Учёные из Австралии сообщили о разработке «трёхмерных» топологических кодов коррекции ошибок квантовых вычислений. Предложенная ими схема использует для коррекции меньше физических кубитов в пересчёте на один логический кубит. Новшество обещает приблизить появление «квантовых жёстких дисков» — хранилищ квантовых состояний для вычислений с невообразимым уровнем производительности.
Как известно, время когерентности кубитов — время удержания запутанных квантовых состояний — очень маленькое по причине их высочайшей нестабильности. И если с физикой бороться предельно сложно, то операции коррекции ошибок могут помочь в проведении безошибочных вычислений. Классические компьютеры это показали с достаточной убедительностью. Но в случае операций с кубитами всё намного сложнее — для них нужны свои коды и механизмы коррекции.
Традиционным методом исправления ошибок в квантовых вычислениях признан так называемый топологический код или поверхностный код, у которого также есть другие названия. Это своего рода таблица или матрица, которая требует физической или схемотехнической реализации логических кубитов из нескольких физических. В идеале для безошибочной работы каждого логического кубита необходимо 1000 физических кубитов, но на таком подходе масштабируемую вычислительную квантовую платформу построить нельзя.
Учёные из Австралии поставили перед собой задачу уйти от традиционного поверхностного кода и создать его трёхмерный аналог, который помог бы облегчить создание квантового вычислителя или симулятора с более эффективной коррекцией ошибок и экономным расходованием физических кубитов. Как недавно они сообщили в журнале Nature Communications, им это удалось.
«Предлагаемая нами квантовая архитектура потребует меньше кубитов для подавления большего количества ошибок, высвободив больше для полезной квантовой обработки», — говорится в заявлении ведущего автора работы Доминика Уильямсона (Dominic Williamson), исследователя из Нано-института и школы физики Университета Сиднея (University of Sydney Nano Institute and School of Physics).
«Этот прогресс имеет решающее значение для разработки масштабируемых квантовых компьютеров, поскольку позволяет создавать более компактные системы квантовой памяти, — сказано в аннотации к работе. — За счёт сокращения физических затрат на кубиты полученные результаты прокладывают путь к созданию более компактного "квантового жёсткого диска" — эффективной системы квантовой памяти, способной надёжно хранить огромные объёмы квантовой информации».
Источник: