Сегодня 11 декабря 2023
18+
MWC 2018 2018 Computex IFA 2018
Теги → транзисторы
Быстрый переход

В Швейцарии создали первый процессор на 2D-транзисторах, которому не нужна внешняя память

Сегодня классическая компьютерная архитектура фон-Неймана стала препятствием для наращивания вычислительных возможностей. Частично вина за это лежит на обмене данными процессора с внешней памятью. Хранение данных в процессоре — где они обрабатываются — многократно помогло бы снизить потребление компьютеров. Первый такой процессор для задач ИИ создали в Швейцарии. В его основе лежат новые атомарно тонкие полупроводники, а не кремний.

 Источник изображения: EPFL

Источник изображения: EPFL

Исследователи из Федеральной политехнической школы Лозанны (EPFL) опубликовали в журнале Nature Electronics статью, в которой сообщили о создании процессора из 1024 транзисторов на основе дисульфида молибдена (MoS2). Они не первые, кто обратил внимание на этот полупроводник. Слой дисульфида молибдена имеет толщину в три атома и неплохо зарекомендовал себя в опытных разработках в качестве рабочего канала транзисторов. По большому счёту его можно рассматривать как графен в мире полупроводников. Его характеристики и методы получения во многом напоминают работу с моноуглеродными слоями.

Свой первый образец MoS2 исследователи из EPFL 13 лет назад получали с помощью скотча, отбирая липкой лентой с основы чешуйки материала. Сегодня они уже могут производить целые пластины дисульфида молибдена, из которых, в частности, был изготовлен кристалл процессора площадью 1 см2. И поскольку это полупроводник, технологию производства таких процессоров можно будет внедрять на действующих заводах, где уже обрабатывается кремний.

Каждый транзистор из MoS2 в опытном процессоре также содержит управляющий плавающий затвор. Затвор предназначен для хранения бита данных и для управления транзистором. Данные вычислений остаются в процессоре и участвуют в дальнейшей работе процессора. Никуда вовне обрабатываемые данные не пересылаются и ниоткуда не загружаются. Мы просто подаём на вход процессора информацию для обработки, а на выходе получаем готовый результат.

Представленный прототип процессора с вычислениями в памяти предназначен для выполнения одной из фундаментальных операций обработки данных — векторно-матричного умножения. Эта операция повсеместно используется при цифровой обработке сигналов и реализации моделей искусственного интеллекта. Очевидно, что сегодня такие решения находятся на пике спроса. Как уверяют разработчики, создав масштабный рабочий прототип, они доказали возможность переноса проекта на заводы для массового выпуска.

Отдельно исследователи заявили, что разработка дошла до своей реализации благодаря усиленному финансированию со стороны властей Европейского союза, который стремится вернуть Европе звание лидера рынка полупроводников.

В США создали транзистор для управления теплом — он поможет с терморегуляцией в микросхемах

Исследователи из Калифорнийского университета разработали первый в мире полевой транзистор, который управляет не электрическим током, а передачей тепла. Скорость переключения уникального прибора достигает 1 МГц. Он может быстро, дозировано и даже с увеличением мощности передавать тепло по цепи, что открывает целый спектр новых приложений для терморегуляции в электронике и не только.

 Источник изображения: H-Lab/UCLA

Источник изображения: H-Lab/UCLA

Обычному полевому транзистору в этом году исполнится 76 лет (это произойдёт 16 декабря). Эти приборы управляют проводимостью полупроводникового канала с помощью электромагнитного поля, дозируя прохождение потока электронов от истока к стоку. Термотранзистор работает по тому же принципу, но только с помощью электромагнитного поля он регулирует теплопроводность канала.

По словам учёных, прототип показал способность быстро и точно переключать теплопроводность канала, управляя тепловым сопротивлением на границе раздела нескольких материалов в канале. Прибор показал способность менять тепловое сопротивление до 1300 %. Иначе говоря, он может не только включать и выключать тепловой поток от источника, но также значительно его усиливать.

Предложенные термотранзисторы полностью твердотельные, что позволит выпускать их в одном технологическом процессе с обычными микросхемами. В составе чипов они будут с предельной точностью и скоростью регулировать тепловой отвод от нужных участков кристалла, тогда как обычные средства отвода тепла обладают большой инерцией и плохо поддаются регулировке.

Наконец, те фундаментальные основы физики, которые помогли разработать термотранзистор, послужат толчком к пониманию механизмов переноса тепла живыми клетками и, в итоге, дадут возможность учёным разобраться с терморегуляцией тела человека, процессы которой науке до конца ещё не ясны.

Samsung раскрыла подробности о 1,4-нм техпроцессе — компания повторит разработку Intel

На днях вице-президент подразделения Samsung по контрактному производству чипов Чон Ги Тхэ (Jeong Gi-Tae) в интервью изданию The Elec сообщил, что в будущем техпроцессе SF1.4 (класс 1,4 нм) количество каналов в транзисторах будет увеличено с трёх до четырех, что принесёт с собой ощутимые преимущества в плане производительности и энергопотребления. Это произойдёт на три года позже выпуска аналогичных по строению транзисторов Intel, что заставит Samsung догонять конкурента.

