|
Опрос
|
реклама
Быстрый переход
Искусственное Солнце на Земле первым зажжёт Китай — не позже 2030 года, пообещали учёные
17.01.2026 [19:31],
Геннадий Детинич
На профильной конференции Fusion Energy Technology and Industry Conference 2026 в Хэфэе китайские учёные пообещали первыми в мире добиться самоподдерживающейся термоядерной реакции в реакторе типа токамак. Этим реактором станет установка Burning Plasma Experimental Superconducting Tokamak (BEST), первую плазму на которой планируется получить в 2027 году. К 2030 году BEST должен показать либо нулевой, либо положительный выход энергии, чего ещё не было достигнуто на Земле.
Источник изображения: Xinhua/Zhou Mu Проект BEST обещает стать ключевым этапом в национальной программе Китая по ядерному синтезу, направленной на переход от фундаментальных исследований к инженерному освоению термоядерной энергии. Токамак BEST на сверхпроводящих магнитах строится в Хэфэе (провинция Аньхой), и его главная цель — демонстрация «горящей» плазмы на дейтерий-тритиевом топливе, в которой термоядерные реакции сами поддерживают поступление существенной части энергии, а не только питаются энергией из сети. Установка станет демонстратором нулевого или даже положительного энергетического баланса, возможно, с выработкой электроэнергии, что станет важнейшей вехой на пути к коммерческому освоению энергетики термоядерного синтеза. В 2025 году была завершена установка крупнейшего вакуумного компонента токамака BEST — основания дьюара, которое обеспечивает теплоизоляцию и поддержку сверхпроводящих магнитов, требующих температуры около −269 °C. Эта конструкция весит более 400 тонн и станет фундаментом для монтажа остальных элементов реактора, которые будут собираться до планового запуска к концу 2027 года. Токамак BEST рассматривается как промежуточное звено между существующими экспериментальными устройствами, такими как Experimental Advanced Superconducting Tokamak (EAST), и следующими крупными реакторами. Токамак EAST уже продемонстрировал возможность длительного удержания и высокой температуры, а также плотности плазмы, а BEST должен выйти на новый уровень, близкий к коммерческим условиям эксплуатации. По сути, BEST станет мостиком к проекту следующего уровня — CFETR, который должен быть реализован к 2035 году. Установка China Fusion Engineering Test Reactor (CFETR) ещё сильнее приблизится к коммерческим проектам термоядерных реакторов. Проект CFETR ориентирован на демонстрацию устойчивого выхода энергии и последующую разработку материалов и технологий, способных обеспечить значительную энергоотдачу термоядерной установки для энергосистемы страны. По некоторым предварительным оценкам, номинальная электрическая мощность CFETR составит 1 МВт с пиковой выработкой до 2 МВт. В то же время не следует рассчитывать, что токамаки BEST и даже CFETR смогут работать подобно электростанциям. Даже более продвинутый CFETR придётся останавливать каждые 20 минут для очистки от продуктов взаимодействия плазмы со стенками реактора, иначе стабильное удержание плазмы будет невозможно. Путь к коммерческим термоядерным реакторам остаётся долгим. Поэтому забавно читать о скором достижении коммерчески значимых результатов в этой области, о чём в последние годы не устают говорить инвесторам владельцы гиперскейлов, — но это уже совсем другая история. SoftBank развернула сотовую базовую станцию на энергии солнца и ветра — её работой будет управлять ИИ
17.01.2026 [00:39],
Геннадий Детинич
Компания SoftBank начала тестирование нового типа базовой станции сотовой связи, которая самостоятельно вырабатывает значительную часть энергии для своей работы с помощью солнечных панелей и ветровой турбины мощностью 3 кВт. Такая гибридная система направлена на снижение энергопотребления традиционных сетей за счёт использования возобновляемых источников, что также требует умного регулирования активности станции.
Источник изображения: SoftBank Пилотная установка расположена на объекте компании в городе Ичихара (префектура Чиба, Япония) и использует искусственный интеллект для динамического управления режимами работы базовой станции. ИИ анализирует данные о трафике связи и активности пользователей, чтобы переводить отдельные соты в «спящий» режим в периоды низкой нагрузки — это снижает расход энергии без ухудшения качества связи. Ключевым элементом проекта является ветровая турбина с диффузором, который эффективно собирает поток воздуха даже на скоростях около 3 м/с, что повышает выработку электричества в сравнении с обычными турбинами такого же класса. Компактный дизайн установки делает её подходящей для размещения в удалённых районах, на островах и в горах, где доступ к стабильной энергораспределительной сети может быть ограниченным. Излишки энергии накапливаются в аккумуляторах станции и, в случае необходимости, допускается забор электричества из распределительной сети. В компании отмечают, что использование ИИ для управления «спящими» сотами позволяет значительно расширить число бездействующих сегментов без ухудшения качества связи, чему способствует более гибкий и интеллектуальный выбор сот, требующих активации. В масштабах страны это даст серьёзную экономию энергоресурсов. Компания планирует расширить тестирование таких базовых станций в ближайшие месяцы, что может стать шагом к более экологичной и энергоэффективной сотовой сети в будущем. Шаг к космической энергетике: впервые энергию передали лучом с летящего самолёта на Землю
14.01.2026 [19:10],
Геннадий Детинич
Стартап Overview Energy осуществил первую в мире беспроводную передачу энергии с летящего самолёта на обычные солнечные панели на земле. Эксперимент стал ступенью на пути к передаче энергии из космоса, что может приблизить мечту о практически бесконечной чистой возобновляемой энергии на планете.
