Сегодня 23 января 2018
18+
CES 2018
Теги → квантовые вычисления
Быстрый переход

CES 2018: Intel продвинулась в квантовых и нейроморфных вычислениях

На проходящей в Лас-Вегасе выставке CES 2018 корпорация Intel объявила о важных достижениях в области квантовых и нейроморфных вычислений. Последние представляют собой перспективный тип компьютерной логики и могут принципиально улучшить возможности искусственного интеллекта, а, следовательно, и оказать огромное влияние на многие научные, исследовательские и индустриальные области.

Квантовые вычисления смогут быстро решать специфические задачи, для которых современным суперкомпьютерам требуются месяцы или годы, вроде создания лекарств, финансового моделирования и климатических прогнозов.

Во время основного доклада исполнительный директор Intel Брайан Кржанич (Brian Krzanich) сообщил о выпуске сверхпроводящего квантового чипа под кодовым именем «Tangle Lake», обладающего 49 кубитами, а также пообещал внедрение нейроморфных вычислений, имитирующих работу мозга и способных эффективно обрабатывать структурированные и неструктурированные данные, объём которых экспоненциально растёт. Название процессора происходит от группы озёр в Аляске и указывает на экстремально низкие температуры и переплетение, что необходимо для функционирования квантовых битов.

Старший вице-президент Майк Мейберри (Mike Mayberry) сообщил, что пройдёт ещё 5–7 лет, пока индустрия научится решать технические проблемы и окажется способной создавать чипы с миллионом или больше кубитов для достижения коммерческого успеха технологии. Tangle Lake является важным шагом на этом пути, позволяя исследователям оценивать и улучшать техники коррекции ошибок и моделировать вычислительные задачи.

Продолжая инвестиции в сверхпроводящие кубиты, Intel в стремлении нарастить количество взаимодействующих кубитов ведёт параллельную разработку другого типа — спиновых кубитов (spin qubits) в кремнии. Последние способны иметь принципиальное преимущество будучи гораздо меньше сверхпроводящих кубитов.

Спиновые кубиты схожи с одноэлектронным транзистором, который в свою очередь имеет много общего с традиционными транзисторами, и потенциально могут производиться на близких к современным техпроцессах. Intel уже разработала принципы применения технологии производства 300-мм кремниевых пластин для спиновых кубитов.

Вторым достижением стал созданный Intel Labs полностью функциональный опытный чип «Loihi» в рамках новой парадигмы нейроморфных вычислений, имитирующей базовые операции мозга. Технология Loihi объединяет обучение и логический вывод в одном чипе и обещает экспоненциальный рост производительности и энергоэффективности для искусственного интеллекта.

Как объясняет Intel, нейроморфные процессоры могут быть задействованы в задачах обработки и анализа данных настоящего постоянно изменяющегося окружения. В качестве примера названы камеры наблюдения и городская инфраструктура, приспособленные для информационной поддержки автономных транспортных средств в реальном времени. В первом полугодии Intel планирует передать образцы чипов Loihi в ведущие университеты и исследовательские институты, применив их к более сложным проблемам и наборам данных.

Физики из РФ и Великобритании создали детектор квантовых состояний

Московский физико-технический институт (МФТИ) сообщает о том, что российско-британскому коллективу учёных удалось разработать сверхпроводящий детектор квантовых состояний.

Изображения МФТИ

Изображения МФТИ

В исследованиях приняли участие специалисты МФТИ, Института проблем технологии микроэлектроники и особочистых материалов РАН, а также физического факультета университета Роял-Холлоуэй.

Детектор состоит из двух сверхпроводящих контуров, связанных джозефсоновскими переходами таким образом, что разность фаз волновых функций на сегментах этих контуров скачкообразно меняет критический ток всей структуры от нуля до максимального и обратно при последовательном изменении квантовых чисел в каждом из контуров. Устройство представляет собой плоский чип с двумя квадратными контурами из алюминия. Эти контуры расположены друг над другом и, что самое важное, связаны между собой джозефсоновскими контактами (представляют собой два сверхпроводника, разделённых тонким слоем диэлектрика).

