Сегодня 21 ноября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Звук и акустика

Цифровой звук

⇣ Содержание

К вопросу об обработке звука

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.

Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.

Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Обсуждение каждого из названных типов преобразований может стать целым научным трудом. Стоит привести несколько практических примеров использования указанных видов преобразований при создании реальных звуковых эффектов:

Echo (эхо). Реализуется с помощью временных преобразований. Фактически для получения эха необходимо на оригинальный входной сигнал наложить его задержанную во времени копию. Для того, чтобы человеческое ухо воспринимало вторую копию сигнала как повторение, а не как отзвук основного сигнала, необходимо время задержки установить равным примерно 50 мс. На основной сигнал можно наложить не одну его копию, а несколько, что позволит на выходе получить эффект многократного повторения звука (многоголосного эха). Чтобы эхо казалось затухающим, необходимо на исходный сигнал накладывать не просто задержанные копии сигнала, а приглушенные по амплитуде.

Reverberation (повторение, отражение). Эффект заключается в придании звучанию объемности, характерной для большого зала, где каждый звук порождает соответствующий, медленно угасающий отзвук. Практически, с помощью реверберации можно «оживить», например, фонограмму, сделанную в заглушенном помещении. От эффекта «эхо» реверберация отличается тем, что на входной сигнал накладывается задержанный во времени выходной сигнал, а не задержанная копия входного. Иными словами, блок реверберации упрощенно представляет собой петлю, где выход блока подключен к его входу, таким образом уже обработанный сигнал каждый цикл снова подается на вход смешиваясь с оригинальным сигналом.

Chorus (хор). В результате его применения звучание сигнала превращается как бы в звучание хора или в одновременное звучание нескольких инструментов. Схема получения такого эффекта аналогична схеме создания эффекта эха с той лишь разницей, что задержанные копии входного сигнала подвергаются слабой частотной модуляции (в среднем от 0.1 до 5 Гц) перед смешиванием со входным сигналом. Увеличение количества голосов в хоре достигается путем добавления копий сигнала с различными временами задержки.

Безусловно, как и во всех других областях, в обработке сигналов также имеются проблемы, которые являются своего рода камнем преткновения. Так, например, при разложении сигналов в спектр частот существует принцип неопределенности, который невозможно преодолеть. Принцип гласит, что нельзя получить точную спектральную картину сигнала в конкретный момент времени: либо для получения более точной спектральной картины нужно проанализировать больший временной участок сигнала, либо, если нас интересует больше время, когда происходило то или иное изменение спектра, нужно пожертвовать точностью самого спектра. Иными словами нельзя получить точный спектр сигнала в точке - точный спектр для большого участка сигнала, либо очень приблизительный спектр, но для короткого участка.

Механизмы для обработки сигналов существуют как в программном, так и в аппаратном исполнениях (так называемые эффект-процессоры). Например, вокодеры и гитарные процессоры, хорусы и ревербераторы существуют в виде аппаратуры, а также в виде программ.

Практическую обработку сигналов можно разделить на два типа: обработка «на лету» и пост-обработка. Обработка «на лету» подразумевает мгновенное преобразование сигнала (то есть с возможностью осуществлять вывод обработанного сигнала почти одновременно с его вводом). Простой пример – гитарные «примочки» или реверберация во время живого исполнения на сцене. Такая обработка происходит мгновенно, то есть, скажем, исполнитель поет в микрофон, а эффект-процессор преобразует его голос и слушатель слышит уже обработанный вариант голоса. Пост-обработка – это обработка уже записанного сигнала. Скорость такой обработки может быть сильно ниже скорости воспроизведения. Такая обработка преследует те же цели, то есть придание звуку определенного характера, либо изменение характеристик, однако применяется на стадии мастеринга или подготовки звука к тиражированию, когда не требуется спешка, а важнее качество и скрупулезная проработка всех нюансов звучания. Существует множество различных операций над звуком, которые вследствие недостаточной производительности сегодняшних процессоров нельзя реализовать «на лету», поэтому такие преобразования проводят лишь в пост-режиме.

Обработка сигнала – это сложная и, главное, ресурсоемкая процедура. Она сравнительно недавно стала проводиться в цифровых устройствах – раньше различные эффекты звучания и другие достигались путем обработки звука в аналоговых приборах. В аналоговой аппаратуре звук в виде электрических колебаний проходит через различные тракты (блоки электрических элементов), чем достигается изменение фазы, спектра и амплитуды сигнала. Однако такой способ обработки имеет массу недостатков. Во-первых, страдает качество обработки, ведь каждый аналоговый элемент имеет свою погрешность, а несколько десятков элементов могут критически повлиять на точность и качество желаемого результата. А во-вторых, и это, пожалуй, самое главное, почти каждый отдельный эффект достигается путем использования отдельного устройства, когда каждое такое устройство может стоить очень дорого. Возможность же использования цифровых устройств имеет неоспоримые преимущества. Качество обработки сигналов в них намного меньше зависит от качества аппаратуры, главное – это качественно оцифровать звук и иметь возможность качественно его воспроизводить, и тогда качество обработки ложится уже только на программный механизм. Кроме того, для различных манипуляций со звуком не требуется постоянная смена оборудования. И, самое главное, поскольку обработка ведется программным путем, для нее открываются просто невероятные возможности, которые ограничены лишь мощностью компьютеров (а она увеличивается с каждым днем) и фантазией человека. Однако, (по крайней мере сегодня) здесь имеются и свои неприятности. Так, например, часто, даже для осуществления несложной обработки сигнала необходимо осуществить его разложение в спектр частот. В этом случае обработка сигнала на лету может быть затруднена именно из-за ресурсоемкости этапа разложения. Поэтому преобразования, требующие спектрального разложения, выполняют чаще в пост-режиме.


Аппаратура

Немаловажная часть разговора о звуке связана с аппаратурой. Существует много различных устройств для обработки и ввода/вывода звука. Касательно обычного персонального компьютера следует подробнее остановиться на звуковых картах. Звуковые карты принято делить на звуковые, музыкальные и звукомузыкальные. По конструкции же все звуковые платы можно разделить на две группы: основные (устанавливаемые на материнской плате компьютера и обеспечивающие ввод и вывод аудио данных) и дочерние (имеют принципиальное конструктивное отличие от основных плат - они чаще всего подключаются к специальному разъему, расположенному на основной плате). Дочерние платы служат чаще всего для обеспечения или расширения возможностей MIDI-синтезатора.

Звукомузыкальные и звуковые платы выполняются в виде устройств, вставляемых в слот материнской платы (либо уже встроены в нее изначально). Визуально они имеют обычно два аналоговых входа - линейный и микрофонный, и несколько аналоговых выходов: линейные выходы и выход для наушников. В последнее время карты стали оснащаться также и цифровым входом и выходом, обеспечивающим передачу аудио между цифровыми устройствами. Аналоговые входы и выходы обычно имеют разъемы, аналогичные разъемам головных наушников (1/8”). Вообще, входов у звуковой платы немного больше, чем два: аналоговые CD, MIDI и другие входы. Они, в отличие от микрофонного и линейного входов, расположены не на задней панели звуковой платы, а на самой плате; могут иметься и другие входы, например, для подключения голосового модема. Цифровые входы и выходы обычно выполнены в виде интерфейса S/PDIF (интерфейс цифровой передачи сигналов) с соответствующим разъемом (S/PDIF – сокращение от Sony/Panasonic Digital Interface - цифровой интерфейс Sony/Panasonic). S/PDIF - это «бытовой» вариант более сложного профессионального стандарта AES/EBU (Audio Engineering Society / European Broadcast Union). Сигнал S/PDIF используется для цифровой передачи (кодирования) 16-разрядных стерео данных с любой частотой дискретизации. Помимо перечисленного, на звукомузыкальных платах имеется MIDI-интерфейс с разъемами для подключения MIDI-устройств и джойстиков, а также для подсоединения дочерней музыкальной карты (хотя в последнее время возможность подключения последней становится редкостью). Некоторые модели звуковых карт для удобства пользователя оснащаются фронтальной панелью, устанавливаемой на лицевой стороне системного блока компьютера, на которой размещаются разъемы, соединенные с различными входами и выходами звуковой карты.

Определим несколько основных блоков, из которых состоят звуковые и звукомузыкальные платы.

1. Блок цифровой обработки сигналов (кодек). В этом блоке осуществляются аналого-цифровые и цифро-аналоговые преобразования (АЦП и ЦАП). От этого блока зависят такие характеристики карты, как максимальная частота дискретизации при записи и воспроизведении сигнала, максимальный уровень квантования и максимальное количество обрабатываемых каналов (моно или стерео). В немалой степени от качества и сложности составляющих этого блока зависят и шумовые характеристики.

2. Блок синтезатора. Присутствует в музыкальных картах. Выполняется на основе либо FM-, либо WT-синтеза, либо на обоих сразу. Может работать как под управлением собственного процессора, так и под управлением специального драйвера.

3. Интерфейсный блок. Обеспечивает передачу данных по различным интерфейсам (например, S/PDIF). У чисто звуковой карты этот блок чаще отсутствует.

4. Микшерный блок. В звуковых платах микшерный блок обеспечивает регулировку:

  • уровней сигналов с линейных входов;
  • уровней с MIDI входа и входа цифрового звука;
  • уровня общего сигнала;
  • панорамирования;
  • тембра.

Рассмотрим важнейшие параметры, характеризующие звуковые и звукомузыкальные платы. Наиболее важными характеристиками являются: максимальная частота дискретизации (sampling rate) в режиме записи и в режиме воспроизведения, максимальный уровень квантования или разрядность (max. quantization level) в режиме записи и воспроизведения. Кроме того, так как звукомузыкальные платы имеют еще и синтезатор, то к их характеристикам относят и параметры установленного синтезатора. Естественно, чем с большим уровнем квантования карта способна кодировать сигналы, тем большее качество сигнала при этом достигается. Все современные модели звуковых карт способны кодировать сигнал с уровнем 16 бит. Одной из важных характеристик является возможность одновременного воспроизведения и записи звуковых потоков. Особенность карты одновременно воспроизводить и записывать называют полнодуплексной (full duplex). Есть еще одна характеристика, которая зачастую играет решающую роль при покупке звуковой карты - отношение сигнал/шум (Signal/Noise Ratio, S/N). Этот показатель влияет на чистоту записи и воспроизведения сигнала. Отношение сигнал/шум – это отношение мощности сигнала к мощности шума на выходе устройства, этот показатель принято измерять в дБ. Хорошим можно считать отношение 80-85 дБ; идеальным – 95-100 дБ. Однако нужно учитывать, что на качество воспроизведения и записи сильно влияют наводки (помехи) со стороны других компонент компьютера (блока питания и проч.). В результате этого отношение сигнал/шум может изменяться в худшую сторону. На практике методов борьбы с этим существует достаточно много. Некоторые предлагают заземлить компьютер. Другие, дабы как можно более тщательно уберечь звуковую карту от наводок, «выносят» ее за пределы корпуса компьютера. Однако полностью уберечься от наводок очень тяжело, так как даже элементы самой карты создают наводки друг на друга. С этим тоже пытаются бороться и для этого экранируют каждый элемент на плате. Но сколько бы усилий не прилагалось к решению этой проблемы, полностью исключить влияние внешних помех невозможно.

Еще одна не менее важная характеристика – коэффициент нелинейных искажений или Total Harmonic Distortion, THD. Этот показатель также критическим образом влияет на чистоту звучания. Коэффициент нелинейных искажений измеряется в процентах: 1% - «грязное» звучание; 0.1% - нормальное звучание; 0.01% - чистое звучание класса Hi-Fi; 0.002% - звучание класса Hi-Fi – Hi End.. Нелинейные искажения – результат неточности в восстановлении сигнала из цифрового вида в аналоговый. Упрощенно, процесс измерения этого коэффициента проводится следующим образом. На вход звуковой карты подается чистый синусоидальный сигнал. На выходе устройства снимается сигнал, спектр которого представляет собой сумму синусоидальных сигналов (сумма исходной синусоиды и ее гармоник). Затем по специальной формуле рассчитывается количественное соотношение исходного сигнала и его гармоник, полученных на выходе устройства. Это количественное соотношение и есть коэффициент нелинейных искажений (THD).