Источник изображения: ИИ-генерация ChatGPT 5.2/3DNews Разработчики молодой компании сделали ставку на передачу широкого луча малой мощности в ближнем инфракрасном диапазоне. Во-первых, это безопаснее, чем риск случайно выжечь окрестности тонким и мощным сфокусированным лучом. Во-вторых, для мощного луча потребовался бы специальный приёмник со всеми вытекающими последствиями, что подразумевает создание уникальной системы преобразования энергии. Широкий луч малой мощности, напротив, позволяет передавать энергию на обычные солнечные электростанции на земле, например в тёмное время суток, чтобы избежать перерывов в генерации. Идея и её начальная реализация оказались настолько перспективными, что к молодой компании присоединился ветеран отрасли и руководитель профильных программ DARPA Пол Джаффе (Paul Jaffe). Недавний эксперимент по передаче энергии с летящей платформы на землю лишь укрепил его уверенность в правильности сделанного выбора. Передающее оборудование было установлено на самолёте Cessna. При сильном боковом ветре, на скорости до 280 км/ч и с высоты 5000 м на землю был направлен широкий луч света в ближнем инфракрасном диапазоне. Луч попал на солнечные панели электростанции, выбранной для эксперимента, и в этот момент приборы зафиксировали всплеск выработки энергии. Система подтвердила свою работоспособность и в скором времени будет испытана в космосе. По словам разработчиков, на самолёте использовалось то же самое оборудование, которое планируется отправить на орбиту. Компания Overview Energy настолько уверена в успехе, что рассчитывает уже к концу текущего десятилетия развернуть в космосе системы выработки и передачи энергии на Землю мощностью мегаваттного масштаба. К концу следующего десятилетия речь, по их оценкам, пойдёт уже о передаче гигаватт мощности. Генерирующие энергию платформы предполагается разместить на геостационарной орбите Земли, где Солнце светит постоянно, с последующей передачей энергии на обычные солнечные панели на поверхности планеты. Также компания отмечает, что увлечение конкурентов передачей энергии в микроволновом диапазоне может столкнуться с практически неразрешимой проблемой — обязательными для радиодиапазона помехами, которые будет создавать энергетический луч. В этом смысле работа в ближнем инфракрасном диапазоне выглядит значительно более безопасной. С этим подходом согласны и в DARPA, где также испытывают технологии передачи энергии оптическими лучами и даже устанавливают свои рекорды, правда, пока только на земле не поднимаясь в воздух или в космос. Китайский термоядерный реактор EAST преодолел предел Гринвальда — на шаг ближе к почти безграничной чистой энергии
12.01.2026 [18:16],
Сергей Сурабекянц
Китайский термоядерный реактор EAST (Experimental Advanced Superconducting Tokamak), получивший прозвище «искусственное солнце», успешно поддерживал стабильность плазмы при экстремальных плотностях. Сообщается о преодолении важного рубежа в термоядерном синтезе, называемого пределом Гринвальда, после которого плазма обычно становится нестабильной. Этот прорыв потенциально приближает человечество к обладанию почти безграничной чистой энергией.