Важно отметить, что прибор может стать не только исследовательским инструментом. Он также может войти в состав квантовых компьютерных систем. Основным элементом таких систем являются квантовые биты, или кубиты. Элементы классических компьютеров могут хранить только один бит — 1 или 0. Кубиты же находятся в суперпозиции двух состояний, то есть могут кодировать сразу логические единицу и ноль.

Созданный прибор может использоваться для детектирования квантовых состояний сверхпроводящих кубитов, если один из сверхпроводящих контуров будет заменён на кубит.

Подробнее об исследовании можно узнать здесь

Австралийские учёные представили 480-кубитный кремниевый квантовый процессор

Университет Нового Южного Уэльса (University of New South Wales, UNSW) имеет собственную позицию в сфере разработки квантовых компьютеров. Квантовые вычислительные системы могут использовать сверхпроводящие элементы, оптические ловушки, атомы, ионы, спины или что-то ещё. Но все они сталкиваются с проблемами масштабирования и со сложностями удержать квантовые состояния согласованным (когерентными) так долго, чтобы можно было с высокой точностью произвести расчёты и прочитать результат. Обе эти проблемы UNSW собирается решить в одном устройстве — в квантовом кремниевом процессоре.

Кремниевый квановый процессор в представлении художника

Кремниевый квантовый процессор в представлении художника

На днях в сетевом журнале Nature Communications в открытом доступе появилась статья «Кремниевая КМОП-архитектура для квантовых компьютеров на спинах» за авторством работников университета. Инженеры и учёные представили проект кремниевого процессора, который оперирует спинами одиночных электронов в качестве квантовых объектов (точек). Для производства такого процессора подходят классические КМОП (CMOS) технологические процессы и традиционные материалы. В данном случае проект разработан для выпуска решений на обычной кремниевой пластине со слоями изоляции из диоксида кремния. Рабочий уровень, в котором хранятся кубиты-электроны, это слой, насыщенный изотопами silicon-28. При этом следует помнить, что даже такой кремниевый процессор должен работать при криогенных температурах порядка 1K или ниже.

Структура, схема элементарной квантовой ячейки и архитектура кремниевого 480-кубитного квантового процессора (Nature)

Структура, схема элементарной квантовой ячейки и архитектура кремниевого 480-кубитного квантового процессора (Nature)

Проект процессора создан модульным с возможностью расширения. Минимальный строительный кирпичик процессора — это блок со сторонами 4 × 20 кубитов. Весь процессор спроектирован как массив 24 × 20 кубитов и состоит из 480 кубитов. Допускается дальнейшее горизонтальное масштабирование для увеличения числа кубитов в процессоре, как и уменьшение масштаба техпроцесса производства. Представленный проект, как заявляют разработчики, хорошо ложится на 14-нм техпроцесс Intel, где расстояние между затворами приближается к 70 нм. Для надёжной работы спроектированного кремниевого квантового процессора необходима ячейка для электрона (кубита) со сторонами 63 нм.

Электрическая схема и сигнальная управляющая структура команд квантового процессора (Nature)

Электрическая схема и сигнальная управляющая структура команд квантового процессора (Nature)

Выбранная учёными 2D-архитектура расположения кубитов преследует главную цель — снизить вероятность появления ошибок в ходе квантовых вычислений. Вернее, они на практике реализовали так называемый поверхностный код (surface code). Поверхностный код подразумевает, что часть кубитов не участвуют в хранении данных, а используются для исправления ошибок в кубитах, отвечающих за данные. Это сравнимо с аппаратной схемой ECC. Например, информационные кубиты и условно ECC-кубиты могут располагаться на плоскости в шахматном порядке. Это позволяет загружать в квантовый процессор программный код и обеспечивать надёжность расчётов.

В предложенной конструкции и схеме нет ничего сложного для современного производства. Схемотехника и её реализация также близка к широко использующейся при выпуске чипов. В общем случае кремниевый квантовый процессор напоминает организацию и работу памяти DRAM. Квантовая точка (электрон) загружается в предназначенную для него область и управляется обычным плавающим затвором (транзистором), как и соседствующая с ним область (J-переход), которая контролирует связанность/взаимодействие соседних квантов. Выглядит просто. Может именно так делается революция?

