Сегодня 02 сентября 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → токамак

Термоядерный реактор всего за $10 млн удерживал плазму при 300 000 °С в течение 20 с

Новозеландская компания OpenStar была основана Рату Матаирой (Ratu Mataira) в 2021 году в его квартире в Веллингтоне. А теперь стартап сообщил, что смог создать и удерживать плазменное облако температурой около 300 000 °С в течение 20 секунд в своём экспериментальном реакторе. Матаира утверждает, что вместе со своими сотрудниками добился такого результата на пути к полноценному термоядерному синтезу за два года, потратив менее $10 млн.

 Источник изображения: OpenStar

Один из элементов реактора. Источник изображения: OpenStar

Для ядерного синтеза требуются гораздо более высокие температуры, но OpenStar подчёркивает оригинальную масштабируемую конструкцию реактора, пригодную для коммерциализации. Перспектива термоядерного синтеза, при котором изотопы водорода сталкиваются внутри плазмы, высвобождая огромные объёмы энергии, манила исследователей на протяжении десятилетий.

 Источник изображений: ft.com

Источник изображений: ft.com

В последние годы значительное финансирование направлялось на стартапы в области термоядерного синтеза — инвесторы делают ставку на то, что этот процесс может обеспечить дешёвую, экологически чистую энергию. Однако технология всё ещё находится в стадии разработки, и эксперты пока не называют сроков её коммерческого успеха.

Несколько других проектов термоядерного синтеза, включая ITER во Франции, китайский испытательный реактор Fusion Engineering и JT-60SA в Японии, используют конструкцию «токамака», впервые разработанную советскими учёными в 1950-х годах. Устройство формирует облако плазмы внутри камеры в форме пончика, удерживаемое мощными внешними магнитами.

Матаира утверждает, что в своей конструкции реактора ему удалось «вывернуть конструкцию токамака наизнанку». Вместо внешних магнитов он использовал левитирующий высокотемпературный сверхпроводящий магнит, расположенный внутри перегретой плазмы. Плазма удерживается внутри вакуумной камеры в пределах силовых линий магнита с севера на юг.

«Основная инженерная задача заключается в том, как заставить магнит, окружённый плазмой, работать достаточно долго», — сообщил Матаира. Сейчас левитирующий магнит работает от батареи, которая требует подзарядки через 80 минут.

Такая конструкция реактора впервые была разработана учёными Массачусетского технологического института. По мнению Матаиры она лучше масштабируется, чем реакторы токамак, потому что её легче модифицировать. «Строительство токамака похоже на строительство корабля в бутылке, — пояснил Матаира. — Каждое принятое решение по проектированию влияет на все остальные системы».

Деннис Уайт (Dennis Whyte), профессор Массачусетского технологического института и соучредитель американской компании Commonwealth Fusion Systems, занимающейся термоядерным синтезом, заявил, что он «в восторге» от построенного OpenStar реактора. По его мнению, «это добавляет захватывающую возможность к разнообразным подходам к термоядерному синтезу».

Глава OpenStar ожидает, что термоядерный синтез уже через шесть лет может стать коммерческой технологией. «Мы с энтузиазмом относимся к термоядерному синтезу, так как он может способствовать декарбонизации энергетического сектора, а для этого существует огромный дефицит времени», — сказал Матаира.

Стоит отметить, что ещё в 1987 году Новая Зеландия приняла закон о создании безъядерной зоны в своих территориальных морских, сухопутных и воздушных пространствах. В стране нет атомных электростанций. Однако Матаира утверждает, что исследования OpenStar соответствуют законам страны о радиационной безопасности. Он уверен, что общественность осознает различие между ядерным делением и термоядерным синтезом, который не создаёт радиоактивных отходов.

На сегодняшний день стартап финансируется локальными новозеландскими инвесторами, но планирует в первом квартале 2025 года привлечь от $500 млн до $1 млрд.