 Источник изображения: Samsung

Источник изображения: Samsung

Компания Samsung первой начала выпускать транзисторы с затвором, полностью окружающим каналы в транзисторах (SF3E). Это произошло больше года назад и используется довольно избирательно. Например, такого рода 3-нм техпроцесс задействован для выпуска чипов для майнеров криптовалюты. Каналы в транзисторах в новом техпроцессе представляют собой тонкие нанолисты, размещённые друг над другом. В транзисторах Samsung три таких канала, которые со всех четырёх сторон окружены затвором и поэтому ток через них течёт под точным контролем с минимальными утечками.

 Планы Samsung по введению новых техпроцессов

Планы Samsung по введению новых техпроцессов

Компания Intel, напротив, свои первые транзисторы с каналами-нанолистами начнёт выпускать в 2024 году с использованием 2-нм техпроцесса RibbonFET Gate-All-Around (GAA). С самого начала они будут иметь по четыре нанолистовых канала в каждом. Это означает, что GateGAA-транзисторы Intel будут более производительные, чем аналогичные по строению транзисторы Samsung, смогут пропускать больший ток и окажутся более энергоэффективными, чем транзисторы южнокорейского конкурента. Это будет длиться около трёх лет, пока Samsung не начнёт выпускать чипы на техпроцессе SF1.4, что ожидается в 2027 году. Как теперь стало известно, они тоже станут «четырёхлистовыми» — получат по четыре канала каждый вместо сегодняшних трёх.

 Архитектура будущих 2-нм транзисторов Intel с наностраничными каналами, полностью окружёнными затвором. Источник изображения: Intel

Архитектура будущих 2-нм транзисторов Intel с нанолистовыми каналами, полностью окружёнными затвором. Источник изображения: Intel

Другое дело, будет ли Samsung на самом деле отставать от Intel в плане технологичности? К тому времени у южнокорейской компании будет пять лет опыта по массовому выпуску GAA-транзисторов, тогда как Intel будет оставаться новичком. А с производством таких транзисторов вряд ли всё просто, раз Samsung использует этот техпроцесс очень и очень избирательно. В любом случае, переход на новую архитектуру транзисторов станет для отрасли полупроводников заметным прорывом и позволит ещё на несколько лет отодвинуть барьер, за которым традиционное производство полупроводников перестанет находиться на острие прогресса.

Создан гибридный транзистор на основе шёлка — перспективное сочетание кремния и биотеха

Учёные из Университета Тафтса (США) представили прототип гибридного транзистора на основе шёлка. Биологический материал включили в стандартный техпроцесс производства чипов, что обещает сделать его использование массовым. Сочетание кремния и биотехнологий позволяет гибридным электронным цепям реагировать одновременно на электрические и биологические сигналы, открывая путь к датчикам здоровья и нейропроцессорам.

 Источник изображения: Tufts University / Silklab

Источник изображения: Tufts University / Silklab

Исследователи давно ищут мостик между живым и неживым, который позволит создавать нейроинтерфейсы между электронными устройствами и живыми организмами. Перспективы подобных решений невозможно переоценить. Нейросети, подобные мозгу процессоры, датчики биологических процессов в организме людей — это многое изменит в жизни людей. Произойдёт это не завтра и не послезавтра, но рано или поздно мир станет совершенно иным.

Подтолкнут ли к этим изменениям только что представленные гибридные транзисторы, или они канут в небытие, мы пока не знаем. Но на данном этапе разработка демонстрирует ряд интересных свойств, например, способность вписаться в современные техпроцессы выпуска микросхем.

Предложенный учёными гибридный процессор в качестве изолятора (очевидно, затвора) использует материал на основе белка фиброина, входящего в состав шёлковых нитей и, например, паутины. Этот белок показал хорошую восприимчивость в процессе регулировки его ионной проводимости электронными импульсами и биомаркерами.

По сути, мы имеем дело с чем-то сильно напоминающим, как работает ячейка памяти ReRAM: насыщение ионами рабочего слоя меняет там сопротивление. Тем самым гибридный транзистор на основе шёлка вполне перекрывает область применения резистивной памяти или мемристора, как назвала его компания HP, и даже выходит за его пределы, поскольку заходит в сферу биологии.

На основе предложенного решения исследователи создали датчик дыхания, чутко реагирующий на влажность. Здоровье человека — это та сфера, которая может стать благодатной почвой для множества перспективных начинаний, и «транзистор из шёлка» вполне может стать одним из них.

В Китае разработали технологию, которая приведёт к 1-нм чипам — 300-мм пластины научились покрывать атомарно тонкими плёнками

Китайские учёные сообщили о создании технологии массового производства подложек с атомарно тонкими полупроводниковыми слоями. Новая технология масштабируется до производства 12-дюймовых (300-мм) подложек — самых массовых, продуктивных и наибольших по диаметру пластин для производства чипов. С такими пластинами транзисторы с затвором размером 1 нм и меньше станут реальностью, что продлит действие закона Мура и выведет электронику на новый уровень.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Современные технологии наращивания слоёв на подложках работают по принципу осаждения материала из точки распыления на поверхность. Для нанесения плёнок толщиной в один атом или около того на крупные пластины эта технология не предназначена. С её помощью можно инициировать рост равномерной по толщине плёнки только на небольшие пластины — примерно до 2 дюймов в диаметре. Для пластин большего диаметра и, тем более, для 300-мм подложек этот метод не годится.

