Сегодня 17 ноября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Новости Hardware

В США разработали материал для солнечных панелей с внешней квантовой эффективностью 190 %

На деньги Министерства энергетики США учёные из Лехайского университета (штат Пенсильвания) создали материал для солнечных панелей с невообразимой эффективностью. Благодаря разработке новые панели смогут вырабатывать до двух электронов на каждый поглощённый высокоэнергетический фотон, что намного выше теоретически предсказанного значения.

 Источник изображения: Ekuma Lab/ Lehigh University

Источник изображения: Ekuma Lab/ Lehigh University

Следует подчеркнуть, что привычное значение КПД панелей и внешняя квантовая эффективность фотоэлектрического материала — это не одно и то же. При падении на панель часть фотонов отражается, а другая часть нагревает панель вместо возбуждения электронов. Тем самым теоретическое значение внешней квантовой эффективности (EQE) не может быть больше 100 %, на что указывает предел Шокли-Квиссера, а КПД панелей ещё меньше. Но что это за наука, если она не может шагнуть за пределы известного?

«Эта работа представляет собой значительный скачок вперёд в нашем понимании и разработке решений в области устойчивой энергетики, подчеркивая инновационные подходы, которые могут переопределить эффективность и доступность солнечной энергии в ближайшем будущем», — сказал Чинеду Экума (Chinedu Ekuma), профессор физики, который является ведущим автором статьи в журнале Science Advances.

Поиск нужной комбинации материалов сначала был проведён с помощью моделирования на компьютере. Затем, на основе полученных данных, был создан прототип, подтвердивший удивительные свойства материала. Образец в качестве активного слоя в кремниевой фотоэлектрической ячейки продемонстрировал среднее фотоэлектрическое поглощение в 80 %, высокую скорость генерации фотовозбуждённых носителей и внешнюю квантовую эффективность (EQE) на беспрецедентном уровне 190 %.

Скачок эффективности материала во многом объясняется его отличительными «состояниями промежуточной зоны», специфическими уровнями энергии, которые расположены в электронной структуре материала таким образом, что делают их идеальными для преобразования солнечной энергии. Эти состояния имеют уровни энергии в пределах оптимальных энергетических диапазонов, в которых материал может эффективно поглощать солнечный свет и производить носители заряда — около 0,78 и 1,26 эВ (электрон-вольт). Кроме того, материал особенно хорошо проявил себя при высоких уровнях поглощения в инфракрасной и видимой областях электромагнитного спектра.

В традиционных солнечных элементах максимальное значение EQE составляет 100 %, что соответствует генерации и сбору одного электрона на каждый поглощенный фотон солнечного света. Новый материал, как и ряд других перспективных материалов, продемонстрировал способность генерировать и собирать более одного электрона из фотонов высокой энергии, что обеспечивает увеличение теоретически возможного КПД панелей до двух и более раз.

Хотя такие материалы с многократным генерированием экситонов еще не получили широкого коммерческого распространения, они обладают потенциалом для значительного повышения эффективности систем солнечной энергетики. В материале, разработанном исследователями Лехайского университета, состояния промежуточной зоны позволяют улавливать энергию фотонов, которая теряется традиционными солнечными элементами, в том числе за счет отражения и выработки тепла.

Исследователи разработали новый материал с использованием «ван-дер-ваальсовых зазоров», атомарно малых промежутков между слоистыми двумерными материалами. Эти промежутки могут удерживать молекулы или ионы, и материаловеды обычно используют их для вставки или «интеркалирования» других элементов для настройки свойств материала. По сути в этих зазорах различные межмолекулярные силы, определяемые как силы Ван-дер-Ваальса, крепко удерживают нужные молекулы или атомы, как в случае нового материала. В частности, учёные поместили между селенидом германия (GeSe) и сульфидом олова (SnS) атомы меди нулевой валентности.

«Его быстрый отклик и повышенная эффективность убедительно указывают на потенциал Cu-интеркалированного GeSe/SnS в качестве квантового материала для использования в передовых фотоэлектрических решениях, предлагая возможности для повышения эффективности преобразования солнечной энергии, — говорят разработчики. — Это многообещающий кандидат для разработки высокоэффективных солнечных элементов следующего поколения, которые сыграют решающую роль в удовлетворении глобальных потребностей в энергии».

Источник:

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.
Материалы по теме

window-new
Soft
Hard
Тренды 🔥
Российское правительство определило налоги для майнеров 9 ч.
ByteDance при капитализации $300 млрд претендует на звание самой дорогой китайской компании технологического сектора 16 ч.
Новая статья: Slitterhead — странная японщина, как в старые добрые. Рецензия 22 ч.
Новая статья: Gamesblender № 700: угроза запрета S.T.A.L.K.E.R. 2, дух классики в Indiana Jones и белый Steam Deck 23 ч.
Иск с обвинениями Илона Маска в мошенничестве с Dogecoin отозван 16-11 16:00
Китайских хакеров обвинили в крупномасштабной атаке на телекоммуникационные сети США 16-11 14:38
Google предложила помощь ИИ в создании клипартов для документов 16-11 12:22
Снежный человек, огрызок и другие: Unicode Consortium добавил девять новых смайликов 16-11 11:59
Half-Life 2 исполнилось 20 лет: Valve устроила раздачу в Steam, выпустила огромное обновление и документальный фильм о разработке игры 16-11 11:40
Британский оператор натравил ИИ-бабушку на телефонных мошенников 16-11 11:36