Термоядерный рекорд: токамак WEST шесть минут удерживал плазму при 50 млн °C

Французский токамак WEST установил новый рекорд — он удерживал плазму с температурой около 50 млн градусов Цельсия в течение 6 минут. Это стало возможным благодаря использованию внутренней облицовки реактора вольфрамом — металлом с чрезвычайно высокой температурой плавления в 3420 °C.

 Источник изображение: Токамак WEST/CEA-IRFM

Источник изображение: Токамак WEST/CEA-IRFM

Ранее токамаки (тороидальная камера с магнитными катушками) использовали углеродную облицовку, которая ограничивала время удержания и температуру плазмы. Вольфрам же позволяет достичь более высокой плотности и температуры плазмы, необходимых для поддержания термоядерной реакции. В ходе последнего эксперимента WEST затратил на запуск термоядерной реакции 1,15 ГДж энергии, сообщает издание Quartz.

«Это прекрасные результаты, — сказал Ксавье Литаудон (Xavier Litaudon), ученый из Французской комиссии по атомной энергии (CEA). — Мы достигли стационарного режима, несмотря на сложные условия из-за этой вольфрамовой стенки».

Исследователи из Принстонской лаборатории физики плазмы (Princeton Plasma Physics Laboratory, PPPL) принимали участие в экспериментах на WEST, используя детекторы рентгеновского излучения для измерения параметров плазмы. По их словам, вольфрамовая среда намного сложнее для работы по сравнению с углеродом, но зато открывает больше перспектив.

До сих пор ни одна установка не могла удерживать столь горячую плазму столь длительное время. А ведь именно температура и время удержания являются ключевыми параметрами на пути к практическому использованию термоядерной энергии. Чем выше температура и чем дольше она поддерживается, тем больше шансов запустить самоподдерживающуюся термоядерную реакцию.

Это достижение имеет важное значение для разработки коммерчески жизнеспособного термоядерного реактора. В отличие от традиционных АЭС, использующих деление ядер урана, в термоядерном реакторе происходит слияние легких атомных ядер с выделением колоссальной энергии. Потенциально это может дать практически неисчерпаемый источник энергии без радиоактивных отходов. Однако на пути к коммерциализации термоядерной энергетики еще стоит много трудностей. Нужно решить проблемы устойчивого удержания плазмы, её нагрева до температур в десятки и сотни миллионов градусов, эффективной передачи выделяемой энергии. Поэтому каждое новое достижение в этой области имеет большое значение.

Интересно, что не так давно рекорд по времени удержания плазмы, в более чем в 100 миллионов градусов в течение 20 секунд, поставил корейский токамак KSTAR, заменив углеродный дивертор на вольфрамовый, который удвоил предел теплового потока реактора.

Хотя практическое применение энергии термоядерного синтеза еще далеко, однако каждое подобное достижение приближает нас к заветной цели — чистому и практически неисчерпаемому источнику энергии, а роль вольфрама в этом может оказаться незаменимой.


window-new
Soft
Hard
Тренды 🔥
7 из 10 человек теперь заходят в интернет через Google Chrome — Edge и Safari сильно отстают 2 мин.
YouTube начал блокировать семейные Premium-подписки, если их участники не живут вместе 6 мин.
Capcom объяснила резкое падение продаж Monster Hunter Wilds дороговизной PS5 19 мин.
В стандартной клавиатуре для Android появилась настройка размера шрифта 56 мин.
«Абсолютная ложь»: Google прокомментировала слухи о серьёзной дыре в безопасности Gmail 57 мин.
Неудачные соблазнения, похороны и разводы: Paradox раскрыла статистику игроков Crusader Kings 3 за последний год 2 ч.
Google обновит аккаунты в Play Games — они станут похожими на профили в Steam 2 ч.
«Сделано ИИ»: DeepSeek добавила обязательную маркировку ИИ-контента и запретила её удалять 3 ч.
«Рэйман в надёжных руках»: Ubisoft обратилась к игрокам по случаю 30-летия Rayman 3 ч.
MWS Cloud в 1,5 раза увеличила мощности GPU-облака для искусственного интеллекта 13 ч.