Российские учёные протестировали прототип «квантового телефона»

Специалисты физического факультета МГУ имени М.В.Ломоносова протестировали так называемый «квантовый телефон» — систему, обладающую абсолютной защитой от возможного перехвата данных или подслушивания.

Технология квантовых коммуникаций основана на фундаментальных законах физики. Для обмена данными используются одиночные фотоны, состояния которых безвозвратно меняются, как только кто-то попытается перехватить данные. Иными словами, незаметное вторжение в систему невозможно.

За безопасность в протестированной в МГУ платформе отвечает разработанное российскими учёными оборудование. Оно обеспечивает распределение симметричных криптографических ключей по квантовому каналу в автоматическом режиме при подключении к действующим волоконно-оптическим линиям.

МГУ

МГУ

«Рабочее место квантового телефона — обычный персональный компьютер, в котором установлен оптоэлектронный модуль, соединённый оптическим волокном напрямую с сервером квантового распределения ключей. Кроме того, компьютер использует ПО, модифицированное специально для работы с этим оптоэлектронным устройством», — приводит сетевое издание «РИА Новости» слова исследователей.

Создание «квантового телефона» — это один из этапов проекта по развёртыванию в России университетской квантовой сети. Инициатива включена в программу развития Московского университета. 

Учёные создали 53-кубитную квантовую систему с хорошими перспективами

Команда учёных из Университета Мэриленда (UMD) и Национального института стандартов и технологий США (NIST) впервые смоделировала рекордную по числу кубитов квантовую систему, имитирующую такие квантовые явления, как возникновение магнетизма в материалах. Ранее исследователи смогли дойти до моделирования 20-кубитной системы. Новая разработка — это уже 53 взаимодействующих атомных кубита, что в 2,5 раза больше, чем в предыдущем случае.

Квановая последовательность, управляемая лазером в представлении художника

Квантовая последовательность, управляемая лазером в представлении художника

Классические компьютеры, что важно, уже неспособны моделировать поведение квантовых систем такого порядка, поскольку все элементы квантовой системы одновременно находятся в слишком большом числе квантовых состояний. К тому же, по мере увеличения количества исследуемых частиц (квантов) это число растёт экспоненциально. Квантовые вычислительные системы позволяют обойти этот запрет. Их нельзя назвать компьютерами в классическом смысле этого слова. По факту — это в некотором роде аналоги настоящих квантовых систем, наблюдая за поведением которых можно с уверенностью представить поведение реальных квантовых систем. Например, как в случае эксперимента в Университете Мэриленда, изучив квантовые явление возникновения магнетизма.

Квантовая система UMD-NIST представляет собой 53 отдельных ионов иттербия-171 — заряженных атомов в ловушках из позолоченных электродов. На основе представленной модели появляется возможным создать систему с большим числом кубитов и, в итоге, разработать программируемый квантовый компьютер общего назначения. Ионный кубит, по словам разработчиков, это стабильные атомные часы с отличной способностью воспроизведения. Они эффективно увязываются друг с другом с помощью внешнего лазерного излучения. Это означает, что система поддаётся перепрограммированию и реконфигурации под воздействием внешних управляющих факторов.

Оптический квантовый компьютер компании NTT

Оптический квантовый компьютер компании NTT

Атомные и, в частности, ионные кубиты интересны тем, что построенная на них квантовая система хотя и использует вакуумные камеры, но работает при комнатной температуре и обычном атмосферном давлении. Подобную систему 27 ноября сделали публично доступной в Японии благодаря компании NTT. Она потребляет примерно как мощный настольный компьютер, хотя специализированные расчёты выполняет во много раз быстрее.

Схема эксперимента учёных из Университета Мэриленда (Nature)

Схема эксперимента учёных из Университета Мэриленда (Nature)

Модель квантовой системы UMD-NIST предельно специализированна. Каждый ион в ловушке имитирует частицу со своим спином — маленький магнит (см. на картинке выше). Таким образом — это цепочка спинов, которая моделирует квантовые магнитные явления в материалах. Сначала спины упорядочивают — придают им одинаковое направление внешним магнитным полем, а потом ослабляют поле и постепенно повышают его напряжённость. Тем самым в действие включаются квантовые явления ближнего и дальнего взаимодействия спинов, что невозможно в представленном объёме смоделировать на обычных компьютерах. В созданной на основе оптических ловушек модели всё происходит как «на самом деле», позволяя на практике наблюдать квантовый магнетизм в «естественных» условиях.

