Сегодня 16 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → ячейка
Быстрый переход

Учёные создали ультратонкие кремниевые солнечные панели для авиации, космоса и носимой электроники

Современным кремниевым солнечным панелям не хватает гибкости в буквальном смысле этого слова. Они сравнительно толстые и поэтому тяжёлые, что мешает им попасть в авиацию и шире использоваться в носимой электронике. Для космоса это тоже важно, поскольку вывод на орбиту каждого килограмма стоит приличных денег. Возможно, с этим помогут учёные из Китая и Австралии, которые создали ультратонкие и гибкие панели из привычного кремния.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

На днях государственное китайское издание Science and Technology Daily процитировало профессора Цзянсуского университета науки и технологий (JUST) Ли Янга (Li Yang), который сказал, что солнечные элементы из кристаллического кремния, которые изготавливаются из кремниевых пластин, были и остаются наиболее зрелым и широко используемым решением для выработки электрической энергии, «но они сталкиваются с двумя основными технологическими узкими местами».

Одним из недостатков современных кремниевых фотопанелей является то, что эффективность преобразования энергии кремниевыми элементами большой площади остаётся ограниченной на уровне 26 %; другим препятствием является толщина элемента — обычно от 150 до 180 мкм, что затрудняет их использование в случаях, требующих более гибкого и лёгкого материала для установки на изогнутые крыши, спутники и космические станции.

Возглавляемая профессором Ли группа учёных из JUST, австралийского университета Кёртин и компании LONGi Green Energy Technology опубликовала в журнале Nature статью, в которой сообщила о создании из кристаллического кремния фотопанели толщиной около 50 мкм. Это тоньше, чем лист обычной писчей бумаги формата A4. Эту фотопанель нельзя согнуть пополам как лист бумаги, но можно изогнуть с достаточной степенью кривизны без разрушения.

Что важно, КПД ультратонкой фотопанели превысил 26 %. Учёные создали ещё несколько фотоэлементов толщиной от 55 до 130 мкм, и у всех у них эффективность превысила 26 %.

Профессор Ли сказал, что его группа работает над созданием более гибких и эффективных кристаллических кремниевых солнечных элементов, которые в один прекрасный день смогут стать такими удобными в использовании, как рулон пленки.

Установлен рекорд по эффективности солнечных панелей на квантовых точках — до кремния ещё далеко

Учёные из Ульсанского национального института науки и технологий (UNIST) в Южной Корее создали самые эффективные на сегодня солнечные панели на основе квантовых точек. КПД этих солнечных элементов составил 18,1 %. Если сравнивать с кремнием, то это мало, но у последнего за плечами полвека исследований, тогда как квантовые точки начали изучать менее 15 лет назад. Перспективы у новой технологии головокружительные.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Солнечные элементы из кремния взаимодействуют со светом всей поверхностью. Квантовые точки преобразуют свет в поток электронов только там, где они нанесены — точечно, как следует из их названия. Следует помнить, что определение «квантовые» в данном случае относится к количественной величине, а не к качественной. Квантовая точка — это крохотная порция полупроводникового материала, который взаимодействует со светом (с фотонами).

Особенность использования порций — квантов — светочувствительного материала заключается в том, что они могут быть изготовлены разного размера и, следовательно, будут чувствительны каждая к своему спектру. Материал в виде квантовых точек можно наносить на подложку методом струйной печати на рулонах или с помощью разбрызгивания. Это намного проще и дешевле, чем выпускать солнечный элемент из кремния.

Наивысший теоретический КПД у квантовых точек из органических материалов. Также они более безопасны с точки зрения экологии. Но у них есть существенный недостаток — боязнь влажности и нагрева, включая нежелательное длительное нахождение под прямыми солнечными лучами. Учёные из Южной Кореи решали именно эту проблему, попутно пытаясь установить новый рекорд эффективности для солнечных ячеек на квантовых точках.

Если верить исследователям, они смогли повысить сопротивляемость квантовых точек погодным условиям. Для этого учёные воспользовались перовскитом, который уже зарекомендовал себя в фотовольтаике. Но в этот раз они нанесли на подложку массив из перовскитных квантовых точек, а не создали сплошной слой.

 Фрагмент диаграммы с достижениями в области фотоэлектричсеких ячеек (квантовые точки обозначены ромбом с красной каймой). Источник изображения: NREL

Часть диаграммы с достижениями в сфере фотоэлектрических ячейках. Квантовые точки обозначены ромбом. Источник изображения: NREL

Экспериментальные солнечные панели на квантовых точках из перовскита сохраняли эффективный уровень преобразования света в электрический ток в течение 1200 ч при нормальных условиях и 300 ч при нагреве до 80 °C. Уровень КПД достиг рекордного значения в 18,1 %, что зафиксировали в американской лаборатории NREL (выше на рисунке данные уже с указанием рекорда UNIST — это свежее обновление диаграммы). Предыдущий рекорд в 16,6 % КПД был поставлен фотопанелями на квантовых точках в 2020 году австралийским Квинслендским университетом. Идём к новым вершинам. Когда-нибудь кремний уйдёт в прошлое, а на его место придут, в том числе, солнечные панели на квантовых точках.

Учёные превратили стекло в солнечную панель с помощью одного только лазера

Учёные из Федеральной политехнической школы Лозанны (EPFL) вместе коллегами из Токийского технологического института обнаружили удивительное явление. Кратковременное воздействие фемтосекундным лазером на теллуритовое стекло превращало его в полупроводник, чувствительный к свету. Тем самым можно производить фоточувствительные стёкла без каких-либо дополнительных материалов и усилий, что учёные в шутку сравнили с алхимией.

 Источник изображения: EPFL

Источник изображения: EPFL

«Это фантастика, мы на месте превращаем стекло в полупроводник с помощью света, — сказал один из авторов исследования Ив Беллуар (Yves Bellouard). — По сути, мы превращаем материалы во что-то другое, возможно, приближаясь к мечте алхимика».

Учёных заинтересовало поведение атомов в теллуритовом стекле (TeO2) при воздействии на него сверхбыстрых импульсов высокоэнергетического лазерного излучения. Они обнаружили, что лазер в месте падения луча создаёт в толще стекла крошечные кристаллы полупроводниковых материалов теллура и оксида теллура. Это означает, что обработанные таким образом участки могут вырабатывать электричество под воздействием дневного света.

«Интересный поворот в этой технологии заключается в том, что в процессе не требуется никаких дополнительных материалов. Всё, что вам нужно — это теллуритовое стекло и фемтосекундный лазер для создания активного фотопроводящего материала», — добавил учёный.

В ходе эксперимента на полученный из Японии 1-см диск теллуритового стекла лазером был нанесён штриховой рисунок. Под воздействием света от ультрафиолетового и до видимого диапазона обработанный участок вырабатывал электрический ток, оставаясь месяцами стабильно работающим. Точно также на стекле можно создавать светочувствительные датчики и другие полупроводниковые схемы, используя для этого только источник лазерного света.

Рисунок можно наносить на месте на уже установленное стекло, превращая его в умное с необходимой функциональностью. Правда, обычные оконные стёкла для этого не подходят. Но если технологию подхватят производители, то это может привести к революции в архитектуре.

Япония попытается разрушить китайскую монополию на солнечные панели с помощью перовскита

Япония и весь мир проиграли Китаю на рынке кремниевых солнечных панелей. По данным Международного энергетического агентства, китайские компании контролируют более 80 % в мировой цепочке поставок кремниевых солнечных панелей и ещё больше в сфере выпуска поликристаллического кремния для таких панелей. Переломить ситуацию можно только с помощью новых решений, которыми должны стать тонкоплёночные перовскитные солнечные панели.

 Источник изображения: George Nishiyama/The Wall Street Journal

Источник изображения: George Nishiyama/The Wall Street Journal

«Мы выиграли в технологии, но проиграли в бизнесе», — заявил Хироо Иноуэ (Hiroo Inoue), генеральный директор Японского агентства природных ресурсов и энергетики, добавив, что японские фирмы постигла аналогичная участь в производстве жидкокристаллических дисплеев и полупроводников. Но в Японии продолжают считать, что инженерный и научный персонал в стране всё ещё качественно опережает китайский.

Массовое производство тонкоплёночных перовскитных солнечных панелей может стать тем рычагом, который опрокинет доминирование Китая на рынке солнечных элементов. По крайней мере, власти Японии не жалеют средств, чтобы подтолкнуть отечественные компании к массовому производству перовскитных элементов. На эти цели, например, с недавних пор выделено свыше $400 млн и этим власти не ограничатся. В США также выделяются бюджетные средства на разработку перовскитных фотоэлементов.

Перовскитные фотоэлементы начали своё восхождение менее десяти лет назад. К сегодняшнему дню массовые кремниевые солнечные элементы имеют КПД не выше 22 %. Опытные перовскитные элементы, которые готовят к массовому производству, готовы стартовать с КПД от 25 %. К этому следует добавить намного менее энергоёмкое производство панелей с перовскитом, которое не требует обжига, как кремниевые пластины. Также перовскит может наноситься из жидкой фазы на плёнки, что позволит покрыть фотопанелями едва ли не любую поверхность. На ощупь они как фотоплёнка, только намного шире, говорят разработчики. Толщина перовскитного слоя составляет всего 1 мкм. Кремний раз в 20 толще и тяжелее. Это прошлый век, считают в Японии.

Одними из первых массовый выпуск фотопанелей из перовскита в Японии намерена начать компания Sekisui Chemical. Она будет выпускать перовскитные панели рулонами шириной 30 см. Строительство фабрики уже началось. Начало производства ожидается в 2025 году. Такие панели можно будет использовать также в помещении, собирая энергию от света везде, где только можно. Обычным солнечным панелям из кремния такое даже не снилось. Для гибких панелей есть столько места, что эта ниша будет ещё не скоро заполнена.