В интервью изданию South China Morning Post профессор Пекинского университета Лю Кайхуи (Liu Kaihui) сообщил, что его группа разработала технологию производства атомарно тонких слоёв на любых подложках вплоть до 300-мм. В основе технологии лежит контактный метод выращивания плёнки с поверхности на поверхность. Активный материал входит в контакт с подложкой сразу по всей её поверхности, давая старт для роста плёнки равномерно во всех её точках. В зависимости от типа активного материала могут быть выращены плёнки нужного состава и даже множество плёнок друг на друге, если это потребуется.

Кроме того, учёные разработали проект установки для выращивания атомарно тонких плёнок в массовых объёмах. Согласно расчётам, одна такая установка может выпускать до 10 тыс. 300-мм подложек в год. Эта же технология подходит для покрытия подложек графеном, что позволит, наконец, внедрить этот интересный материал в массовое производство чипов.

Следует сказать, что учёные заглянули далеко вперёд. Сегодня 2D-материалы (толщиной в 1 атом) только исследуются на предмет использования в структурах 2D-транзисторов и в других качествах. До массового производства подобных решений ещё очень далеко, и предстоит провести много научной работы, пока она не воплотится в серийной продукции. Но это важнейшее направление, которое позволит совершить прорыв в производстве электроники и китайские производители внимательно следят за успехами своих учёных.

TSMC уже создала рабочие транзисторы CFET, но до их массового производства ещё очень далеко

Выступая на европейском технологическом симпозиуме представитель TSMC заявил, что в лабораториях компании уже есть рабочие микросхемы с транзисторами CFET или комплементарными FET (Сomplementary FET). Однако до выхода технологии на рынок ещё очень далеко. CFET находятся на очень ранней стадии разработки и до их массового производства на рынке ещё успеют появиться несколько поколений других типов транзисторов.

 Источник изображения: TSMC

Источник изображения: TSMC

Перед CFET ожидается выход GAA-транзисторов с круговым затвором, которые TSMC собирается представить с грядущим 2-нм технологическим процессом N2. CFET-транзисторы станут идейными наследниками GAAFET и предложат преимущества над GAAFET и FinFET в аспектах энергоэффективности, производительности и плотности размещения транзисторов. Однако все эти преимущества — пока лишь теория, которая зависит от того, смогут ли инженеры преодолеть значительные технологических сложности, связанные не только с производством, но самой разработкой этого типа транзисторов.

В частности, как отмечает TSMC, для производства транзисторов CFET потребуется применение чрезвычайно точных инструментов литографии для возможности интеграции в конструкцию транзистора и расположения рядом друг с другом полупроводниковых элементов n-типа и p-типа, а также применение максимально качественных материалов, обладающих необходимыми электрическими свойствами.

Как и любой производитель чипов, компания TSMC ведёт разработку и исследование разных типов транзисторов. И те же CFET разрабатывает не только она одна. Этот вопрос также исследует, например, компания Intel. Однако TSMC первой сообщила, что получила в лабораторных условиях работающие CFET. Теперь задача компании состоит в том, чтобы понять, как эти транзисторы вывести на массовое производство. По словам тайваньского контрактного производителя чипов, случится это точно не в ближайшем будущем.

«Позвольте мне прояснить то, что изображено на нашей дорожной карте. Всё, что находится далее нанолистов — это вопрос далёкого будущего. Мы продолжаем работу по нескольким направлениям. Я также хотел бы добавить по поводу одномерных транзисторов <…> Сейчас все [типы транзисторов] исследуются на предмет возможности стать кандидатом на будущее производство, однако мы не можем точно сказать, какая именно архитектура транзисторов будет использоваться после нанолистов», — прокомментировал вице-президент по вопросам технологического развития TSMC Кевин Чжан.

По словам Чжана, TSMC в течение нескольких лет планирует использование GAA-транзисторов для производства чипов. «Применение нанолистов начнётся с 2 нм. Логично предположить, что нанолисты будут использоваться как минимум в течение пары последующих поколений. Поэтому если говорить о CFET… мы использовали те же FinFET в течение пяти поколений, то есть более 10 лет», — добавил он.

Intel показала конструкцию транзисторов будущего CFET, но в реальных чипах они появятся нескоро

На отраслевой конференции ITF World 2023 в бельгийском Антверпене генеральный менеджер по развитию технологий Intel Энн Келлехер (Ann Kelleher) рассказала о последних разработках компании в нескольких ключевых областях. Одним из самых интересных откровений этого выступления стало то, что в будущем Intel будет использовать многослойные транзисторы CFET или комплиментарные FET (Сomplementary FET).

 Источник изображений: Intel

Источник изображений: Intel

Intel впервые отметила многослойные транзисторы CFET в рамках своей презентации, однако Келлехер не назвала сроки начала производства чипов с такими транзисторами. Сама технология комплементарных FET была впервые представлена международным научно-исследовательским центром Imec в 2018 году.

На изображении выше можно увидеть внешний вид транзистора CFET в представлении компании Intel (обведён красным кругом). В нижней части изображения представлены старые поколения транзисторов, а 2024 год ознаменовывает переход Intel на использование новых RibbonFET — транзисторов с нанолистами и круговым затвором (nanosheet GAAFET). Они будут выпускаться с использованием техпроцесса Intel 20A и содержать четыре нанолиста, каждый из которых будет окружён затвором. По словам Келлехер, разработка RibbonFET ведётся в соответствии с графиком, и они должны дебютировать в следующем году. В RibbonFET используется конструкция с окружающим затвором, позволяющая увеличить плотность транзистора, повысить скорость его перехода из одного состояния в другое и при этом без значительных жертв с точки зрения энергопотребления.

Стилизованное изображение CFET-транзистора Intel выше несколько отличается от первых изображений этих транзисторов, представленных Imec (показаны ниже), но в целом Intel своим изображением передаёт их суть — в CFET будут использоваться восемь нанолистов, что вдвое больше, чем у RibbonFET. Это позволит ещё сильнее повысить плотность транзисторов. Для сравнения, на изображениях ниже также показаны другие типы транзисторов (планарный FET, FinFET и RibbonFET).

Конструкция CFET-транзистора предполагает расположение рядом друг с другом полупроводниковых элементов n-типа (pFET) и p-типа (pFET). В настоящий момент рассматривается два варианта CFET-транзисторов — монолитные (monolithic) и последовательные (sequential). Второй вариант отличается более высокой и широкой конструкцией. В правой части изображения ниже представлены четыре варианта конструкции CFET-транзисторов. Какой из них в конечном итоге выберет Intel — неизвестно. И узнаем мы это нескоро, поскольку Imec считает, что CFET-транзисторы появятся на рынке не ранее момента, когда техпроцесс производства чипов не сократится до уровня 5 ангстрем, что в свою очередь ожидается не ранее 2032 года.

 Источник изображения: Imec

Источник изображения: Imec

Конечно, никто не исключает, что Intel не будет следовать этим временным рамкам и придёт к выпуску новых транзисторов гораздо раньше. Примечательно, что на продемонстрированном компанией изображении переход к CFET-транзисторам идёт после нанолистовых GAA-транзисторов RibbonFET, минуя разветвлённые GAA-транзисторы (forksheet GAAFET), которые рассматриваются отраслью в качестве переходного звена от нанолистов к CFET. Конструкция разветвлённых GAA-транзисторов отображена на изображении выше — второй рисунок слева.

Поскольку презентационный слайд Intel оказался не очень детальным, вполне возможно, что компания тоже планирует использовать разветвлённые GAA-транзисторы перед переходом на CFET, но пока просто не готова поделиться информацией на этот счёт.

Инженеры научились выращивать транзисторы атомарного уровня прямо на поверхности чипов — это повысит плотность и производительность

Исследователи из Массачусетского технологического института (MIT) разработали технологию, которая позволит «выращивать» транзисторы атомарного уровня непосредственно на поверхности кремниевых микросхем, что может привести к созданию компьютерных чипов с большей плотностью транзисторов и более высокой производительностью.

 Источник изображения: MIT

Источник изображения: MIT

Разработки в сфере ИИ, такие как набравшие огромную популярность чат-боты, требуют более плотных и мощных компьютерных чипов. Но традиционные полупроводниковые чипы представляют собой трехмерные структуры, поэтому укладка нескольких слоев транзисторов для создания более плотных интеграций очень затруднительна. Однако полупроводниковые транзисторы, изготовленные из сверхтонких двумерных материалов, толщина каждого из которых составляет всего около трех атомов, могут быть сложены в стопки для создания более мощных чипов. Учёные Массачусетского технологического института продемонстрировали новую технологию, которая позволяет эффективно и качественно «выращивать» слои двумерных материалов из дихалькогенидов переходных металлов (TMD) непосредственно на полностью готовом кремниевом чипе, что позволяет создавать более плотные и мощные решения.

Выращивание двумерных материалов непосредственно на кремниевой КМОП-пластине представляло собой сложную задачу, поскольку этот процесс обычно требует температуры около 600 °C, в то время как кремниевые транзисторы и схемы могут выйти из строя при нагреве выше 400 градусов. Группа исследователей MIT разработала низкотемпературный процесс выращивания, который не повреждает чип. Технология позволяет интегрировать двумерные полупроводниковые транзисторы непосредственно поверх стандартных кремниевых схем.

В прошлом исследователи выращивали двумерные материалы отдельно, а затем переносили эту тончайшую плёнку на чип или пластину. Это часто приводит к возникновению дефектов, которые мешают работе конечных устройств. Кроме того, перенос настолько тонкого материала представляется чрезвычайно сложным в масштабах пластины. Новый процесс позволяет вырастить равномерный, однородный слой на всей поверхности 200-мм пластины менее чем за час. В то время как предыдущие подходы требовали более суток.

 Источник изображений: Nature

Источник изображений: Nature

Двумерный материал, на котором сосредоточились исследователи, — дисульфид молибдена — гибкий, прозрачный и обладает мощными электронными и фотонными свойствами, что делает его идеальным для полупроводникового транзистора. Он состоит из одноатомного слоя молибдена, зажатого между двумя атомами сульфида.

Выращивание тонких пленок дисульфида молибдена на поверхности с хорошей однородностью часто осуществляется с помощью процесса, известного как металлоорганическое химическое осаждение из паровой фазы (MOCVD). Гексакарбонил молибдена и диэтиленсульфоксид, два органических химических соединения, содержащие атомы молибдена и серы, испаряются и нагреваются внутри реакционной камеры, где они «разлагаются» на более мелкие молекулы. Затем они соединяются в результате химических реакций, образуя цепочки дисульфида молибдена на поверхности.

Но для разложения этих соединений молибдена и серы, известных как прекурсоры, требуется температура выше 550 градусов Цельсия, в то время как кремниевые цепи начинают разрушаться при температуре выше 400 градусов. Поэтому исследователи начали с нестандартного подхода — они спроектировали и построили совершенно новую печь для осаждения из паровой фазы.