Япония откроет для свободного удалённого доступа квантовый компьютер

По данным японских источников, 27 ноября в Японии будет открыт свободный удалённый доступ к прототипу квантового компьютера. Тем самым Япония вольётся в гонку крупнейших стран за квантовыми вычислениями. Например, в США с мая 2016 года удалённый доступ к квантовым компьютерам предоставляет компания IBM. Ранее IBM открыла доступ к 5-, 16- и 17-кубитным системам собственной разработки. К концу года или в течение 2018 года публичный доступ будет открыт к 20-кубитной системе. В Японии квантовую систему и доступ к ней готовит оператор Nippon Telegraph and Telephone Company (NTT).

Квантовая вычислительная ситсема компании NTT, которая работает при комнатной температуре

Квантовая вычислительная система компании NTT, которая работает при комнатной температуре

В своё время мы сообщали, что NTT ведёт разработку квантовых вычислительных систем на основе передачи и хранения данных фотоном. Для этого исследователи создали систему, в 50 000 раз замедляющую скорость распространения света в вакууме. В общем случае подобные системы носят название линейно-оптических квантовых вычислений или LOQC (Linear Optics Quantum Computation), в которой вычислительные узлы представлены зеркалами, оптическими блоками для сдвига фаз, расщепления лучей и другими специфическими решениями. Публичный квантовый компьютер NTT как раз использует в вычислениях свойства света.

По словам разработчиков, им удалось создать квантовую вычислительную платформу, непрерывно работающую при комнатной температуре. Это сразу снизило потребление системы с условно десятков тысяч киловатт до одного киловатта. Практически до уровня мощного настольного компьютера. Определённо, японцам есть чем гордиться.

«Типичный» квантовый компьютер на линейных оптических элементах (Quantum Optics Lab Olomouc)

«Типичный» квантовый компьютер на линейных оптических элементах (Quantum Optics Lab Olomouc)

Стоит отметить, что квантовый компьютер NTT может решать — и делает это быстрее всех вычислительных систем в мире — только задачу по нахождению кратчайших расстояний между вершинами графов. Это одна из важнейших классических задач теории графов, для решения которой предложено множество алгоритмов. Практических применений этому достаточно много, например, поиск кратчайшего пути по GPS-координатам. Открытый публичный доступ к системе поможет найти платформе массу других применений, что гарантированно обернётся толчком к развитию отрасли.

Впервые показан эффект квантового смешивания волн на искусственном атоме

Российские исследователи из Московского физико-технического института (МФТИ) совместно с британскими коллегами из университета Роял Холлоуэй впервые продемонстрировали эффект, называемый квантовым смешиванием волн на искусственном атоме.

В экспериментах применялась сверхпроводящая квантовая система, физически эквивалентная одиночному атому. Такая система при охлаждении до сверхнизких температур способна испускать и поглощать отдельные кванты микроволнового излучения точно так же, как атомы взаимодействуют с квантами обычного света.

Искусственные атомы активно используются в исследованиях по квантовой оптике. Благодаря таким системам физики могут изучать процессы, которые сложно наблюдать в иных случаях — например, испускание и поглощение нескольких фотонов. Если настоящий атом в зеркальной полости излучает свет в произвольном направлении, то сверхпроводящая система, напротив, светит в заданную сторону. Эта особенность позволила группе физиков зафиксировать процессы рассеяния нескольких квантов света на искусственном атоме — смешивание волн.

«При наблюдении за указанной системой учёные увидели на выходе как исходное излучение, так и электромагнитные волны, получившиеся в результате взаимодействия с искусственным атомом, частоты которых зависели от характера возбуждения системы. Это указывало на квантовое смешивание волн — эффект, наблюдать который ранее на подобных системах не удавалось», — говорится в сообщении МФТИ.