Важным моментом производства перовскитных панелей станет независимость от поставок сырья из Китая. Для Японии и других передовых стран это одно из самых больных мест. «Посмотрите, что Китай делает с полупроводниками. Это издевательство, — говорит учёный Цутомо Миясака, один из ведущих специалистов страны по перовскитам, имея в виду ограничения Пекина на экспорт редкоземельных элементов галлия и германия, используемых в чипах. — Компоненты из перовскитовых элементов могут быть изготовлены внутри страны».

В частности, для выпуска перовскитных фотоячеек требуется много йода. Япония является одним из крупнейших в мире поставщиком этого элемента. Треть йода на мировом рынке японского производства. Больше йода поставляет только Чили. Япония может не бояться зависимости от Китая в случае массового выпуска перовскитных ячеек.

Почти всё хорошо. Но значительным минусом перовскитных фотоэлементов остаётся их высокая чувствительность к влаге из окружающего воздуха. Это быстро приводит в негодность потенциально хорошие панели. Их нужно защищать от этого и японские учёные создали перспективный герметик, который не даёт панелям превратиться в слизь. Панели Sekisui Chemical смогут работать целых 10 лет и оставаться эффективными всё это время. Хвалёное долголетие кремниевых солнечных панелей, кстати, оказалось далеко от заявленных 25 лет. Они тоже начинают быстро деградировать после 10 лет эксплуатации.

Премьер-министр Японии Фумио Кисида пообещал сделать технологию производства перовскитных фотопанелей коммерчески жизнеспособной в течение двух лет. Япония импортирует около 90 % энергии и энергоносителей с тех пор, как закрыла большинство своих атомных станций после катастрофы на АЭС «Фукусима» в 2011 году. Цель Кисиды амбициозна, но японские инженеры и чиновники настроены оптимистично, ссылаясь на последние технологические достижения.

«Чем сложнее это [технология производства] будет, тем труднее китайцам будет скопировать её», — сказал Миясака, профессор Университета Тоин в Йокогаме и бывший сотрудник лаборатории компании Fujifilm в области солнечных технологий.

Корейские учёные создали «резиновые» солнечные элементы с рекордной эффективностью

Группа южнокорейских учёных создала эластичные фотоэлектрические ячейки, которые в буквальном смысле можно натянуть на глобус. Если серьёзно, разработка найдёт применение в носимой электронике и робототехнике, поскольку может растягиваться до 40 % от своего первоначального размера и при этом обладает впечатляющим для эластичных фотопанелей КПД на уровне 19 %.

 Источник изображения: KAIST /

Источник изображения: KAIST / Joule

Эластичный фотоэлемент создали в Корейском институте передовых технологий (KAIST) на кафедре химической и биомолекулярной инженерии (CBE) под руководством профессора Бумджуна Кима (Bumjoon Kim). Работа об исследовании была опубликована в одном из декабрьских номеров журнала Joule.

Разработчики отметили, что в связи с быстрым ростом рынка носимых электрических устройств гибкие солнечные элементы, способные одновременно работать и растягиваться, привлекают значительное внимание в качестве источника энергии. Подобные фотоэлементы уже предлагаются учёными коллективами, но их КПД оставляет желать лучшего. Группа профессора Кима нашла решение и сообщает, что добилась наивысшей эффективности среди конкурирующих эластичных солнечных элементов.

С помощью химического связывания учёные совместили полимер с высокой степенью растяжимости с электропроводящим полимером с превосходными электрическими свойствами. Получился проводящий полимер высочайшей эластичности. Он выступил с роли подложки, на которою нанесли солнечные элементы из органического материала. Получившийся гибкий фотоэлемент показал КПД 19 % и способность растягиваться в 10 раз сильнее, чем существующие аналоги. Фактически фотоэлемент оказался способен увеличивать свою длину на 40 % и при этом продолжал оставаться в рабочем состоянии.

Профессор Ким сказал: «Благодаря этому исследованию мы не только разработали самый высокоэффективный в мире растягивающийся органический солнечный элемент, но также важно, что мы разработали новый полимер, который может быть применим в качестве основного материала для различных электронных устройств, который должен быть податливым и/или эластичным».

Tesla удовлетворила коллективный иск о солнечных панелях на сумму 6 млн долларов

Компания Tesla согласилась выплатить более 6 млн долларов в рамках урегулирования коллективного иска, поданного клиентами, столкнувшимися с внезапным повышением цен на системы Solar Roof в 2021 году. Повышение цен привело к тому, что более 6300 человек расторгли свои контракты на установку солнечных панелей на кровлю с Tesla Energy.

 Источник изображения: Tesla

Источник изображения: Tesla

Система Tesla Solar Roof ранее была известна как «солнечное стекло» (solarglass). Генеральный директор компании Илон Маск (Elon Musk) впервые представил эту систему в 2016 году как архитектурно привлекательную кровлю, которая генерирует энергию и выглядит так же хорошо, как черепица на доме без солнечных панелей. Позже выяснилось, что стеклянная солнечная черепица, которую он демонстрировал на презентации для акционеров, рассказывая о планируемом приобретении компанией Tesla компании SolarCity, оказалась бутафорией, а не рабочим прототипом.