Печь состоит из двух камер, низкотемпературной области в передней части, куда помещается кремниевая пластина, и высокотемпературной области в задней части. В печь закачиваются испаренные прекурсоры молибдена и серы. Молибден остается в низкотемпературной области, где температура поддерживается ниже 400 градусов Цельсия — достаточно тепло, чтобы разложить молибденовый прекурсор, но не настолько горячо, чтобы повредить кремниевый чип. Прекурсор серы проходит через высокотемпературную область, где он разлагается. Затем он поступает обратно в низкотемпературную область, где происходит химическая реакция для выращивания дисульфида молибдена на поверхности пластины.

Одна из проблем этого процесса заключается в том, что кремниевые микросхемы обычно имеют алюминиевый или медный верхний слой, чтобы чип можно было подключить к контактам подложки. Но сера вызывает сернистость этих металлов, подобно тому, как некоторые металлы ржавеют под воздействием кислорода, что разрушает их проводимость. Исследователи предотвратили серообразование, сначала нанеся очень тонкий слой пассивирующего материала на верхнюю часть микросхемы, который после вскрывается для создания контактов.

Они также поместили кремниевую пластину в низкотемпературную область печи вертикально, а не горизонтально. При вертикальном расположении ни один из концов не находится слишком близко к высокотемпературной области, поэтому ни одна часть пластины не повреждается под воздействием тепла. Кроме того, молекулы молибдена и сернистого газа закручиваются, сталкиваясь с вертикальным чипом, а не текут по горизонтальной поверхности. Этот эффект циркуляции улучшает рост дисульфида молибдена и приводит к лучшей однородности материала.

В будущем исследователи хотят усовершенствовать свою методику и использовать ее для выращивания нескольких слоев двумерных транзисторов. И изучить возможность использования низкотемпературного процесса роста для гибких поверхностей, таких как полимеры, текстиль или даже бумага. Это может позволить интегрировать полупроводники в повседневные предметы, например на одежду.

Российские учёные доказали квантовую природу графеновых транзисторов через 15 лет после их открытия

Удивительно, но за 15 лет с момента открытия двухслойного графена и транзистора на его основе природа этого явления так и не была выяснена. Точку в понимании физических явлений в p-n-переходе графенового транзистора поставила группа учёных из лаборатории оптоэлектроники двумерных материалов Центра фотоники и двумерных материалов МФТИ. Российские учёные поставили эксперимент, который доказал квантовую природу графенового p-n-перехода.

 Дмитрий Свинцов, заведующий лабораторией оптоэлектроники двумерных материалов МФТИ. Источник изображения: Сафрон Голиков/Цифровой океан

Свинцов Д., глава лаборатории оптоэлектроники двумерных материалов МФТИ. Источник: Сафрон Голиков/Цифровой океан

Как известно, p-n-переходы могут строиться либо на преодолении электронами энергетического барьера (внутреннего электромагнитного поля) на разделе двух полупроводников с разными примесями, либо на эффекте туннельного перехода, когда электроны проходят сквозь барьер за счёт квантовых явлений при гораздо меньших затратах энергии. Разобраться с физикой p-n-перехода в двухслойном графене мешало то, что энергия переключения состояния очень и очень маленькая, что не позволяло с достоверной точностью оценить, какой из эффектов присущ графеновому переключателю.

По исполнению графеновый p-n-переход из двухслойного графена (читай — транзистор) — это простой прибор. Переключаемый переход создаётся в виде разомкнутого двухэлектродного затвора, на которые подаётся два разных напряжения. Впрочем, графен должен быть без каких-либо примесей — максимально чистым. Отсутствие совершенно чистого графена мешало определить — работает ли электронный барьер (по аналогии с примесями в полупроводниках), или туннельный эффект. Два годна назад в МФТИ научились выпускать сверхчистый графен благодаря инкапсуляции его в нитрид бора, и этот материал был использован в эксперименте.

Учёные подвергли графеновый p-n-переход терагерцовому облучению — это сродни нагреву материала, что должно было повысить энергию электронов рядом с границей перехода. Согласно хорошо изученной физике, разогретые электроны легче преодолевали бы барьер, и это привело бы к снижению его сопротивления и увеличению тока через переход. Оказалось, что этого не произошло. Сопротивление перехода падало только в «темноте».

 Источник изображения: Nano Letters

Источник изображения: Nano Letters

Подобное возможно только в том случае, если в основе явления лежит квантовое туннелирование. Для тоннельного перехода важно, чтобы энергетические уровни электронов по обеим сторонам перехода были примерно одинаковы, а «нагрев» вносил дисбаланс. Значит, в случае p-n-перехода из двухслойного графена мы имеем дело с туннельным переходом, а не с классическим преодолением энергетического барьера, о чём исследователи сообщили в статье в ведущем журнале Nano Letters.

Дмитрий Свинцов, заведующий лабораторией оптоэлектроники двумерных материалов МФТИ, рассказал: «Обнаруженная нами ситуация оказывается очень перспективной для электроники. Во-первых, мы имеем высокую электронную подвижность в графене, что даёт возможность создания быстрых полупроводниковых приборов. Во-вторых, мы имеем туннельный характер транспорта, а это даёт возможность управлять током при малых напряжениях, то есть энергоэффективность. Подобной комбинации скорости и энергоэффективности было невозможно достичь в электронике на основе “классических” полупроводниковых материалов».