Предполагается, что результаты исследований будут востребованы в том числе при разработке квантовых компьютеров. Дело в том, что изучаемый искусственный атом является кубитом, базовым блоком квантовых вычислительных систем. Элементы классических компьютеров могут хранить только один бит — 1 или 0. Кубиты же находятся в суперпозиции двух состояний, то есть могут кодировать сразу логические единицу и ноль. С ростом количества использующихся квантовых битов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии, что позволяет создавать сверхпроизводительные компьютеры. 

Volkswagen и Google объединились в работе над квантовыми вычислениями для автомобилей

Немецкий автопроизводитель Volkswagen и IT-корпорация Google объявили о сотрудничестве в продвижении квантовых вычислений в автомобильной отрасли.

Как сообщает издание USA Today со ссылкой на заявление Volkswagen, в рамках совместных проектов будут использоваться квантовые компьютеры Google, создаваться вычислительные алгоритмы и проводиться эксперименты с их использованием.

wsj.com

wsj.com

Volkswagen намерена задействовать квантовые компьютеры для исследований структуры новых материалов (например, в аккумуляторных батареях для электромобилей), развития искусственного интеллекта для беспилотных машин и разработки систем управления автомобильным трафиком на городских улицах.

«Технология квантовых компьютеров открывает для нас новые измерения, — говорит IT-директор Volkswagen Мартин Хофманн (Martin Hofmann). — Мы в Volkswagen хотели бы быть в числе первых, кто будет использовать квантовые вычисления в рамках компании, как только эта технология станет коммерческой».

wsj.com

wsj.com

Свой первый проект в области квантовых вычислений немецкий автогигант запустил в марте 2017 года. Он касается оптимизации движения 10 тыс. автомобилей–такси в Китае и использует технологии стороннего поставщика, передаёт Bloomberg.

Intel произвела первый 17-кубитный квантовый процессор

Квантовые вычисления — будущее компьютерной техники. Причём не какое-то фантастическое, а вполне реальное, ведь в разработке решений для него принимают участие такие гиганты IT-индустрии, как IBM, Google, Microsoft и другие. Очередной шаг в этом направлении был сделан американской корпорацией Intel и нидерландским исследовательским центром QuTech. Накануне они объявили о поставке экспериментального 17-кубитного процессора, основанного на технологиях сверхпроводимости. Отмечается, что в чипе применена особая структура, повышающая выход годных кристаллов и увеличивающая их производительность.

Как утверждается в выпущенном по данному случаю пресс-релизе, поставка первого процессора говорит об успешности сотрудничества Intel и QuTech в области создания компьютеров нового поколения и важности исследований в сфере материаловедения и разработки новых методов производства полупроводников.

Впрочем, несмотря на все достижения, на пути к развёртыванию жизнеспособных крупномасштабных квантовых систем с требуемой точностью вычислений остаётся ещё много препятствий. Одна из главных проблем заключается в «хрупкости» кубитов — наименьших элементов для хранения данных в квантовых компьютерах. К потере информации может привести даже случайный шум; к тому же, работать они способны только при очень низких температурах, достигающих 20 милликельвин, что в 250 раз ниже температуры в открытом космосе.

Специалисты из Intel и QuTech работают над преодолением перечисленных трудностей. В частности, в экспериментальном 17-кубитном процессоре размером с 10-рублёвую монету реализована новая архитектура, позволившая повысить надёжность, улучшить температурные характеристики и сократить уровень помех, возникающих при совместной работе кубитов. По сравнению с традиционными полупроводниковыми микросхемами новый чип обеспечивает в 10–100 раз большую  скорость ввода/вывода. Кроме того, благодаря сочетанию специальных техпроцессов, материалов и прочих решений он вмещает квантовые интегральные схемы существенно большего размера, чем элементы традиционных кремниевых процессоров. Комментируя получение упомянутой микросхемы, профессор Лео Ди Карло (Leo DiCarlo) из центра QuTech заявил, что это «позволит получить новый объём знаний в области квантовых вычислений, на базе которого будет построен следующий этап исследований».

Китай впервые в мире организовал канал квантовой связи между Землёй и спутником

Китайским специалистам, по сообщению агентства Xinhua, удалось впервые в мире организовать канал защищённой квантовой связи между спутником на орбите и наземным оборудованием.