Клиенты Tesla Solar Roof уже подписали контракты с компанией и готовились к установке систем в своих домах, как вдруг в 2021 году они были удивлены внезапным повышением цен, которое потребовало увеличения платежей для продолжения установки. В том же году компания Tesla повышала цены на свои солнечные установки как минимум дважды, а для клиентов, заказывающих солнечные панели или черепицу, обязательным условием стало приобретение домашней системы хранения энергии Powerwall.

Повышение цен не было незначительным. Главный истец по групповому иску Мэтью Аманс (Matthew Amans) обнаружил, что цена его солнечной крыши выросла с примерно 72 000 долларов по первоначальному контракту до 146 000. По состоянию на конец июня 2023 года, внезапное изменение стоимости системы привело к расторжению контрактов на установку солнечных крыш с Tesla Energy более чем 6300 клиентами.

К началу 2023 года компания Tesla установила в США всего 3000 своих систем Solar Roof с момента презентации технологии за семь лет до этого. К первому кварталу 2023 года общий объём развёрнутых солнечных установок Tesla составил 67 МВт, что соответствует 40 % росту за год. В то же время рост продаж систем хранения энергии Tesla в первом квартале 2023 года составил 360 % по сравнению с предыдущим годом, что свидетельствует о том, что доходы энергетического подразделения Tesla в большей степени зависят от резервных батарей для домашних и коммунальных систем, чем от солнечных установок.

Фотоэлемент из Сингапура установил новый рекорд эффективности для перовскитных панелей — 24,35 %

Учёные из Национального университета Сингапура (NUS) сообщили о взятии очередной планки в эффективности солнечных ячеек из перовскита. Одиночный элемент площадью 1 см2 показал КПД на уровне 24,35 %. Рекорд подтверждён независимыми экспертами и зафиксирован изданием Progress in Photovoltaics Research and Applications.

 Источник изображения: NUS

Источник изображения: NUS

Предыдущий рекорд для одиночных перовскитных фотоэлементов площадью 1 см2 составил 23,7 % КПД. Новая работа продвинула ячейку вперёд на неполный процент, но она оказалась намного интереснее по другому параметру — по надёжности работы в реальных, а не в лабораторных условиях. По крайней мере, так заявили разработчики. И дело вот в чём.

Солнечные ячейки и перовскитные в частности создаются по двум основным схемам: обычной и инвертированной. Конструктивно они отличаются порядком чередования полупроводниковых слоёв. В случае обычной схемы сразу после стекла идёт электронно-проводящий слой, затем слой перовскита и сверху дырочно-проводящий слой. В инвертированной схеме дырочно-проводящий слой первым лежит на пути света, а электронный — последним.

 Источник изображения: OSSILA

Источник изображения: OSSILA

Самый высокий КПД показывали обычные ячейки, а самыми стабильными в работе были инвертированные. Сингапурские учёные смогли создать инвертированную перовскитную солнечную ячейку с КПД выше, чем у обычной. Тем самым они представили не только элемент повышенной эффективности преобразования света в электричество, но также обещают более долговечную его работу.

Впрочем, исследователи из NUS пока разрабатывают технологию ускоренного старения своей ячейки, чтобы доказать гарантированную возможность её работы свыше 25 лет, без чего массовое производство даже не стоит затевать. Также учёные будут продумывать перенос технологии на производство ячеек большой площади.

Китайские учёные добились рекордного КПД для тандемных солнечных ячеек из перовскита — 29 %

Издание South China Morning Post сообщает, что учёные из Нанкинского университета создали самую эффективную в мире солнечную ячейку из двух слоёв перовскита. КПД новой ячейки достиг значения 29 %. Но самое интересное, что учёные создали компанию для начала массового производства перовскитных солнечных элементов, линии которой разовьют достаточную мощность уже к сентябрю этого года.

 Источник изображения: Nanjing University

Источник изображения: Nanjing University

Группа китайских исследователей побила собственный рекорд, установленный в июне прошлого года. Тогда КПД тандемной перовскитной ячейки достиг 28 %. За год группа улучшила результат и теперь заявляет о достижении самой высокой в мире эффективности для данного типа ячеек — на уровне 29 %.

Отметим, тандемные ячейки из перовскита и кремния показывают более высокие результаты. По последним данным — это 33,2 %. Тем не менее, тандемные ячейки из одного лишь перовскита, точнее, из двух соединённых друг с другом перовскитных плёнок, в перспективе обещают оказаться предпочтительнее иных вариантов.

Перовскит при массовом производстве будет дешевле кремния. Китайцы, например, рассчитывают снизить цену на солнечные ячейки из перовскита в два раза по сравнению с кремниевыми. Кроме того, ячейки из перовскита можно выпускать по струйной технологии и делать их очень и очень тонкими, а это даст возможность наложить плёнку на поверхность едва ли не любой кривизны.