Представлен транзистор для кремниевого мозга — он точно имитирует работу человеческого синапса

Французский исследовательский центр CEA-Leti разработал транзистор с примерно 50 состояниями, а не с двумя, как у современной цифровой электроники. «Аналоговый» транзистор имитирует работу синапсов в нервной ткани человеческого мозга и делает это довольно близко по таким характеристикам, как энергопотребление и скорость. Планируется, что на основе новых транзисторов будут построены нейронные процессоры нового поколения с впечатляющими возможностями.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Возможно, эта разработка ближе всего подошла к имитации того, как взаимодействуют нейроны мозга, считают в CEA-Leti. Транзистор также миниатюрен как синапс, потребляет столько же и работает на том же принципе — срабатывает не по одному импульсу, а после прихода критической «массы» сигналов. Синапс ведь не отзывается на одиночные нервные импульсы. Для запуска сигнала дальше по нервной сети требуются множественные стимулирующие реакции через синапсы. Только тогда конкретный нейрон запустит потенциал по своей сети дендритов для передачи информации другим связанным с ним нейронам.

Другое сходство между новым транзистором и синапсом заключается в том, что оба они являются ионными. Транзистор использует преимущества той же электрохимической реакции, что и синапс. В случае с транзистором его канал состоит из оксида титана, через который проходят ионы лития. В зависимости от их количества они изменяют электронную проводимость канала. Благодаря этому транзистор потребляет 1 фДж/мкм2, столько же, сколько синапс. Это в 100 раз меньше, чем у других возможных решений, включая перспективную резистивную память.

Толщина транзистора всего 200 нм, а число циклов переключения более 100 тыс. Исследователи научились выпускать массивы транзисторов на 200-мм кремниевых пластинах с использованием стандартных КМОП-совместимых техпроцессов. Массивы транзисторов были испытаны в работе на эталонном тесте MNIST на распознавание изображений и показали хороший результат. Но предстоит ещё большая работа по подтверждению квалификации транзисторов для использования в нейронных чипах.

«Все эти элементы обнадеживают, но мы находимся только на первых этапах процесса оценки. Мы должны продолжать доводить транзистор до зрелости и обеспечить углубленную оценку его долговечности и надежности», — объяснил один из учёных из CEA-Leti.

Разработан транзистор из одной молекулы, который сможет работать до 1 млн раз быстрее кремниевого

Международная группа учёных совместно с коллегами с Факультета физики твердого тела Токийского университета впервые показала условный транзистор всего из одной молекулы. Он выполнен из фуллерена. С помощью лазерного импульса транзистор направляет электрон из молекулы в ту или иную сторону и делает это до одного миллиона раза быстрее, чем переключатель из кремния. Фуллереновые транзисторы изменят представление о компьютерах, хотя произойдёт это не скоро.

 Источник изображений: Yanagisawa

Источник изображений: Yanagisawa

Грубо говоря, фуллерен — это углеродная трубка, только в виде шарика. Способность фуллерена испускать электроны и фотоны в присутствии электрических полей обнаружена более 70 лет назад. Надёжное теоретическое обоснование явлению дали только сейчас. Теоретическую и экспериментальную работу в основном проделали японские учёные. Поставленный опыт полностью совпал с теоретическими выкладками и открыл возможность практического использования явления, а оно очень и очень интересно.

«То, что нам удалось сделать — это управлять тем, как молекула направляет путь входящего электрона, используя очень короткий импульс красного лазерного света, — сказал ведущий автор работы Хирофуми Янагисава (Hirofumi Yanagisawa). — В зависимости от импульса света электрон может либо оставаться на своём стандартном пути, либо перенаправляться предсказуемым образом».

Происходящий в молекуле процесс условно напоминает работу стрелок на железнодорожном пути. Воздействие импульса лазера заставляет электрон отклоняться на другой путь и происходит это от 1000 до 1 млн раз быстрее, чем при переключении кремниевого транзистора. Более того, в зависимости от настройки лазерного импульса переключения могут быть одновременными и множественными. Иначе говоря, одна молекула фуллерена может работать как группа переключателей, хотя физически она будет одной-единственной. Надо ли говорить, что это многократно уменьшит размеры логических схем?

Открытие позволяет увеличить как производительность электроники, так и плотность размещения элементов. Другое дело, что на пути к её практической реализации много преград, включая главную — миниатюризация источников лазерных импульсов.

Учёные придумали бескварцевую электронику: это снизит зависимость США от импорта

Как известно, США возрождают свою полупроводниковую промышленность. Заводы растут как грибы после дождя, но удовлетворить все потребности необъятного рынка микроэлектроники не выйдет ни при каких условиях. Учёные из США придумали, как обойти потребность в одном из важнейших элементов для современной электроники — в тактовых генераторах, которые нужны для работы многих сложных систем и которые выпускаются отдельно от контроллеров и процессоров.

 Источник изображения: Second Bay Studios \ purdue.edu

Источник изображения: Second Bay Studios \ purdue.edu

Группа исследователей с Факультета электротехники и компьютерной инженерии Университета Пердью (Уэст-Лафайетт, штат Индиана) предложила превратить в тактовый генератор часть FinFET-транзисторов в самом микропроцессоре.