Эксперимент проводился на базе космического аппарата QUESS — Quantum Experiments at Space Scale. Этот спутник был запущен 16 августа 2016 года с космодрома Цзюцюань в пустыне Гоби (северо-западная провинция Ганьсу) с помощью ракеты-носителя «Чанчжэн-2D». Оборудование на борту QUESS предполагает проведение нескольких видов исследований на основе технологии квантовой телепортации.

Сообщается, что в ходе осуществлённого эксперимента обмен данными производился между спутником и наземной станцией; причём расстояние варьировалось от 645 до 1200 км. Учёные говорят, что во время пролёта спутника над Китаем появляется 10-минутное окно — за это время может быть сгенерировано и отправлено около 300 Кбит криптографических ключей.

Проведённый эксперимент открывает путь к формированию абсолютно защищённых линий связи, которые позволят вести секретные переговоры и пересылать крайне важные данные без опасений утечки. Дело в том, что системы квантовой связи попросту невозможно прослушать. Для обмена данными используются одиночные фотоны, состояния которых безвозвратно меняются, как только кто-то попытается перехватить данные. Поэтому незаметно похитить информацию, передающуюся по квантовым каналам, попросту невозможно. 

Microsoft начинает инженерные работы над квантовым суперкомпьютером

Технология квантовых вычислительных систем построена на основе так называемых кубитов, способных хранить одновременно логическую единицу и ноль, что в свою очередь принципиально меняет характер расчётов: объём обрабатываемых значений растёт в геометрической прогрессии по отношению к числу квантовых битов. Компьютеры с несколькими сотнями таких базовых элементов способны соперничать с мощнейшими суперкомпьютерами, но, конечно, только в специализированных задачах вроде шифрования, искусственного интеллекта, моделирования климата, оптимизации сложных систем, химических и биологических процессов, поиска тёмной материи и прочего.

В технологическую гонку на раннем этапе готова включиться и Microsoft, причём корпорация уже говорит о квантовых вычислениях как о новом направлении бизнеса, а не просто исследовательском проекте. Команду по созданию квантового компьютера, входящую в состав недавно созданной Microsoft AI и Research Group, возглавил Тодд Холмдал (Todd Holmdahl) с опытом руководства командами разработчиков Kinect, HoloLens и Xbox.

Тодд Холмдал, руководитель научных и инженерных усилий Microsoft по созданию масштабируемых квантовых оборудования и ПО (фото Scott Eklund/Red Box Pictures)

Тодд Холмдал, руководитель научных и инженерных усилий Microsoft по созданию масштабируемых квантовых оборудования и ПО (фото Скотта Экланда (Scott Eklund)/Red Box Pictures)

При создании квантового компьютера компания будет использовать знания и опыт, накопленные в этой области подразделением Microsoft Research. Впрочем, речь не идёт о скором прорыве — господин Холмдал обозначил сроки: это произойдёт до его ухода на пенсию, а ему сегодня лишь 52 года, то есть речь может идти о десятилетии. К тому же руководитель нового компьютерного направления Microsoft не берётся утверждать, что поставленную задачу удастся выполнить: «Мы не можем быть на сто процентов уверены в успехе. Но в работе над такими важными вещами, способными изменить мир, определённо стоит пытаться и рисковать. Мне кажется, что именно сейчас мы близки к воплощению этих идей в жизнь».

Microsoft также наняла ведущих специалистов в области квантовых вычислений:

  • профессора Делфтского технического университета Нидерландов и директора центра квантовых технологий QuTech Лео Коувенховена (Leo Kouwenhoven);
  • профессора Института Нильса Бора Копенгагенского университета и директора Датского центра квантовых устройств Чарлза Маркуса (Charles Marcus);
  • профессора вычислительной физики Швейцарской высшей технической школы Цюриха Матиаса Тройера (Matthias Troyer);
  • профессора и директора Центра квантовых машин в Университете Сиднея (Австралия) Дэвида Райли (David Reilly).
Лео Коувенховен слева и Чарлз Маркус справа (фото Brian Smale)

Лео Коувенховен слева и Чарлз Маркус справа (фото Брайана Смэла (Brian Smale))

Компания надеется стать одним из лидеров новой области, усилив квантовыми технологиями свои облачные платформы. «Подобно классическим высокопроизводительным вычислениям, нам нужно не только оборудование, но и оптимизированное программное обеспечение», — пояснил Матиас Тройер, участвующий в проекте исследовательской группы Microsoft.

