшем учёные планируют применить знания, которые были получены при создании JT-60SA, в других термоядерных реакторах, включая европейскую установку ITER. Для удержания плазмы внутри камеры реактора используется сочетание создаваемого катушками внешних сверхпроводящих магнитов тороидального магнитного поля и радиального полоидального поля, возникающего при прохождении тока в плазме. В установке задействованы сверхпроводящие магниты, охлаждённые до -269 градусов. Это позволяет удерживать внутри камеры плазму, температура которой может достигать 100 млн градусов. Полученные в ходе экспериментов данные могут способствовать достижению контроля плазмы в больших объёмах, что будет полезно в ходе дальнейшей работы с ещё более крупными реакторами ITER и DEMO. Установка DEMO будет создана на основе JT-60SA и ITER, она будет представлять собой устройство для демонстрации процесса выработки электроэнергии и экономической эффективности термоядерной энергии. Британский тинейджер построил первый в мире школьный термоядерный реактор и получил в нём плазму
20.08.2024 [11:26],
Геннадий Детинич
Старшеклассник Кардиффского колледжа в Великобритании создал первый в мире школьный термоядерный реактор, который смог получить плазму. Самым сложным было убедить учителей в безопасности проекта, когда он пришёл к ним с этим предложением. После полутора лет работы и с затратами чуть выше $10 тыс. проект был воплощён в железе и добыл первую плазму. ![]() Школьный инерциальный электростатический термоядерный реактор. Источник изображения: Cesare Mencarini Разработку настольного термоядерного реактора предложил 17-летний Чезаре Менкарини (Cesare Mencarini). Работа выполнялась в рамках двухлетней образовательной программ A-Levels, которая даёт возможность подготовиться для поступления в высшие учебные заведения страны или зарубежные. Первой реакцией преподавателей на предложение построить в школе термоядерный реактор было беспокойство о последствиях его запуска. Также студент затребовал значительную сумму на расходы — £20 тыс. В итоге он получил разрешение и всего £8 тыс., что заставило серьёзно поработать над оптимизацией конструкции реактора. Источники и сам проектировщик не сообщают о параметрах достигнутой в реакторе плазмы (она была получена в июне 2024 года). Заявлено только о достижении разрежения в рабочей камере на уровне 0,008 мм ртутного столба с помощью вакуумного насоса TRIVAC D 2.5 E и о подаче питания напряжением 30 кВ от источника питания Unilab мощностью 5 кВ. Поскольку токи там предельно слабые, школьная электропроводка не рисковала пострадать. ![]() Плазма в рабочей камере школьного реактора Созданный школьником реактор был показан на Кембриджском фестивале науки, где получил высокую оценку и заслуженный интерес посетителей. В мире, где все начинают кичиться цифровыми достижениями, представить что-то материальное и из ряда вон выходящее — такое дорогого стоит. С другой стороны, созданный Чезаре реактор не является чем-то исключительным. Это так называемый фузор. В Книге рекордов Гиннеса есть свой рекордсмен по созданию термоядерных реакторов (фузоров) — это американский школьник Джексон Освальт, получивший первую плазму в 12 лет. Майонез помог учёным в изучении термоядерного синтеза
07.08.2024 [13:19],
Геннадий Детинич
Группа учёных из Лихайского университета (Lehigh University) в штате Пенсильвания несколько последних лет использует для моделирования неустойчивости плазмы на границе раздела сред обычный майонез. Его поведение достаточно точно имитирует физику топливных капсул в ходе реакции инерциального управляемого термоядерного синтеза. Новая работа учёных посвящена изучению фаз неустойчивости плазмы на основе наблюдений за поведением майонеза на стенде. ![]() Источник изображения: ИИ-генерация Кандинский 3.0/3DNews Как известно, инерциальный управляемый термоядерный синтез опирается на удар лазерами (или током) по топливной капсуле в центре мишени. Около двух лет назад на установке NIF в США впервые получили больше энергии на выходе, чем понадобилось для запуска термоядерной реакции. Тем не менее, реакция бомбардировки капсулы с топливом дейтерий-тритий не всегда проходит гладко. Она может взорваться не успев дать плазме прореагировать. Часть топлива успевает превратиться в газ (плазму), а часть остаётся в жидком состоянии. Майонез позволяет воссоздавать похожие процессы, которые поддаются упрощённому и безопасному анализу без постановки дорогостоящих экспериментов. «Мы всё еще работаем над той же проблемой, которая заключается в [изучении] структурной целостности термоядерных капсул, используемых в термоядерном синтезе с инерционным удержанием, и настоящий майонез Hellmann's