Источник изображения: China News Service Согласно заявлению Китайской академии наук, экспериментальный сверхпроводящий токамак EAST поддерживал стабильность плазмы — высокоэнергетического четвёртого состояния материи — при экстремальных плотностях, что ранее считалось серьёзным препятствием на пути развития термоядерного синтеза. «Полученные результаты указывают на практичный и масштабируемый путь расширения пределов плотности в токамаках и термоядерных установках следующего поколения», — заявил профессор Китайского университета науки и технологий Пин Чжу (Ping Zhu). Ядерный синтез открывает потенциал для практически безграничного производства чистой энергии. Однако технология ядерного синтеза разрабатывается уже более 70 лет и до сих пор остаётся уделом экспериментаторов, поскольку существующие реакторы, как правило, потребляют больше энергии, чем могут произвести. Китайский реактор EAST — это магнитно-удерживающий реактор, или токамак, предназначенный для поддержания стабильности плазмы в течение длительных периодов времени. Реакторы-токамаки пока не достигли самоподдерживающегося процесса синтеза, но реактор EAST заметно увеличил длительность этого процесса. Одной из проблем для исследователей термоядерного синтеза является предел плотности, называемый пределом Гринвальда, после которого плазма обычно становится нестабильной. Проблема в том, что, хотя более высокая плотность плазмы позволяет большему количеству атомов сталкиваться друг с другом, снижая энергетические затраты на зажигание, нестабильность прерывает реакцию термоядерного синтеза. Чтобы преодолеть предел Гринвальда, китайские учёные тщательно контролировали взаимодействие плазмы со стенками реактора, управляя двумя ключевыми параметрами при запуске реактора: начальным давлением топливного газа и нагревом за счёт электронно-циклотронного резонанса, или частотой, с которой электроны в плазме поглощали микроволны. Это позволило поддерживать стабильность плазмы при экстремальных плотностях, в 1,3–1,65 раза превышающих предел Гринвальда — намного выше обычного рабочего диапазона токамака от 0,8 до 1. Это не первый случай преодоления предела Гринвальда. Например, в 2022 году этого добились исследователи на токамаке DIII-D Национального термоядерного реактора Министерства энергетики США в Сан-Диего, а в 2024 году учёные из Университета Висконсина в Мэдисоне объявили, что им удалось на экспериментальном устройстве поддерживать стабильную плазму токамака на уровне, примерно в 10 раз превышающем предел Гринвальда. Однако прорыв на установке EAST позволил исследователям впервые нагреть плазму до ранее недостижимого состояния, называемого «режимом без плотности» (density-free regime), при котором плазма оставалась стабильной по мере увеличения плотности. Исследование основано на теории самоорганизации плазмы и стенок (Plasma-Wall Self Organization, PWSO), которая предполагает, что «режим без плотности» возможен при тщательно сбалансированном взаимодействии между плазмой и стенками реактора. Достигнутый прогресс послужит основой для разработки новых реакторов. Десятки стран участвуют в программе Международного экспериментального термоядерного реактора (International Thermonuclear Experimental Reactor, ITER) по созданию крупнейшего в мире токамака во Франции. Ожидается, что ITER позволит запустить полномасштабные термоядерные реакции в 2039 году. В Китае к сети подключили крупнейшую в мире морскую солнечную электростанцию — она обеспечит 1 ГВт
31.12.2025 [21:08],
Геннадий Детинич
Китай завершил первую фазу строительства и подключил к сети крупнейшую в мире морскую солнечную электростанцию мощностью 1 ГВт. По завершении работ электростанция займёт на мелководье площадь свыше 1200 гектаров на удалении 8 км от берега. Важно, что воды под панелями не пропадут — их будут использовать для выращивания морских культур и организмов, чтобы совместить производство энергии и продуктов питания — комбо, от которого выиграют все.
Источник изображений: China State Construction Проект HG14 Offshore Photovoltaic реализует компания Guohua Investment Shandong. Солнечная электростанция расположилась в прибрежных водах провинции Шаньдун, у района Кэнли в Дунъине. Эта установка стала первым крупномасштабным фотоэлектрическим объектом такого размаха в открытом море, и она уже начала коммерческую эксплуатацию. При выходе на проектную мощность объект обеспечит электроэнергией до 60 % потребностей местной промышленности и населения. Монтаж панелей ведётся на сваях, забитых и залитых бетоном в морское дно. Забивку свай осуществляет платформа с GPS-позиционированием для точной привязки проекта к местности. Солнечные панели располагаются сегментами на платформах размерами 60 × 35 м — это примерно как пять баскетбольных площадок. Используются двухсторонние панели, и каждая из них установлена с наклоном 15 градусов, чтобы тыльная сторона улавливала отражённый от воды солнечный свет, что повышает общую выработку. ![]() При полной мощности объект будет производить около 1,78 ТВт·ч электроэнергии в год, что эквивалентно потреблению примерно 2,6–2,7 млн человек. Эта энергия поступает в общую сеть благодаря подводным кабелям напряжением 66 кВ и передаётся в наземные линии электропередачи через подстанцию напряжением 220 кВ. За погодой и общей обстановкой в районе фермы следит интеллектуальная система, реагирующая на силу ветра, волнение и обледенение. В Китае заработал первый в мире аккумулятор возобновляемой энергии на сжиженном воздухе
30.12.2025 [12:05],
Геннадий Детинич
Возобновляемая энергетика решает вопросы экологии, но сопряжена с проблемами технического характера. Главная из них — прерывистый характер генерации, тогда как электричество в современном мире должно подаваться непрерывно и с гарантированной мощностью. Сглаживать перепады в выработке можно не только с помощью электрических аккумуляторов, но и множеством интересных способов — от нагревания кирпичей до сжатия воздуха. А ещё воздух можно сжижать.