Добиться рекордного КПД для тандемной ячейки из одного лишь перовскита учёные смогли благодаря оптимизации промежуточного слоя, который должен был быть максимально прозрачным и обладать максимально возможной проводимостью для электронов. Верхний слой перовскита в тандеме был подобран для поглощения более коротких длин волн солнечного света, а нижний — более длинных.

Имитация длительного времени службы показала, что новые ячейки сохраняют эффективность на уровне 90 % после 600 часов непрерывной работы под солнечным светом.

Для коммерческого продвижения разработки учёные создали стартап Renshine Solar. В этом году компания подписала соглашение о совместном промышленном проекте с правительством города Чаншу в провинции Цзянсу и построила производственную линию, которая должна достичь мощности 150 МВт уже к сентябрю (в новости не уточняет, но это скорее, годовая мощность производства). О перовскитных ячейках много говорят учёные, и было бы интересно увидеть их в живой природе.

В Китае научились выпускать гибкие солнечные панели из обычного кремния, и их даже можно свернуть в трубочку

Международная группа учёных во главе с китайскими академиками разработала технологию производства гибких фотоэлектрических панелей из обычного кристаллического кремния. Ранее присущая кремнию хрупкость не позволяла мечтать о подобном, заставляя учёных искать гибкость в перовскитах и сложных химических соединениях. Теперь же отказ от экзотики сэкономит средства и позволит быстро внедрить новинку в носимой и другой электронике.

 Источник изображения: Nature

Источник изображения: Nature

О перспективной разработке учёные из Шаньянского института микросистем и информационных технологий (SIMIT), китайского Университета Tongwei (TW), Университета науки и технологий Чанша, Юго-Западного нефтяного университета, Университета Сухоу и Университета Бэйхан сообщили в статье, опубликованной в журнале Nature. Работе предшествовало тщательное изучение поведения обычных кристаллических фотоэлектрических ячеек под физической нагрузкой. Детальное изучение процессов образования трещин в материале позволило выявить слабые места и устранить их.

Оказалось, что под физической нагрузкой на изгиб трещины в солнечных ячейках из кристаллического кремния начинают образовываться в районе кромки. В профиль структура материала в таких местах напоминает зигзаг с острыми пиками и впадинами. Уточним, речь идёт о так называемых гетеропереходных солнечных ячейках, когда кристаллический кремний обволакивается с обеих сторон тонкоплёночным слоем аморфного кремния. Такая конструкция повышает КПД. В то же время в структуре ячейки появляются зигзагообразные переходы от одного материала к другому.

Учёные догадались сгладить острые переходы в материале, придав пикам и впадинам U-образную форму. Для этого потребовалось разработать специальный техпроцесс, и он был испытан на реальном производстве. Испытания показали, что изменение структуры кремния только в кромке фотоячейки резко повышает прочность кристаллического кремния на изгиб. При этом по всей рабочей поверхности ячейки материал не подвергался изменению, что позволяет удержать КПД ячейки почти на прежнем уровне.

Эффективность изготовленной новым способом гибкой гетеропереходной солнечной ячейки оказалась на уровне 23,3 %. Дополнительное нанесение на ячейку антибликового покрытия на основе фторида магния (MgF2) повысило её КПД до 24,50 %. Для сравнения, эффективность классической «толстой» гетеропереходной солнечной ячейки достигает 25,83 %. Новинка потеряла совсем немного, но приобрела гибкость — качество, востребованное для производства носимой электроники, аэрокосмических солнечных элементов и, в целом, для массы нужд в солнечной энергетике, где присущая кремнию жёсткость зачастую мешала внедрению.

Наконец, предложенная технология производства позволит сэкономить на кремнии и сделать фотоэлектрические ячейки из кристаллического кремния дешевле, что также будет означать снижение стоимости выработки электроэнергии этими ячейками.

В России созданы самые эффективные перовскитные солнечные элементы — их КПД достигает 36,1 %

В новой статье в журнале Solar Energy Materials and Solar Cells учёные НИТУ МИСИС представили промышленные прототипы перовскитных солнечных элементов с рекордным КПД при разном сочетании цветов света — 36,1 %. Это позволит с одинаковой средней эффективностью вырабатывать электричество как от Солнца, так и от любых искусственных источников света. Технология готова к промышленному внедрению и ждёт своего заказчика.

 Источник изображений: НИТУ МИСИС

Источник изображений: НИТУ МИСИС

Подчеркнём, уникальность предложенного решения в способности вырабатывать электричество с максимальной эффективностью при произвольном сочетании цветов в спектре. Это может быть ранее утро, слепящий полдень или закатные лучи. Также новому элементу без разницы, какие лампы светят в помещении: светодиодные или люминесцентные — во всех случаях его КПД будет, возможно, не рекордным, но определённо выше, чем у аналогов.

Исследователи из Университета науки и технологий МИСИС изготовили прототип перовскитного солнечного элемента с повышенным содержание брома, который оказался в 2,5 раза эффективнее кремния в условиях разного сочетании цветов света. При «тёплом» освещении созданный учёными материал показал максимальный возможный на данный момент коэффициент полезного действия (КПД) для перовскитной фотовольтаики — 36,1 %.