по-прежнему помогает нам в поиске решений», — сказал Ариндам Банерджи (Arindam Banerjee), профессор машиностроения и механики в Лихайском университете и заведующий кафедрой термоядерного синтеза. «Мы используем майонез, потому что он ведет себя как твердый продукт, но при воздействии перепада давления он начинает течь, — поясняют авторы работы. — Использование соуса также устраняет необходимость в высоких температурах и давлении, которые чрезвычайно трудно контролировать». Для своих экспериментов с майонезом исследователи создали специально изготовленное и единственное в своём роде вращающееся колесо, чтобы имитировать условия течения плазмы. Как только ускорение превышало критическое значение, майонез начинал течь. В частности, учёные выяснили, что майонез ещё до начала неустойчивости проходил через несколько фазовых состояний. По мере приложения усилия к нему он становился податливым и затем переходил в стабильную пластичную фазу. На следующем этапе воздействия майонез начинал течь, и именно тогда возникала неустойчивость. По словам учёных, понимание перехода между упругой фазой и стабильной пластичной фазой имеет решающее значение, поскольку знание того, когда начинаются пластические деформации, может подсказать исследователям, когда наступит нестабильность. В новой работе учёные пытались контролировать состояние майонеза, чтобы он оставался в пределах этой эластичной или стабильно пластичной фазы. Иначе говоря, чтобы «плазма» оставалась в устойчивом состоянии и не грозила бы неконтролируемым взрывом топливной капсулы. Работа помогла измерить условия для восстановления устойчивого состояния плазмы, что стало первой работой в мире на эту тему. Другой вопрос, как соотнести полученные на майонезе результаты с настоящей плазмой в термоядерном реакторе? На него у учёных пока нет однозначного ответа. Но они над этим работают. Учёные из США на порядок повысили плотность плазмы в термоядерном реакторе, но до конца не поняли как
31.07.2024 [14:07],
Геннадий Детинич
Физики Висконсинского университета в Мэдисоне сообщили о знаковом достижении — они сумели на порядок увеличить плотность плазмы в термоядерном реакторе типа токамак. Ранее это считалось невозможным, поскольку существует предел для этой величины. По крайней мере, немыслимо было мечтать о 10-кратном превышении порога, что также ведёт к увеличению выхода энергии рукотворной термоядерной реакции. ![]() Madison Symmetric Torus. Источник изображения: University of Wisconsin-Madison Справедливости ради отметим, что учёные из Висконсина провели работу на университетском реакторе Madison Symmetric Torus (MST). Эта установка отличается от классического токамака управлением и рядом особенностей конструкции и, наверное, ближе к стеллараторам, чем к токамакам. Точное название этого типа токамака — пинч с обращённым полем (Reversed Field Pinch). Установка RFP изначально обеспечивает повышенную по сравнению с классическими токамаками плотность плазмы, но сути открытия это не меняет. Учёные смогли в 10 раз повысить плотность плазмы внутри рабочей камеры и могут помочь распространить свой метод на другие типы токамаков. Предел плотности плазмы в рабочей камере токамака называют пределом Гринвальда. Эта величина получена опытным путём и не до конца обоснована теорией. Учёные из Висконсина считают ключом к своему успеху два момента: особенность конструкции токамака MST (прежде всего, более толстые стенки рабочей камеры, что стабилизирует магнитные поля в рабочей зоне), а также особенный источник питания, который допускает регулировку на основе обратной связи (опять же, решающее значение для стабильности). «Максимальная плотность, по-видимому, устанавливается аппаратными ограничениями, а не нестабильностью плазмы», — пишут исследователи. Две ключевые характеристики токамака MST, похоже, сыграли в этом открытии решающую роль, которую ещё предстоит изучить и объяснить. «Остаются вопросы о том, почему, в частности, MST способен работать с превышением порога Гринвальда и до какой степени эта способность может быть расширена до более высокопроизводительных устройств», — делятся учёные в статье в журнале Physical Review Letters. Ответы на эти вопросы, надо полагать, способны приблизить тот светлый миг, когда на Земле зажжётся «искусственное Солнце». И хорошо, если учёные будут понимать, почему и как это происходит без догадок и белых пятен в теории и на практике. Запуск термоядерного реактора ИТЭР отодвинули на 2039 год — бюджет раздуется ещё на $5,4 млрд
03.07.2024 [20:23],
Сергей Сурабекянц