«В каждом элементе высокопроизводительной электроники используются FinFET, — сказала Дана Вайнштейн (Dana Weinstein), профессор и сотрудник университета, а также один из авторов разработки. — Интеграция этих функций [тактового генератора в чип] расширяет возможности нашей микроэлектроники за пределы просто цифровых микропроцессоров. Если технология изменится, мы сможем адаптироваться, но мы будем двигаться вперед с интегрированной микропроцессорной системой».

Иными словами, пока для выпуска чипов будет применяться технология FinFET с вертикальными транзисторными каналами, чипы могут нести в себе встроенные тактовые генераторы.

Тактовые генераторы необходимы для того, чтобы синхронизировать различные элементы в компьютерной системе — частота генератора используется в качестве эталона. Без тактового генератора ничего работать не будет. Традиционно тактовые генераторы используют резонаторы из кварца, а потому интегрировать их просто так в микросхему невозможно. В последнее время на смену тактовым генераторам с кварцевыми и пьезокерамическими резонаторами пришли интегрированные и настраиваемые тактовые генераторы на микроэлектромеханических схемах (МЭМС). Это одновременно и простое и сложное устройство. Однако без традиционных кварцевых устройств по-прежнему не обойтись.

Поэтому предложение американских учёных очень интересно и позволит сэкономить деньги и время. Идея со встроенным тактовым генератором следующая. Транзисторы FinFET могут не только переключаться (открываться и закрываться), но также работать в режиме удержания энергии — как своеобразный конденсатор, чему будет способствовать относительно большое вертикальное ребро транзисторного канала. Исследователи смогли подобрать такой режим переключения соседних транзисторов, что те попеременно создавали физическое давление на диэлектрическую плёнку (изолятор) между каналом (ребром) и затвором.

«Мы сжимаем эти слои между затвором и полупроводником, надавливая и притягивая эту тонкую область между затвором и ребром, — пояснил другой автор работы. — Мы делаем это попеременно на соседних транзисторах — один сжимаем, другой растягиваем — создавая вибрации в боковом направлении в устройстве».

Пара работающих таким образом FinFET транзисторов начинает переключаться с определённой резонансной частотой, превращаясь, по сути, в интегрированный резонатор. Но ещё интереснее, как частота акустических колебаний превращается в электронный сигнал! Колебания физически передаются другим соседним FinFET-транзисторам, что отражается на синхронном изменении их токовых параметров. Обработка и усиление такого сигнала создают тактовый сигнал с превосходными характеристиками.

«У вас будет один чип, который делает всё, вместо нескольких чипов, нескольких методов производства и нескольких наборов материалов, которые должны быть интегрированы — часто за рубежом, — резюмирует Дана Вайнштейн. — Америке необходимо развивать свои возможности в производстве чипов, и такое развитие решает множество проблем в области поставок, национальной безопасности и безопасности оборудования». К тому же, использование встроенных генераторов создаст трудности для хакеров, желающих атаковать блок тактового генератора по ряду побочных каналов (временные атаки с использованием задержек). На внешний генератор такую атаку провести сравнительно просто, тогда как до интегрированного генератора добраться будет просто невозможно.

Учёные создали транзисторы из воды — они откроют путь к процессорам с частотой больше 1 ТГц

Учёные из Рурского университета в Бохуме предложили невероятную концепцию переключателей (транзисторов), которые работают намного быстрее современных полупроводников. В основе перспективных электронных приборов предложено использовать солёную воду. Управление затворами возложено на лазеры, они же будут создавать условия для работы затворов. Такие схемы смогут работать с частотой 1 ТГц и это открывает путь к принципиально новой производительности процессоров.

 Источник изображения: Adrian Buchmann

Источник изображения: Adrian Buchmann

Сразу подчеркнём, что речь идёт лишь о новой и испытанной в лабораторных условиях концепции. Что из этого получится и получится ли вообще что-то, этого сегодня никто не знает. Даже учёные, которые всё это придумали и испытали. С самой работой можно ознакомиться в статье в журнале APL Photonics. Она свободно доступна по ссылке.

Для любого человека, мало-мальски представляющего себе, что такое электрический ток, вода представляется крайне опасной. Тем удивительнее опыт использования воды в качестве базового переключателя состояний электронной схемы.

Для эксперимента учёные заказали специальное сопло для придания струе воды заданной экспериментом конфигурации — плоской струи микронной толщины. Для придания воде заданной проводимости в ней были растворены соли, наделившие её йодид-ионами. Работает такой водный транзистор под воздействием двух лазеров: один лазер выбивает электроны из растворимых солей и ещё сильнее ионизирует жидкость — фактически кратно повышая её проводимость, а второй лазер считывает состояние, в котором находится вода, попутно управляя включением и выключением водного транзистора.

Высокая скорость работы лазера обеспечивает воде скорость переключения состояния за считанные пикосекунды. Тем самым потенциальная скорость работы процессора на таких транзисторах переходит в терагерцовый диапазон. Современные полупроводниковые материалы даже не мечтают туда попасть. Но окажутся ли там транзисторы из воды — это тоже вопрос.

Немецкие учёные открыли полупроводник с переменной проводимостью — это открывает новые пути развития электроники

Немецкие учёные намерены создать полупроводник, который в шутку можно назвать транзистором Шрёдингера. В некотором роде он одновременно и есть, и его нет, что по духу близко к знаменитому мысленному эксперименту с котом, который и жив, и мёртв в один и тот же момент времени.