Что такое MIDI-синтезатор? Термин «синтезатор» обычно используется применительно к электронному музыкальному инструменту, в котором звук создается и обрабатывается, меняя свою окраску и характеристики. Естественно, название этого устройства пошло от его основного предназначения – синтеза звука. Основных методов синтеза звука существует всего два: FM (Frequency modulation – частотная модуляция) и WT (Wave Table – таблично-волновой). Поскольку мы не можем здесь подробно останавливаться на их рассмотрении, опишем лишь основную идею методов. В основе FM-синтеза лежит идея, что любое даже самое сложное колебание является по сути суммой простейших синусоидальных. Таким образом, можно наложить друг на друга сигналы от конечного числа генераторов синусоид и путем изменения частот синусоид получать звуки, похожие на настоящие. Таблично-волновой синтез основывается на другом принципе. Синтез звука при использовании такого метода достигается за счет манипуляций над заранее записанными (оцифрованными) звуками реальных музыкальных инструментов. Эти звуки (они называются сэмплами) хранятся в постоянной памяти синтезатора.

MIDI-синтезатор – это синтезатор, отвечающий требованиям стандарта, о котором мы сейчас поговорим. MIDI – это общепринятая спецификация, связанная с организацией цифрового интерфейса для музыкальных устройств, включающая в себя стандарт на аппаратную и программную части. Эта спецификация предназначена для организации локальной сети электронных инструментов (рис. 7). К MIDI-устройствам относятся различные аппаратные и музыкальные инструменты, отвечающие требованиям MIDI. Таким образом, MIDI-синтезатор – это музыкальный инструмент, предназначенный обычно для синтеза звука и музыки, а также удовлетворяющий спецификации MIDI. Давайте разберемся кратко, почему выделен отдельный класс устройств, названный MIDI.

Дело в том, что осуществление программной обработки звука часто сопряжено с неудобствами, обусловленными различными техническими особенностями этого процесса. Даже возложив операции по обработке звука на звуковую карту или любую другую аппаратуру, остается множество различных проблем. Во-первых, зачастую желательно пользоваться аппаратным синтезом звучания музыкальных инструментов (как минимум потому, что компьютер – это слишком общий инструмент, часто необходим просто аппаратный синтезатор звуков и музыки, не более). Во-вторых, программная обработка звука часто сопровождается временными задержками, в то время как при концертной работе необходимо мгновенное получение обработанного сигнала. По этим и другим причинам и прибегают к использованию специальной аппаратуры для обработки, а не компьютеров со специальными программами. Однако при использовании аппаратуры возникает необходимость в едином стандарте, который позволил бы соединять устройства друг с другом и комбинировать их. Эти предпосылки и заставили в 1982 году несколько ведущих в области музыкального оборудования компаний утвердить первый MIDI-стандарт, который впоследствии получил продолжение и развивается по сей день. Что же в конечном счете представляет собой MIDI-интерфейс и устройства в него входящие с точки зрения персонального компьютера?

  • Аппаратно - это установленные на звуковой карте: синтезатор различных звуков и музыкальных инструментов, микропроцессор, контролирующий и управляющий работу MIDI-устройств, а также различные стандартизованные разъемы и шнуры для подключения дополнительных устройств.
  • Программно - это протокол MIDI, представляющий собой набор сообщений (команд), которые описывают различные функции системы MIDI и с помощью которых осуществляется связь (обмен информацией) между устройствами MIDI. Сообщения можно рассматривать как средство удаленного управления.

Рамки данной статьи не позволяют нам углубляться в частности описания MIDI, следует отметить однако, что в отношении синтезаторов звука MIDI устанавливает строгие требования к их возможностям, примененным в них способам синтеза звука, а также к управляющим параметрам синтеза. Кроме того, для того, чтобы музыка созданная на одном синтезаторе могла бы быть легко перенесена и успешно воспроизведена на другом, были установлены несколько стандартов на соответствие инструментов (голосов) и их параметров в различных синтезаторах: стандарт General MIDI (GM), General Synth (GS) и eXtended General (XG). Базисным стандартом является GM, остальные два являются его логическими продолжениями и расширениями.