Испытания международного термоядерного экспериментального реактора (ИТЭР) будут отложены на годы, а затраты возрастут на $5,4 млрд. Это нанесёт новый удар по и без того невероятно дорогому крупнейшему в мире эксперименту по термоядерной энергетике. Согласно первоначальному плану, первую плазму на ИТЭР, который строится во Франции с участием 33 стран, включая Россию, должны были получить в 2025 году. Теперь это официально признано невозможным. Сектора вакуумной камеры, где должна циркулировать плазма, оказались изготовленными с несоблюдением размеров, также выявлены дефекты сварки в трубах системы охлаждения. Эти проблемы вынуждают усомниться, что термоядерный синтез, как источник безграничной чистой энергии, будет запущен на ИТЭР в обозримом будущем. Новый глава ИТЭР — Пьетро Барабаски (Pietro Barabaschi) — подчеркнул, что даже без выявления брака прежние сроки выдержать было нельзя, настолько затянулось строительство. «Конечно, задержка ИТЭР идёт не в правильном направлении, — заявил Барабаски во время сегодняшнего брифинга. — Что касается влияния ядерного синтеза на проблемы, с которыми сейчас сталкивается человечество, нам не следует ждать, пока ядерный синтез решит их. Это неразумно». Ранее Барабаски уже сообщил, что начальная фаза операций, которая заключается в запуске дейтерий-дейтериевых реакций для синтеза трития, перенесена на 2035 год, а полноценные испытания реактора теперь начнутся не раньше 2039 года, что на четыре года отстаёт прежних прогнозов. ![]() Источник изображения: ITER Уже второй раз за восемь лет ИТЭР приходится пересматривать свой бюджет и сроки. Первоначально планировалось, что стоимость проекта составит около $5 млрд, а испытания начнутся в 2020 году. На сегодняшний день бюджет превысил $22 млрд, а дата испытаний не установлена. Дополнительные расходы, по словам Барабаски, составят около $5,4 млрд. Задержка ИТЭР может привести к тому, что на первый план выйдут термоядерные проекты, финансируемыми из частных источников. Компании Commonwealth Fusion Systems и Tokamak Energy используют меньшие версии такого же реактора и планируют начать испытания прототипов в этом десятилетии. ![]() Источник изображения: Culham Centre for Fusion Energy Барабаски «очень скептически относится» к тому, что любые стартапы, обещающие коммерческую эксплуатацию к 2040 году, смогут достигнуть своих целей. «Даже если бы сегодня нам удалось запустить термоядерный синтез, я не верю, что мы сможем осуществить его коммерческое внедрение к 2040 году, — сказал он. — Нам придётся решить ряд других технических проблем, чтобы сделать его коммерчески жизнеспособным». В Китае создали первый в мире термоядерный реактор на высокотемпературной сверхпроводимости
21.06.2024 [22:15],
Геннадий Детинич
Молодая китайская компания Energy Singularity, основанная в 2021 году, завершила создание и приняла в эксплуатацию первый в мире термоядерный реактор типа токамак на катушках с высокотемпературной сверхпроводимостью. Новое решение позволяет создавать крайне компактные и поэтому недорогие коммерческие термоядерные реакторы и электростанции. ![]() Источник изображений: Energy Singularity Утверждается, что размеры инновационного реактора составляют всего 2 % от установок на обычных сверхпроводящих катушках. На новом реакторе под названием HH70, размещённом в восточном районе Шанхая, будут проверены основные наработки, что позволит создать к 2027 году опытный реактор следующего поколения, а к 2030 году демонстратор термоядерной электростанции. В качестве материала для сверхпроводящих катушек используется относительно дешёвое соединение ReBCO (редкоземельный оксид бария-меди). В Китае научились выпускать ленту из ReBCO в массовых количествах. Она востребована для маглевов будущего и не только. Токамаки, как видим, тоже выиграют от перехода на сверхпроводящие магниты. ![]() Следующее поколение опытного реактора Energy Singularity должно выйти на показатель эффективности 1:10, выработав в 10 раз больше энергии, чем пошло на разогрев плазмы. Если этот показатель будет достигнут, то первый демонстратор термоядерной электростанции в исполнении Energy Singularity появится через каких-то пять лет, что пока воспринимается как фантастика. Запуск «искусственного Солнца» официально отложен — первые операции на термоядерном реакторе ИТЭР перенесли на 2035 год
21.06.2024 [12:11],
Геннадий Детинич