Источник изображения: China Green Development Investment Так, в пустыне Гоби на северо-западе Китая, близ города Гольмуд в провинции Цинхай, выросло сооружение, которое может перевернуть представления о хранении энергии в XXI веке. Здесь воздух не просто сжимают — его охлаждают до −194 °C, превращая в жидкость, способную хранить энергию в одном из самых холодных состояний, которых только можно достичь в природе. Проект под названием Super Air Power Bank создан группой China Green Development Investment совместно с Институтом физики и химии Китайской академии наук (TIPC-CAS) и является первым крупнейшим в мире объектом хранения энергии на основе сжиженного воздуха. Когда энергия от ветра или солнца избыточна, её расходуют на сжатие и охлаждение воздуха до жидкого состояния, а когда спрос на электроэнергию возрастает, этот жидкий воздух вновь превращается в газ, расширяясь более чем в 750 раз, что приводит в движение турбины для выработки электричества. Технические цифры впечатляют: каждый цикл отдачи энергии способен обеспечить до 600 МВт·ч в течение 10 часов, а за год объект сможет производить около 180 ГВт·ч, что сопоставимо с энергопотреблением примерно 30 000 домохозяйств в год. Это не просто батарея, а гигантский термодинамический накопитель, который сглаживает резкие пики и спады выработки возобновляемых источников энергии, помогая стабилизировать сеть там, где ветер стих, а солнце скрылось за горизонтом. В данном случае объект подключён к солнечной электростанции мощностью 250 МВт в пустыне Гоби. Важно отметить, что такие объекты открывают новую страницу в глобальном переходе к чистой энергетике. Пока мир зависит от химических аккумуляторов или гидроаккумулирующих станций, Китай продвигает альтернативу, основанную на фундаментальных физических процессах сжатия и расширения воздуха. Эта технология может стать одним из ключевых элементов будущей энергетической инфраструктуры, где энергия от возобновляемых источников сохраняется эффективно, надёжно и без дефицита редких материалов, присущих литийионным батареям. Китай — не единственная страна, которая рассматривает возможность применения технологии хранения энергии в жидком воздухе (LAES). В сентябре команда Корейского института машиностроения и материалов (KIMM) провела первую в стране крупномасштабную операцию по хранению энергии в жидком воздухе, произведя за сутки 10 тонн сжиженного воздуха. Тем временем в Великобритании в 2026 году планируется завершить строительство хранилища LAES в Каррингтоне, Манчестер, и постепенно ввести его в эксплуатацию. КПД холодильной установки в случае китайского проекта Super Air Power Bank достигает 95 %, однако общая эффективность всей системы «туда и обратно» не превышает 55 %. На самом деле — не так плохо. В Китае создали «царь-трансформатор» для стабилизации «зеленой» энергетики
27.12.2025 [18:11],
Геннадий Детинич
Высоковольтные линии электропередачи постоянного тока становятся насущной необходимостью в условиях перекоса генерации и потребления, когда ЦОД удалены от электростанций. Свою долю проблем в эту сферу вносят источники возобновляемой генерации, создающие нестабильность и риск аварийных отключений сетей. В Китае нашли решение проблем в создании крупнейшего на планете «гибкого» трансформатора постоянного тока. Если коротко — железа в этой стране действительно много.
Источник изображения: Changzhou Xidian Transformer Как сообщают китайские источники, в прошлом году в стране едва не случился блэкаут национального масштаба, когда нестабильные ветра в Синьцзян-Уйгурском автономном районе привели к провалам в выработке ветровой энергии. В Китае давно возник дисбаланс производства возобновляемой энергии в западных районах и потребления в восточных, прибрежных. Для перекачки энергии создаются энергомосты, но на местах входа ситуация далека от идеальной — перепады в генерации в виде скачков напряжения и мощности, а также дрейф частоты рискуют вызвать срабатывание защиты и отключить подачу мощности потребителям. Длина линий электропередачи в данном случае превышает 2000 км. Для таких расстояний выгодно переходить на постоянный ток высокого напряжения. Это снижает потери примерно с 10 % до 2 %, а также не создаёт мощных электромагнитных полей, свойственных сетям переменного тока. Наконец, для передачи постоянного тока требуются провода меньшего сечения для той же мощности, чем в случае переменного тока, что делает конструкцию ЛЭП легче. Однако трансформаторы постоянного тока намного сложнее, капризнее и дороже в изготовлении просто за счёт законов физики, хотя им также легче «подружиться» с DC-инверторами солнечных и ветровых электростанций. До 20-х годов Китай закупал мощные трансформаторы постоянного тока за границей, в частности в Германии у компании Siemens. Теперь он собрал свой, рекордной мощности — 0,75 ГВА (гигавольт-ампер). Его изготовила местная компания Changzhou Xidian Transformer. Оборудование было разработано для обеспечения передачи электроэнергии из северо-западной провинции Ганьсу в восточную провинцию Чжэцзян в рамках национального проекта по передаче электроэнергии с запада на восток. Это первый в мире проект по гибкой передаче постоянного тока сверхвысокого напряжения. «Эта технология может эффективно устранить нестабильность производства энергии из возобновляемых источников в значительной степени на стороне отправителя», — говорится в сообщении компании, которая добавляет, что разработка значительно повысит безопасность, стабильность и эксплуатационную гибкость крупной энергосистемы. Покажите это знакомым электрикам. Блеск в их глазах укажет на невообразимый обычному человеку масштаб воплощённого замысла. Огромные расстояния и высочайшие мощности — они диктуют размах. Стабилизировать энергосеть можно более изящно — например, с помощью суперконденсаторов, как начали поступать в Германии. Но у немцев нет проблем с расстояниями, а у китайцев, и у России — есть. Поэтому высоковольтные энергомосты с постоянным током — это наше ближайшее будущее, включая изготовление таких вот царь-трансформаторов. В США спроектировали беспилотный грузовой корабль с парусами-крыльями — через год его спустят на воду
26.12.2025 [15:20],
Геннадий Детинич
Американская компания Clippership, специализирующаяся на морской робототехнике, завершает разработку необычного беспилотного грузового судна длиной 24 метра, приводимого в движение силой ветра. Для этого судно оснастят двумя складными жёсткими крыльями из углеродного композита, которые обещают быть в два раза эффективнее традиционных парусов из ткани. Судно предназначено для трансатлантических переходов с минимальным участием человека.