 Источник изображения: TUM

Источник изображения: TUM

Если говорить предметно и серьёзно, то группа исследователей из Мюнхенского технического университета (TUM) открыла материал, который в зависимости от температуры демонстрирует либо n-, либо p-проводимость, либо вообще выключается.

Как известно, простейшим полупроводниковым прибором является диод. Этот электронный прибор проводит ток в одном направлении, что обусловлено его структурой — объединением двух полупроводниковых материалов с разной проводимостью. Материал с электронной проводимостью (n-типа) получается при легировании кремния фосфором, мышьяком или сурьмой, что добавляет ему свободные электроны, а легирование бором, алюминием и галлием связывает свободные электроны и превращает материал в полупроводник с дырочной проводимостью (p-типа).

Созданный за 12 лет немецкими учёными материал Ag18Cu3Te11Cl3 из элементов серебра, меди, теллура и хлора демонстрирует n- или p-проводимость без какого-либо легирования, что обещает круто изменить подход при производстве полупроводников. Чтобы сделать np-переход или, по-простому, диод, в новом материале достаточно создать перепад температур в несколько градусов. Что важно, перепад рабочих температур лежит в диапазоне комнатных, а это означает готовность к немедленному практическому применению.

Материал обеспечивает n-проводимость при температуре 22 °C и p-проводимость при температуре 35 °C. Если убрать разность температур, то диода на этом месте как электронного прибора не станет. Создадим разность температур, диод снова появится. С транзистором на переходах из такого материала будет та же история. Равномерный прогрев (или остывание) выключат его из электронной схемы, а градиент температур вернёт в схему. При этом физически транзистор всё время будет оставаться на одном и том же месте.

Учёные пока не готовы говорить об идеях реализации электроники на предложенных принципах, но видят в этом скрытый и наверняка огромный потенциал.

Просто добавь воды: учёные создали «чип» на ионных транзисторах в жидкой среде

Группа американских учёных успешно собрала ионную микросхему — она состоит из транзисторов, работающих в жидкой среде, а течение тока обеспечивается не электронами, как в случае с твердотельными полупроводниковыми транзисторами, а заряженными молекулами и атомами. По словам авторов проекта, схожим образом работает передача информации по нейронам внутри мозга.

 Источник изображения: seas.harvard.edu

Источник изображения: seas.harvard.edu

Проект разработала группа учёных во главе с Ву Бин Чжуном (Woo-Bin Jung) из Гарвардской школы инженерии и прикладных наук им. Джона Полсона. Передача сигналов в головном мозге осуществляется посредством ионов в жидкой среде. Воспроизвести вычислительную производительность человеческого мозга пока чрезвычайно сложно, да и кремниевые компоненты пока демонстрируют более высокие показатели, однако упрощённый вариант этой схемы создать удалось, и в перспективе она сможет предложить свои преимущества. К примеру, ионы можно создавать из различных молекул, и в каждом случае они будут обладать различными свойствами и иметь свою сферу применения.

На первом этапе инженеры построили функционирующий ионный транзистор — компонент, управляющий входящим сигналом, а затем несколько сотен таких транзисторов объединили в целостную ионную миксросхему. Ионный транзистор состоит из трёх электродов: одного дискообразного в центре и двух кольцеобразных вокруг него. При подаче напряжения к центральному диску производится электромеханическая реакция — образуется ионный ток от него в направлении жидкой среды. Скоростью этой реакции можно управлять, изменяя pH-показатель среды — это происходит, когда кольцевые электроды захватывают или, напротив, сами производят ионы водорода. Это позволяет транзистору выполнять операцию умножения, а при их объединении в массив размерами 16×16 схема даёт возможность производить умножение матриц — самую распространённую операцию в области искусственного интеллекта.

В своём теперешнем исполнении технология имеет существенные ограничения. К примеру, отсутствует возможность получения всех 16 выводов одновременно, то есть операции приходится выполнять последовательно, что дополнительно замедляет и без того не очень быстрые компоненты. Тем не менее, авторам удалось достичь принципиальной работы модели, и теперь она будет совершенствоваться: к примеру, они планируют ввести в неё более широкий спектр молекул, что в теории позволит обрабатывать более сложную информацию.

Авторы исследования не собираются подменять электронику ионикой — новая технология сможет дополнить существующие решения или создать некий гибрид, обладающий возможностями обоих подходов.

window-new
Soft
Hard
Тренды 🔥
Тактический шутер Ready or Not про будни спецназа получит одиночный режим и покинет ранний доступ 13 декабря 7 ч.
Chrome предложит пользователям из Европы выбрать поисковую систему 7 ч.
Культовому Doom исполнилось 30 лет 10 ч.
Регуляторы США и Великобритании заинтересовались вложениями Microsoft в OpenAI 18 ч.
Apple заблокировала работу Android-приложений для обмена сообщениями с пользователями iMessage 22 ч.
Новая статья: Gangs of Sherwood: Робин — Гуд, а игра — не «гуд». Рецензия 10-12 00:22
Новая статья: Gamesblender № 652: GTA VI, хоррор от Кодзимы, Marvel’s Blade, World of Goo 2 — The Game Awards 2023 и другие новости недели 09-12 23:44
ChatGPT разленился и призывает людей работать самостоятельно — OpenAI начала расследование причин 09-12 17:33
Будущее соучредителя OpenAI Ильи Суцкевера в компании остаётся под вопросом 09-12 13:20
Европейские парламентарии пришли к предварительному соглашению по «Закону об ИИ» 09-12 12:46