Вчера был последний день заседания Совета ИТЭР, в ходе которого были определены новые временные рамки ключевых этапов реализации проекта по строительству масштабного термоядерного реактора. Задержки могут составить до 10 лет. Это сделает проект дороже, но в целом не повлияет на достижение поставленных десять лет назад задач — зажечь на Земле «искусственное Солнце» и получить почти бесконечный источник чистой энергии. ![]() Площадка ИТЭР в сентябре 2023 года. Источник изображения: ITER/EJF Riche Согласно первоначальному плану, первую плазму на реакторе ИТЭР (ITER), который строится во Франции с участием 33 стран, включая Россию, должны были получить в 2025 году. Теперь это официально признано невозможным. Сектора вакуумной камеры, где должна циркулировать плазма, оказались изготовленными с несоблюдением размеров, что теперь приходится исправлять, а также выявлены дефекты сварки в охлаждающих трубах кожуха вакуумной камеры, что вынудило менять десятки километров труб. Новый глава ИТЭР — Пьетро Барабаски (Pietro Barabaschi) — подчеркнул, что даже без выявления брака прежние сроки выдержать было нельзя, настолько затянулось строительство. Более подробный отчёт и новые даты этапов ввода реактора в строй гендиректор проекта озвучит в июле на брифинге. Пока же он заявляет, что начальная фаза операций, которая заключается в запуске дейтерий-дейтериевых реакций для синтеза трития, перенесена на 2035 год. Ранее на этот год были запланированы первые полноценные термоядерные реакции на установке на дейтерий-тритиевом топливе. Новые сроки не означают, что все научные операции на проекте сдвинуты на десять лет. Эксперименты с малыми токами плазмы начнутся раньше по мере сборки реактора. Вероятно также, что первая плазма начнёт генерироваться раньше 2035 года. В конечном итоге задача ИТЭР — набить как можно больше шишек, чтобы на его примере постройка всех последующих коммерческих реакторов шла как можно глаже. Все страны-участницы проекта, представленные на Совете ИТЭР, с этим безоговорочно согласились. Реактор ИТЭР не предназначен для генерации электрического тока. Эта задача будет возложена на другой международный проект — DEMO, который подразумевает постройку уже электростанции на термоядерном реакторе типа токамак. В задачи ИТЭР входит доказательство концепции — работы масштабного термоядерного реактора по схеме токамака. В идеале реактор должен выдавать мощность 500 МВт не менее 400 с без перерыва при потреблении 50 МВт непосредственно на нагрев плазмы. Вспомогательные структуры реактора при этом могут дополнительно потреблять 300 МВт, но для опытной установки это мелочи. Выход энергии всё равно будет положительным. Жаль только, что он опять откладывается. Корейский термоядерный реактор на рекордные 48 секунд зажёг плазму, которая в семь раз горячее ядра Солнца
29.03.2024 [22:44],
Геннадий Детинич
Южнокорейский институт термоядерной энергетики (KFE) сообщил о достижении нового рекорда по времени удержания плазмы реактором KSTAR. К декабрю 2023 года реактор подвергся частичной модернизации, что позволило поднять планку его возможностей. Первые три месяца его работы в новой конфигурации позволили превзойти предыдущий рекорд удержания плазмы с температурой 100 млн °C и приблизиться к новому целевому показателю. ![]() Источник изображения: Korea Institute of Fusion Energy (KFE) В ходе предыдущей серии экспериментов термоядерный реактор KSTAR смог удерживать ионную плазму с температурой 100 млн °C в течение 30 секунд. Это в семь раз жарче, чем в ядре нашего Солнца. В звёздах термоядерную реакцию синтеза в основном запускает не температура, а высочайшая гравитация (и квантовая неопределённость). На Земле мы не может создать подобного гравитационного сжатия в реакторах, поэтому приходится компенсировать эту нехватку запредельными температурами. Важно подчеркнуть, что корейцы практически всегда говорят о нагреве ионной плазмы — о нагреве атомов водорода или его изотопов, тогда как китайские учёные сообщают о достижении рекордного времени удержания обычно электронной плазмы, которая в рабочей зоне может быть в два раза горячее ионной. Для термоядерной реакции ключевым является нагрев атомов, а не электронов. Поэтому «корейские 100 млн» — это правильные 100 млн, которые, в итоге, определят работоспособность будущих коммерческих реакторов. По плану в этом году модернизированный реактор KSTAR должен удержать стабильную ионную плазму с температурой 100 млн °C в течение 50 секунд. В ходе первого пробного запуска плазма оставалась стабильной 48 с. Также учёные смогли 100 секунд удерживать плазму в «высокоплотном режиме», что также поможет выйти со временем на коммерческие параметры. Повысить длительность удержания плазмы на максимальной температуре помогла модернизация реактора. В частности, углеродные плитки температурной защиты дивертов на дне рабочей камеры были заменены на вольфрамовые. Сообщается, что благодаря этому плитки диверторов нагрелись всего до 25 % от прежнего уровня, что позволит ещё дольше удерживать непрерывный цикл плазмы. Так что впереди новые рекорды и планы зажечь плазму на 300 секунд в 2026 году. |