Источник изображения: KM Yachtbuilders Отметим, первые в мире судоходные испытания грузовых судов с парусами-крыльями, которые создают толкающую силу за счёт законов аэродинамики, а не просто под воздействием воздушных масс, прошли ещё два года назад. Паруса-крылья показали свою эффективность и будут взяты на вооружение как возможность сэкономить на топливе без полного отказа от двигателей внутреннего сгорания. Проект Clippership предлагает иное — полностью положиться на ветер как движущую силу грузового беспилотного судна. Проект судна компания разрабатывает с такими специалистами в сфере архитектуры судов, как Dykstra Naval Architects и Glosten. Для закладки судна и его постройки заключён договор с голландской верфью KM Yachtbuilders. Проект одобрен профильными организациями по надзору за мореходством. Судно будет ходить под флагом Мальты. Спуск на воду ожидается в конце 2026 года, после чего начнутся всесторонние судоходные испытания, вплоть до пересечения Атлантического океана. Интересно подчеркнуть, что это будет относительно небольшое грузовое судно, очевидно, предназначенное для доставки особых грузов. Трюм рассчитан на размещение 75 европаллет в защищённом пространстве с климат-контролем. Декларируемая цель проекта — значительное снижение выбросов в процессе морских перевозок за счёт использования ветровой энергии, а также повышение эффективности и надёжности автономных судов. Это шаг к устойчивой логистике, особенно для небольших объёмов грузов, где традиционные контейнеровозы менее экономичны. Европа буксует на «зелёном» повороте: возобновляемая энергия заняла лишь четверть рынка
25.12.2025 [10:44],
Геннадий Детинич
Евростат, как крупнейшая в ЕС бюрократическая машина, работает медленно, но верно. На днях эта организация, ответственная за поставку ключевых данных для планирования дел в Европе, подвела итоги выработки и потребления энергии в регионе в 2024 году. Выяснилось, что 25,2 % потреблённой в ЕС энергии пришлось на возобновляемые источники. С одной стороны — это вдохновляет борцов за экологию, но целевые показатели продолжают страдать.
Источник изображения: ИИ-генерация Grok 4.1/3DNews В годовом исчислении — в период с 2023 по 2024 год включительно — прирост потребления чистой энергии составил 0,7 %. Целью 2030 года заявлено потребление 42,5 % возобновляемой энергии из всех источников. Тем самым для достижения целевого показателя требуется увеличить долю потребления «зелёной» энергии ещё на 17,3 %, что потребует среднегодового роста на 2,9 % в период с 2025 по 2030 год. На этом фоне прошлогодний годичный прирост на уровне 0,7 % — это чревато провалом целей. Самая высокая доля общего потребления энергии из возобновляемых источников в ЕС зафиксирована в Швеции (62,8 %). Швеция в основном использует энергию из твёрдой биомассы (отходы древесины), гидроэнергетику и ветер. За ней следует Финляндия (52,1 %), также использующая твёрдую биомассу, ветер и гидроэнергетику, в то время как Дания заняла среди лидеров третье место (46,8 %), где большая часть возобновляемой энергии поступает от сжигания отходов древесины (твёрдой биомассы), ветра и биогаза.
Источник изображения: Eurostat Аутсайдерами в деле потребления энергии из возобновляемых источников стали Бельгия (14,3 %), Люксембург (14,7 %) и Ирландия (16,1 %). График выше даёт ясное понимание о вкладе каждой из стран ЕС в очищение Европы от сжигания полезных ископаемых. ИИ высосал энергию: Южная Корея ускорит создание термоядерной электростанции на 20 лет
20.12.2025 [11:51],
Геннадий Детинич
Правительство Южной Кореи объявило, что приложит максимум усилий для начала испытаний по выработке электрической энергии на основе термоядерных реакций как можно раньше. Согласно предыдущим планам, это должно было произойти в начале 2050-х годов. Теперь всё должно случиться на 20 лет раньше — в начале 2030-х годов. Ускорение потребовал бурный рост приложений искусственного интеллекта, который уже выбрал все энергетические резервы.