«Перовскит с повышенным содержанием брома крайне эффективно преобразует цвета различных цветовых температур в электроэнергию при так называемом горячем освещении (1700 Кельвин). Бром, в данном случае, помогает сдвигать край спектра поглощения в область высокоэнергетических фотонов», — рассказала соавтор работы, инженер лаборатории Перспективной солнечной энергетики Университета МИСИС Нигина Талбанова.

Основной точкой приложения новой разработки исследователи считают выработку электроэнергии в помещениях. Там спектр всегда случайный и разноплановый. Датчики для «умного» дома вполне подходят для оснащения подобными фотоэлементами. К тому же, перовскит легко наносится на гибкую основу, включая пластик. И самое главное, разработка готова к промышленному масштабированию. С научными прорывами такое бывает довольно редко.

За семь лет Tesla установила только 3 тыс. комплектов «солнечной кровли» Solar Roof в США — намного меньше, чем планировалось

Согласно исследованиям компании Wood Mackenzie, с момента начала продажи систем «солнечной кровли» Solar Roof семь лет назад, компания Tesla установила всего 3 тыс. таких комплектов в США, совершенно не оправдав даже собственные прогнозы.

 Источник изображения: Tesla

Источник изображения: Tesla

Оказалось, что черепица из «солнечного стекла» устанавливается далеко не такими быстрыми темпами, как ожидалось раньше. В Wood Mackenzie отмечают, что в конце 2019 года Tesla заявляла о намерении выпускать по 1 тыс. комплектов Solar Roof еженедельно и устанавливать по 1 тыс. в неделю уже в начале 2020 года.

Результаты пока остаются обескураживающими. В целом попытка интегрировать в структуру Tesla бизнес SolarCity оказалась не вполне успешной. В первом квартале 2022 года среднее число установок Solar Roof в США достигло 32, а по итогам года оно и вовсе оказалось на уровне 21 установок.

Илон Маск (Elon Musk) занялся продвижением нового решения в октябре 2016 года, пытаясь заручиться поддержкой акционерами сделки по покупке SolarCity за $2,6 млрд. Позже миллиардер инвестировал в проект значительные средства. Известно, что группа акционеров Tesla даже судилась с Маском в связи с покупкой SolarCity, но не преуспела. Впрочем, уже подана апелляция в Верховный суд штата Делавэр.

Но, хотя проект «солнечной кровли» пока не увенчался успехом, традиционные солнечные панели компании становятся всё более востребованными на рынке. По словам аналитиков, если в 2021 году Tesla установила панели общей мощностью 156 МВт, то в 2022 — уже 248 МВт. При этом совокупная мощность систем Solar Roof, установленных в США, составила всего порядка 30 МВт.

Хотя изначально Tesla намеревалась выпускать солнечную черепицу самостоятельно, вместо этого она перешла к покупке фотоэлектрического стекла у китайского поставщика Almaden. В 2022 году, по данным Wood Mackenzie, на долю Tesla Solar Roof приходилось менее 0,03 % из около 5 млн новых кровель, установленных в США. Впрочем, после публикации данных, в Tesla Solar опубликовали твит, утверждающий, что результаты исследования в большой степени неверны.

Китай придумал чувствительные антиамериканские санкции — удар придётся по солнечным панелям

В Китае планируют ограничить экспорт ключевых технологий для производства солнечных панелей. По мнению экспертов, это приведёт к задержке создания собственной производственной цепочки для данной отрасли в США. Китайские Министерство торговли и Министерство науки и технологий рассматривают ограничение экспорта ряда решений, применяемых для выпуска ключевых компонентов панелей.

 Источник изображения: American Public Power Association/unsplash.com

Источник изображения: American Public Power Association/unsplash.com

На долю Китая сегодня приходится почти всё производство поликристаллического кремния, применяемого для выпуска солнечных панелей, да и большинство самих панелей выпускает Поднебесная. Также на эту страну приходится значительная часть производства оборудования для выпуска солнечных элементов — особенно для выпуска больших панелей, доминирующих на рынке.

Новые китайские нормы экспортного контроля должны будут «усилить управление экспортом и импортом технологий», они были анонсированы ещё в конце минувшего декабря. Когда Пекин примет окончательное решение, информация отсутствует. Если план будет принят, китайские производители солнечных панелей должны будут получать лицензии от властей на местах на экспорт соответствующих технологий. В США представители отрасли уже заявили, что предложенные ограничения наглядно демонстрируют необходимость быстрого масштабирования производства солнечных решений в США.

Известно, что кремний добывается из кремнезёма с последующим получением слитков, которые нарезаются для создания пластин панелей с последующей дополнительной обработкой для того, чтобы те могли преобразовать солнечный свет в энергию. Китайские ограничения экспорта касаются оборудования, используемого на промежуточных стадиях производства. Доминирование Китая в данной сфере вызывает серьёзную обеспокоенность в США, Европе и Индии, поскольку все регионы намерены активно развивать солнечную энергетику.