В прошлом году «Росатом» объявил о работах по созданию технологии обработки информации на основе сверхпроводящих кубитов, правда, тогда в России имелась лишь двухкубитная система. В то время как IBM собирается предложить 50-кубитный облачных сервис, а компания D-Wave Systems уже продаёт квантовый компьютер с 2000 кубитов.

Запущена первая в России и СНГ многоузловая квантовая сеть

Специалисты Казанского квантового центра КНИТУ-КАИ и Университета ИТМО объявили о запуске первой в России и СНГ полноценной многоузловой сети на основе квантовых технологий.

Квантовые коммуникации гарантируют абсолютную неуязвимость линий связи для хакерских атак. Дело в том, что носителями информации в таких системах выступают одиночные фотоны, которые необратимо изменяются при любой попытке перехвата сигнала. Таким образом, пользователь мгновенно узнаёт о вторжении в канал.

Пресс-служба Университета ИТМО

Пресс-служба Университета ИТМО

Отмечается, что новый проект полностью основан на российских разработках, которые по своим техническим характеристикам не уступают передовым зарубежным аналогам, а по ряду параметров превосходят их.

Пилотный сегмент сети, соединивший два узла, был протестирован в августе 2016 года. Теперь же впервые в отечественной практике квантовыми каналами на базе действующей городской телекоммуникационной инфраструктуры объединены четыре точки. Они расположены в Казани на расстоянии около 10 км друг от друга.

Пресс-служба Университета ИТМО

Пресс-служба Университета ИТМО

Во время запуска сети между узлами производилась передача команд управления и пересылка демонстрационных файлов, а также была протестирована аудиосвязь посредством квантового кодирования — фактически в режиме «квантового телефона». В основе сети лежит технология квантовой коммуникации на боковых частотах, обладающая высокими параметрами скорости передачи квантовых бит в сети (до 10 раз выше альтернативных проектов, реализуемых в России и мире).

По сути, реализованный проект создаёт базу для развития национальной инфраструктуры квантовых коммуникаций. Технологии лягут в основу распределённых защищённых сетей нового поколения. Средства квантового шифрования позволят банковским структурам, госорганам и спецслужбам, использующим для передачи данных выделенные оптические волокна, передавать информацию между своими объектами с нулевой вероятностью несанкционированного доступа. 

Прототип российского «квантового телефона» появится летом

Около месяца назад мы сообщали, что исследователи из МГУ имени М.В.Ломоносова ведут работы над так называемым «квантовым телефоном» — системой, которая обеспечит сверхзащищённую связь. Теперь появились подробности об этом проекте.

Напомним суть инициативы. Квантовые технологии позволяют реализовать принципы абсолютно защищённой квантовой сети. Разговор с помощью проектируемого устройства будет невозможно перехватить или подслушать.

За безопасность отвечает разработанное физиками МГУ оборудование, обеспечивающее распределение симметричных криптографических ключей по квантовому каналу в автоматическом режиме при подключении к действующим волоконно-оптическим линиям.

Как сообщает газета «Известия», внешне «квантовый телефон» будет выглядеть как обычный смартфон с сенсорным экраном. В основу аппарата ляжет один имеющихся на рынке смартфонов, в котором заменят часть электронных компонентов.

Новинка, по замыслу разработчиков, должна иметь связь со стационарным компьютером. Последний соединяется оптическим кабелем со специальным устройством в центре сети, которое обеспечивает синхронизацию квантовых ключей.

Разработка «квантового телефона» — начальный этап проекта по созданию первой в России университетской квантовой сети. Исследования и разработки выполняются совместно с компанией ОАО «ИнфоТеКС». Планируется, что прототип сверхзащищённого аппарата будет продемонстрирован уже предстоящим летом. 