Источник изображения: KSTAR Термоядерный синтез как источник практически бесконечной и чистой энергии нужен не только корейцам. Все ведущие страны мира заинтересованы в освоении управляемого термоядерного синтеза. Он несёт с собой значительно меньше радиоактивных отходов и использует широко распространённое топливо в виде изотопов водорода, которого во Вселенной подавляющее большинство среди всех химических элементов. Другое дело, что учёные в Южной Корее находятся на острие прогресса в разработке термоядерных реакторов типа токамак (как и в проекте ИТЭР). Пожалуй, корейский экспериментальный реактор KSTAR дальше других продвинулся по времени удержания ионной плазмы с нагревом до 100 млн °C. Китайские учёные время от времени сообщают о рекордах нагрева плазмы до 150 млн °C, но речь идёт об электронной плазме, нагреть которую легче, чем ионную. Реактор KSTAR проходит периодическую модернизацию и устремлён к запуску самоподдерживающейся термоядерной реакции. Планировалось, что это произойдёт к концу 2030-х годов или позже, чтобы начать первые эксперименты по генерации электричества от термоядерного реактора к началу 2050-х годов. Теперь власти Южной Кореи, с оглядкой на нарастающий дефицит доступной энергии, приняли план ускорить запуск демонстрационной термоядерной электростанции (реактора) — проекта K-DEMO (Korean Demonstration Fusion Power Plant). Просто очень нужно: ждать ещё 20 лет — смерти подобно. Корея намерена оставаться среди лидеров технологического развития, что без доступной энергии дальше невозможно. Новый план разработан и утверждён. Остаётся проследить, как он будет исполнен. Германия первой в мире начала стабилизировать электросети с помощью суперконденсаторов
16.12.2025 [17:46],
Геннадий Детинич
Стабилизация частоты в электросетях на уровне 50 Гц, удержание стабильной мощности и компенсация реактивной мощности для снижения потерь на протяжении более ста лет традиционно и во многом обеспечиваются за счёт механической инерции тяжёлых роторов генераторов на угольных и газовых электростанциях. Всё это уходит корнями в ископаемую во всех смыслах электрогенерацию и не отражает прогресса, свойственного началу XXI века, — миниатюризации, экологичности и электроники.
Источник изображений: Siemens Первой в мире на новый принцип стабилизации рабочих характеристик электросетей перешла Германия. Точнее, она сделала шаг в этом направлении, запустив систему стабилизации электросетей на суперконденсаторах. Вместо шумного и огромного машинного зала в роли синхронного компенсатора выступила сравнительно небольшая, тихая и чистая комната с модулем STATCOM (статический синхронный компенсатор) и стойками с суперконденсаторами, каждый из которых представляет собой нечто, напоминающее банку из-под газировки. Первый такой компенсатор подключён к сети на подстанции в районе Мерум (Нижняя Саксония). Проект реализован компаниями Siemens Energy (разработчик технологии SVC Plus FS) и TenneT (оператор сети передачи электроэнергии). Система сейчас проходит тестовый режим и вскоре перейдёт в коммерческую эксплуатацию. Это инновационное решение, разработка которого заняла более десяти лет, а строительство — около трёх лет. Технология вместо традиционных аккумуляторов и механической инерции маховиков использует суперконденсаторы. По своим свойствам они способны в течение миллисекунд обеспечивать мгновенную отдачу высокой мощности в электросеть, компенсируя отклонения частоты и реактивную мощность. По сути, это создаёт искусственную инерцию сети, заменяя такой традиционный механизм компенсации мощности и частоты, как регулируемая скорость вращения валов генераторов на угольных или газовых электростанциях. Более того, система эффективно работает в автоматическом режиме с дистанционным мониторингом и диагностикой. ![]() Вся эта новизна возникла не случайно. В Германии высока доля генерации с помощью солнечных панелей, которые вместе со своими инверторами физически не способны обеспечивать компенсационные механизмы. При этом идёт интенсивное закрытие угольных и газовых электростанций, что лишает национальные энергосети традиционных способов компенсации отклонений частоты и поддержания нагрузки. Не случайно проект в Мерум реализован на базе подстанции закрытой угольной электростанции. Он органично заменит выведенные из эксплуатации генераторы новым, современным и чистым механизмом компенсации на основе суперконденсаторов. Что из этого окажется надёжнее — вопрос пока открытый: пара-тройка шумных и громоздких генераторов или тысячи и тысячи суперконденсаторов, размещённых в нескольких стойках. Ожидается, что для нормальной работы энергосетей в Германии потребуется до 30 таких компенсационных подстанций на суперконденсаторах. По крайней мере, именно такое количество планирует установить оператор сети TenneT. Важный рубеж: аккумуляторы подешевели достаточно, чтобы солнечная энергия была доступной круглые сутки
13.12.2025 [15:15],
Геннадий Детинич
Согласно анализу центра Ember, обнаружено рекордное снижение стоимости аккумуляторных систем хранения энергии коммунального масштаба. Анализ проведён для рынков за пределами Китая и США, которые исключены из обзора как крайние полюса при оценке стоимости подобных проектов. Оказалось, что солнечная энергия теперь может быть выгодна для использования не только днём, но и ночью, начиная конкурировать с традиционной генерацией в течение всех суток.