Как сообщает The Wall Street Journal, китайские компании контролируют примерно 80 % глобальной цепочки поставок для производства в данной сфере и выпускают около половины оборудования для производства солнечных панелей и их компонентов. Кроме того, только 3 % слитков и кремниевых пластин уровня, необходимого для солнечной энергетики, выпускаются за пределами Китая. Более того, по данным TrendForce, сегодня только китайские компании способны выпускать большие 182- и 210-мм пластины, на которые в 2023 году, по данным агентства, будет приходиться до 96 % рынка.

В прошлом году в США принят закон, в числе прочего поощряющий производство кремниевых слитков и пластин на территории страны, но пока такая продукция здесь фактически не выпускается. Многие крупные компании намерены вложить миллиарды долларов в развитие отрасли, предполагается, что производство будет налажено в ближайшие годы — техпроцесс очень похож на тот, что используется при создании кремниевых пластин для полупроводников.

 Источник изображения: Sungrow EMEA/unsplash.com

Источник изображения: Sungrow EMEA/unsplash.com

Китай, похоже, не намерен мстить за ограничения на экспорт в страну полупроводников, но просто рассчитывает сохранить доминирующие позиции в отрасли и помешать иностранным компаниям создавать собственные производственные цепочки. При этом санкции Китая вряд ли будут столь разрушительными, как ограничения на экспорт чипов, вводимый в отношении Китая Соединёнными Штатами и их союзниками, поскольку технология выпуска солнечных панелей намного проще и у США имеется всё необходимое для создания собственного производства.

Впрочем, США всё равно грозят неприятности, поскольку невозможность быстрой организации выпуска больших панелей из-за отсутствия доступа к передовым технологиям скажется на себестоимости местных решений. Кроме того, поиск альтернатив китайской продукции может занять в некоторых случаях годы.

Известно, что в ответ на рост американских тарифов на ввоз в США панелей китайского производства, Пекин организовал строительство заводов на территории Юго-Восточной Азии, на которую приходится примерно 80 % импорта солнечных панелей для США. В декабре местное Министерство торговли обнародовало выводы о том, что китайские компании таким образом обходят тарифные ограничения, при этом по-прежнему выполняя наиболее высокотехнологичные процессы на территории Китая.

Установлен новый мировой рекорд КПД тандемных солнечных ячеек — 32,5 %

Команда учёных Берлинского центра материалов и энергии имени Гельмгольца (HZB) сообщила, что получила международный сертификат на самую эффективную в мире тандемную солнечную ячейку. Разработка HZB внесена в международный рейтинг и установила новую планку значения КПД для таких солнечных элементов, а именно 32,5 %.

 Источник изображений: Eike Köhnen/HZB

Источник изображений: Eike Köhnen/HZB

Примечательно, что значение КПД на уровне знаковых 30 % впервые было преодолено летом этого года учёными из Швейцарии. Исследователи из Лозанны создали из перовскита и кремния тандемную солнечную ячейку с эффективностью 31,3 %.

В тандемных элементах каждый из двух расположенных один поверх другого слоёв — один из кремния, а другой из перовскита — поглощают свой спектр падающего света, делая это максимально эффективно в своём диапазоне фоточувствительности. Суммарная чувствительность не удваивается, но ощутимо выше, чем если бы использовался только один из материалов. Тем самым с одной и той же площади собирается больше энергии.

Новая тандемная фотоячейка HZB оптимизирована по «интерфейсу» и слоям. Учёные путём анализа структур подбирали как чередование фоточувствительных слоёв, так и их состав и состояние поверхностных слоёв. В каждом случае искали максимальный отклик материала. Слой из перовскита поглощал синюю составляющую спектра, а слой кремния — красную и инфракрасную составляющую в ближнем диапазоне.

Тонкая настройка элемента помогла добиться рекорда, на который теперь будут равняться учёные из других лабораторий. Ранее подобное значение КПД было достижимо только с использованием дорогих полупроводников из III/V групп таблицы Менделеева. Теперь в эту область ворвались дешёвые кремний и перовскит.

Тандемный солнечный элемент из одного лишь перовскита показал рекордные характеристики

Группа учёных представила интересный тандемный солнечный фотоэлемент, оба слоя которого были выполнены из перовскита. Это нетривиальное решение, поскольку обычно один из слоёв в тандемных элементах кремниевый, а другой перовскитный, что позволяет извлекать энергию из разных диапазонов солнечного света. На удивление, тандем из двух разных перовскитов показал рекордную эффективность даже без кремния.

 Источник изображения: Aaron Demeter

Источник изображения: Aaron Demeter

Серьёзно перовскитом в области фотовольтаики начали заниматься около 10 лет назад. В 2009 году первые фотоячейки из таких минералов едва достигали КПД на уровне 4 %. В 2021 году эффективность элементов из перовскита поднялась до 25 % и преодолела эту отметку, что позволило ему соперничать с кремнием. При этом ячейки из перовскита дешевле в производстве, теоретически устойчивее к износу и могут быть гибкими, чего не скажешь о кремнии. А в паре с кремнием тандемные элементы с перовскитом добились абсолютного рекорда по эффективности, впервые преодолев отметку в 30 % КПД летом этого года.