Rambus и Microsoft расширили соглашение по разработке криогенной памяти

Несмотря на негативную ауру, сгустившуюся вокруг имени Rambus, у неё не отнять главного — талант инженеров компании, которые разработали целый ряд сигнальных интерфейсов памяти. И сегодня, как и двадцать лет назад, когда Rambus представила интерфейс SDRAM, компания планирует создать совершенно новые интерфейсы и архитектуру памяти для вычислительных систем будущего. Это будет память для криогенных компьютерных систем и память для квантовых вычислительных систем.

Квантовый компьютер компании IBM (IBM)

Квантовый компьютер компании IBM (IBM)

В декабре 2015 года компании Rambus и Microsoft заключили соглашение о совместной разработке архитектуры памяти для квантовых компьютеров. В минувший понедельник 17 апреля Rambus и Microsoft выступили с новым совместным заявлением, которое гласит о расширении ранее заключённого соглашения. Новые совместные исследования помимо создания архитектуры «квантовой» памяти будут направлены на разработку памяти для криогенных вычислительных систем. В обоих случаях речь идёт о памяти, которая будет работать с сильным охлаждением — при температуре ниже −180 °C (93,15 К).

Обсуждаемые температурные дитапазоны криогенных и квантовых компьютеров (Rambus)

Обсуждаемые температурные диапазоны криогенных и квантовых компьютеров (Rambus)

Охлаждение систем до температуры ниже 90 К приводит почти к полному отсутствию утечек, что повышает энергоэффективность вычислений. Компании Rambus и Microsoft займутся разработкой памяти и интерфейсов SerDes (Serializer Deserializer), способных выдержать подобное охлаждение, и обещают в течение трёх-пяти лет создать прототипы работающих систем. Криогенная память станет неотъемлемой частью криогенных компьютеров, которые будут работать при более низкой температуре: ниже 7 К. При таком охлаждении проявляется эффект сверхпроводимости и потери в энергосистеме компьютеров сводятся к нулю.

Охлаждение до появления эффекта сверхпроводимости обеспечит сверхэффективность рассчётов (IARPA)

Охлаждение до появления эффекта сверхпроводимости обеспечит сверхэффективность расчётов (IARPA)

Квантовые компьютеры будут работать при ещё более низкой температуре — на уровне 0,03 K. Очевидно, что «обычная» криогенная память плохо подойдёт для систем, охлаждённых до столь низкой температуры и принципы, а также архитектура памяти для квантовых и криогенных компьютеров, будут отличаться. Видимо поэтому в компаниях Rambus и Microsoft решили расширить соглашение до разработки двух архитектур памяти, работающих с разным охлаждением.

Intel готовится к эре «после закона Мура»

Intel активно развивает вычислительные технологии следующего поколения, которые помогут корпорации подготовиться к наступлению эры «после закона Мура».

Напомним, что закон Мура — это эмпирическое наблюдение, изначально сделанное Гордоном Муром, одним из основателей Intel. Закон в современной формулировке гласит, что количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые два года.

До сих пор производителям, пусть и с некоторыми отклонениями, в целом удавалось следовать закону Мура. Но с внедрением всё более «тонких» техпроцессов делать это становится труднее и труднее. Так, у Intel возникли значительные сложности с внедрением 10-нанометровой технологии, и корпорация вынуждена использовать нынешний 14-нанометровый процесс для четырёх поколений процессоров.

Ряд экспертов считают, что в скором времени закон Мура перестанет действовать, а компаниям, рано или поздно, придётся делать ставку на принципиально новые технологии.

Как сообщил глава Intel Брайан Кржанич (Brian Krzanich; на фото), корпорация делает «серьёзные инвестиции» в квантовые и нейроморфные вычисления.

Основным элементом квантовых вычислительных систем станут квантовые биты, или кубиты. Они могут находиться в когерентной суперпозиции двух состояний, а значит, могут кодировать промежуточные состояния между логическим нулём и единицей. Таким образом, с ростом количества использующихся квантовых битов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии. Результат — огромная скорость выполнения сложных задач.

Что касается нейроморфных вычислений, то речь идёт о создании компьютеров, работающих на принципах биологических нейронных сетей. Они, в частности, смогут принимать решения на основе моделей и ассоциаций.

Впрочем, господин Кржанич признаёт, что пройдёт, возможно, не одно десятилетие, прежде чем такие системы появятся на коммерческом рынке.