Источник изображения: Fluence Итак, за пределами Китая и США показатель нормированной стоимости электроэнергии (LCOS) составляет $65 за МВт·ч. Полная стоимость хранилища энергии коммунального масштаба с подключением к сети для проектов с длительностью отдачи не менее четырёх часов составляет $125 за кВт·ч, из которых около $75 приходится на основное оборудование из Китая, а $50 — на установку и интеграцию на местах. Такое стало возможным благодаря резкому падению цен на батареи: в 2024 году они подешевели на 40 %, и ожидается дальнейшее снижение стоимости в 2025 году. Основная проблема солнечной энергетики — генерация преимущественно в дневное время, что ограничивает её использование светлым временем суток. Однако с падением цен на оборудование для хранения энергии часть дневной выработки становится выгодно накапливать для расхода в тёмное время суток. Если сдвигать половину дневной выработки солнечных электростанций на вечерние или ночные часы (направлять генерацию на накопление в батареях), то стоимость хранения добавляет к общей цене электроэнергии всего около $33 за МВт·ч. Средняя цена солнечной электроэнергии в мире в 2024 году составила $43 за МВт·ч. Таким образом, с учётом хранения энергии для последующего распределения, общая стоимость электричества достигает $76 за МВт·ч, что делает солнечную энергию с аккумуляторными системами конкурентоспособной по отношению к ископаемой генерации и, что более ценно, необычайно гибкой. «Солнечная энергия — это уже не просто дешёвая электроэнергия в дневное время, теперь это электроэнергия, которую можно использовать в любое время, — сказала Костанца Рангелова (Kostantsa Rangelova), аналитик Ember по глобальным вопросам электроэнергетики. — Это меняет правила игры для стран с быстрорастущим спросом [на энергию] и богатыми солнечными ресурсами». Канадцы нагрели Германию: смелый геотермальный проект вышел на коммерческий режим
06.12.2025 [15:40],
Геннадий Детинич
В небольшом баварском городке Герретсрид (Geretsried) канадская энергетическая компания Eavor Technologies реализовала смелый геотермальный проект, который может стать основой для устойчивого энергоснабжения в будущем. Проект не полагается на поиск естественных геотермальных источников, которые есть не везде, а создаёт свой — искусственный, экономичный, эффективный и бесконечный.
Источник изображений: Eavor Technologies Реализованный в Герретсриде канадцами проект в декабре вышел на коммерческий режим, поставив городу тепло для отопления и пар для работы электростанции. Ожидается, что в течение года искусственно созданная в земле скважина поможет выработать 8,2 МВт электроэнергии и 64 МВт тепловой энергии. Это первое в мире реализация смелой технологии с разветвлённой системой горизонтальных скважин. Похожую технологию в США использует компания Fervo Energy. Обе они бурят по два вертикальных ствола глубиной от 3 до 5 км, а затем переходят на горизонтальное бурение стволов до 3 км длиной. Отличие в реализации заключается в том, что канадцы бурят по несколько параллельных стволов, вилкой расходящихся от вертикальной шахты. В случае Fervo Energy, которая уже создала один проект для питания ЦОД Google, от вертикальных шахт отходит только по одному стволу. По словам канадских разработчиков, горизонтальное бурение проходило очень сложно и требовало до 100 суток на проход каждого ствола. По мере совершенствования процесса бурения далось выйти на проход двух стволов за 20 суток при работе пары буровых установок одновременно. После завершения бурения в одну из вертикальных скважин подаётся любая доступная вода. Она нагревается на глубине и уже самотёком выходит на поверхность по другой скважине, где отдаёт тепло и снова уходит под землю для повторного нагрева. После заполнения скважин водой её рабочего расхода практически нет. Также нет необходимости в насосах для нагнетания воды, что экономит энергию. ![]() Реализация проекта стала возможной благодаря европейским грантам на возобновляемую энергию и ввиду катастрофического положения Германии в ископаемой энергетике. Важно добавить, что геотермальная энергетика осталась разрешённой для развития также в США, где Дональд Трамп своими указами едва не похоронил всю «зелёную» энергетику. Поэтому геотермальные методы добычи тепла и электричества имеют все шансы развиться до широкого коммерческого применения (в чём также помогает развитие ИИ), и аналитики уже предрекают рост этого рынка до многих миллиардов долларов в год. Вдохновлённое «Дюной» производство: шотландцы собрались печатать доступные солнечные панели прямо в космосе
03.12.2025 [15:43],
Геннадий Детинич
Шотландский стартап D-Cubed специализирующийся на космических технологиях, разрабатывает невероятно экономичную систему ARAQYS (Autonomous Roll-out ArraY System), предназначенную для производства солнечных панелей непосредственно на орбите Земли. Название проекта не зря созвучно имени планеты Арракис из вселенной «Дюна», где добывали незаменимый для космических полётов ресурс — «спайс». ARAQYS — это путь к обеспечению энергией любых проектов в космосе.