Для нового исследования группа инженеров создала и испытала полностью перовскитный тандемный солнечный элемент. Для этого они объединили в одном элементе две версии одного и того же материала.

«В нашей ячейке верхний слой перовскита имеет более широкий зазор, который хорошо поглощает ультрафиолетовую часть спектра, а также немного видимого света, — говорят авторы работы. — Нижний слой имеет узкую полосу пропускания, которая больше настроена на инфракрасную часть спектра. Благодаря этому мы охватываем больше спектра, чем это было бы возможно при использовании кремния».

Созданный командой прототип площадью 1 см2 имел максимальную эффективность 27,4 %, что на 1,1 % выше официально зарегистрированного КПД для этого типа ячеек (26,3 %). Однако исследователи не стали регистрировать новый рекорд, чем занимается независимая экспертиза NREL.

Зато гарантированный рекорд подтверждён в достигнутом ячейкой напряжении — это 2,19 электронвольт напряжения разомкнутой цепи ячейки, что является самым высоким показателем среди всех тандемных солнечных элементов на основе перовскита.

Следует отметить, что оба этих впечатляющих показателя были получены благодаря внесению тонкого слоя такого химического вещества, как 1,3-пропандиаммония (PDA) между светопоглощающим слоем перовскита и слоем, который переносит электроны. Этот добавочный слой выровнял поверхностный заряд фотоячейки и включил в работу электроны на всей её поверхности.

Учёные говорят, что дальнейшая работа будет направлена на повышение эффективности солнечного элемента за счет повышения его стабильности, увеличения силы тока и увеличения размера элемента.

В США испытали первые перовскитные солнечные элементы, способные работать 30 лет без замены

Перовскит является крайне перспективным минералом для строительства солнечных панелей. Тем не менее, главной проблемой таких изделий является непродолжительный срок их службы. Исследователи из Принстонского университета США наконец испытали в лабораторных условиях образец, способный проработать без замены до 30 лет в реальных условиях.

 Источник изображения: Andlinger Center for Energy and the Environment

Источник изображения: Andlinger Center for Energy and the Environment

Хотя главным материалом для солнечных панелей десятилетиями являлся кремний, в последние 15 лет перовскит активно отвоёвывает у него позиции. Перовскит так же эффективен, как и кремний, но позволяет создавать менее дорогие, более лёгкие и гибкие панели. Тем не менее перовскиты не очень стабильны и довольно недолговечны при использовании в реальных условиях.

В новом исследовании принстонские учёные добавили для стабилизации конструкции специальный промежуточный слой буквально в несколько атомов толщиной между светопоглощающим перовскитным и несущим заряд слоями. Промежуточный слой изготавливается из дисульфида углерода, свинца, йода и хлора и применяется для защиты конструкции от быстрого выгорания.

Хотя подобные решения уже предлагались различными командами ранее, новый состав потенциально позволяет сохранить работоспособность солнечных элементов дольше 30 лет — первое решение в своём классе, перешагнувшее порог в 20 лет.

 Источник изображения: Andlinger Center for Energy and the Environment

Источник изображения: Andlinger Center for Energy and the Environment

Впрочем, пока речь идёт только об экспериментах. Исследователи использовали для оценки «живучести» панелей камеру искусственного старения, в которой элементы подвергли воздействию солнечного света и температурам от 35 °C до 110 °C. Экстраполировав полученные данные, команда сделала вывод, что в стандартных климатических условиях новое решение способно проработать 30 лет. По словам учёных, используемая камера искусственного старения позволит проверять устойчивость не только перовскитных, но и любых других солнечных ячеек.


window-new
Soft
Hard
Тренды 🔥
Apple разрешила пользователям из ЕС скачивать приложения с сайтов разработчиков 11 мин.
В столице Саудовской Аравии пройдёт киберспортивный турнир Esports World Cup с рекордно крупным призовым фондом — более $60 млн 13 мин.
Nintendo анонсировала новую презентацию Indie World Showcase — фанаты Hollow Knight: Silksong напряглись 2 ч.
Nvidia выпустила драйвер с поддержкой Manor Lords и No Rest for the Wicked 3 ч.
Инсайдер раскрыл, когда анонсируют Mafia 4 3 ч.
В Steam стартовало тестирование REDkit — редактора модов для The Witcher 3: Wild Hunt с «почти безграничной свободой» творчества 4 ч.
По мотивам «Неуязвимого» выйдет жестокая AAA-игра от команды ветеранов Activision, Blizzard, EA и Epic Games — первые подробности 5 ч.
Microsoft инвестирует $1,5 млрд в арабский холдинг G42 для развития ИИ в ОАЭ и по всему миру 5 ч.
Вышла российская ОС «МСВСфера» 9 — альтернатива RHEL и Oracle Enterprise Linux 6 ч.
Android 15 добавит смартфонам поддержку беспроводной зарядки через NFC 6 ч.