Источник изображения: D-Cubed В условиях ожидаемого роста коммерческих космических полётов, когда спрос на солнечную энергию для спутников и орбитальных станций резко возрастёт, традиционные методы запуска изготовленных на Земле панелей сталкиваются с ограничениями: они тяжелы, объёмны и дороги из-за необходимости упаковки для преодоления нагрузок при старте. Технология ARAQYS решает эту проблему, предлагая децентрализованное производство панелей прямо в космосе, что позволит снизить затраты и повысить эффективность энергоснабжения. По словам компании, представленная технология — результат более 15 лет исследований, включая участие в проектах NASA по космической солнечной энергии, и она открывает путь к доступной генерации мощности на орбите. Система ARAQYS основана на использовании ультратонкого гибкого «солнечного полотна» — материала, который разворачивается в космосе из рулона для сбора солнечной энергии. При этом в процессе развёртывания происходит 3D-печать жёсткой структуры на это полотно. По мере выхода области печати в вакуум под действием ультрафиолетовых лучей Солнца происходит быстрое отверждение смолы, делая конструкцию прочной и устойчивой. В отличие от традиционных складных панелей, требующих сложных механизмов развёртывания, ARAQYS исключает эти элементы, максимально снижая вес, объём и риски поломок конструкции от вибраций и акустических нагрузок при запуске ракеты. Утверждается, что рулонная печать солнечных панелей в космосе на порядки снизит стоимость производства в пересчёте на киловатт вырабатываемой энергии; также освобождается объём для иной полезной нагрузки в ракете. Разработчики намерены провести первую демонстрацию элементов системы ARAQYS ещё до конца текущего года. Это будет запуск ARAQYS-D1 с 60-см стрелой на кубсате (направляющей для разворачивания рулона панели). Затем запланирован запуск ARAQYS-D2 с 1-м стрелой. Наконец, в 2027 году будет запущен 2-кВт прототип ARAQYS-D3. В мечтах компании проект ARAQYS вдохнёт жизнь в космические системы и в платформы по передаче солнечной энергии на Землю. «The spice must flow!» В Китае реализуют крупнейший в мире проект по хранению энергии в задутом под землю воздухе
28.11.2025 [15:04],
Геннадий Детинич
На днях в Китае подписаны документы о скорой реализации крупнейшего в мире проекта по хранению энергии в закачанном под землю воздухе. Строительство объекта стартует в новом году. Компрессорная станция сможет запасать 4,2 ГВт·ч энергии и выдавать на пике 700 МВт мощности. Установка сгладит скачки потребления электричества в регионе от возобновляемых источников и послужит примером для дальнейшего развития этой перспективной технологии.
Источник изображения: ZCGN Согласно подсчётам, установка в районе Шаньчжоу города Санмэнься провинции Хэнань будет вырабатывать электричество в течение 6 часов после закачки воздуха. Стоимость электроэнергии составит 0,20–0,30 юаня/кВт·ч ($0,03–0,04), что сравнимо со стоимостью электричества, вырабатываемого гидроэлектростанцией. При этом проект аккумулятора с воздушной компрессией можно реализовать в большем числе локаций, чем гидроэлектростанцию, требующую особых сочетаний местности для строительства. Стоимость строительства пока не раскрывается. Проектировщик в лице компании Zhongchu Guoneng (ZCGN) — коммерческое подразделение Института инженерной термофизики Китайской академии наук — ждёт завершения экологических экспертиз. Ориентировочно проект потребует финансирования в районе $850 млн, часть средств уже получена от инвесторов. Система будет включать в себя сеть естественных подземных пещер, компрессорную станцию, турбины для высвобождения энергии сжатого воздуха и превращения её в электричество, рекуператор для утилизации тепла от процесса сжатия (оно используется для расширения сжатого воздуха и более эффективной генерации электричества), а также балансировочную электронику, реагирующую на потребление и накопление. В регионе создано множество источников возобновляемой энергии, и работа сети стала менее стабильной. Комплекс по аккумулированию в сжатом воздухе излишков выработки призван повысить баланс региональной энергораспределительной сети. Комплекс рассчитан на бесперебойную работу в течение 25 лет, что превышает обычный срок эксплуатации литиевых аккумуляторов, а также не грозит случайным возгоранием, свойственным обычным батареям. В настоящий момент в Китае завершается создание похожего проекта чуть меньшего масштаба: мощностью 300 МВт и ёмкостью 1200 МВт·ч. Его изюминкой стал искусственно отрытый тоннель для накопления сжатого воздуха. Это ещё больше расширит ареал для создания подобных аккумулирующих мощностей. |