В качестве практического примера устройства MIDI, можно рассмотреть обычную MIDI-клавиатуру. Упрощенно, MIDI-клавиатура представляет собой укороченную клавиатуру рояля в корпусе с которой находится MIDI-интерфейс, позволяющий подключать ее к другим MIDI-устройствам, например, к MIDI-синтезатору, который установлен в звуковой карте компьютера. Используя специальное программное обеспечение (например, MIDI-секвенсор) можно включить MIDI-синтезатор в режим игры, например, на рояле, и нажимая на клавиши MIDI-клавиатуры слышать звуки рояля. Естественно, что роялем дело не ограничивается – в стандарте GM имеются 128 мелодических инструментов и 46 ударных. Кроме того, используя MIDI-секвенсор можно записывать исполняемые на MIDI-клавиатуре ноты в компьютер, для последующего редактирования и аранжировки, либо просто для элементарной распечатки нот.

Надо отметить, что поскольку MIDI-данные – это набор команд, то музыка, которая написана с помощью MIDI, также записывается с помощью команд синтезатора. Иными словами, MIDI-партитура – это последовательность команд: какую ноту играть, какой инструмент использовать, какова продолжительность и тональность ее звучания и так далее. Знакомые многим MIDI-файлы (.MID) есть нечто иное, как набор таких команд. Естественно, что поскольку имеется великое множество производителей MIDI-синтезаторов, то и звучать один и тот же файл может на разных синтезаторах по-разному (потому что в файле сами инструменты не хранятся, а есть лишь только указания синтезатору какими инструментами играть, в то время как разные синтезаторы могут звучать по-разному).

Вернемся к рассмотрению звукомузыкальных плат. Поскольку мы уже уточнили, что такое MIDI, нельзя обойти стороной характеристики встроенного аппаратного синтезатора звуковой карты. Современный синтезатор, чаще всего, основан на так называемой «волновой таблице» - WaveTable (вкратце, принцип работы такого синтезатора состоит в том, что звук в нем синтезируется из набора записанных звуков путем их динамического наложения и изменения параметров звучания), раньше же основным типом синтеза являлся FM (Frequency Modulation – синтез звука посредством генерирования простых синусоидальных колебаний и их смешения). Основными характеристиками WT-синтезатора являются: количество инструментов в ПЗУ и его объем, наличие ОЗУ и его максимальный объем, количество возможных эффектов обработки сигналов, а также возможность поканальной эффект-обработки (конечно, в случае наличия эффект-процессора), количество генераторов, определяющих максимальное число голосов в полифоническом (многоголосном) режиме и, может быть самое главное, стандарт, в соответствии с которым выполнен синтезатор (GM, GS или XG). Кстати, объем памяти синтезатора - не всегда величина фиксированная. Дело в том, что в последнее время синтезаторы перестали иметь свое ПЗУ, а пользуются основным ОЗУ компьютера: в этом случае все используемые синтезатором звуки хранятся в файле на диске и при необходимости считываются в ОЗУ.



Следующая страница → ← Предыдущая страница
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.

window-new
Soft
Hard
Тренды 🔥
Обновления Windows 11 больше не будут перезагружать ПК, но обычных пользователей это не касается 12 мин.
VK похвасталась успехами «VK Видео» на фоне замедления YouTube 2 ч.
GTA наоборот: полицейская песочница The Precinct с «дозой нуара 80-х» не выйдет в 2024 году 4 ч.
D-Link предложила устранить уязвимость маршрутизаторов покупкой новых 5 ч.
Valve ужесточила правила продажи сезонных абонементов в Steam и начнёт следить за выполнением обещаний разработчиков 5 ч.
Австралия представила беспрецедентный законопроект о полном запрете соцсетей для детей до 16 лет 6 ч.
Биткоин приближается к $100 000 — курс первой криптовалюты установил новый рекорд 6 ч.
В открытых лобби Warhammer 40,000: Space Marine 2 запретят играть с модами, но есть и хорошие новости 7 ч.
Apple попросила суд отклонить антимонопольный иск Минюста США 7 ч.
Битва за Chrome: Google рассказала об ужасных последствиях отчуждения браузера для США и инноваций 7 ч.
Meta планирует построить за $5 млрд кампус ЦОД в Луизиане 5 мин.
Arm задаёт новый стандарт для ПК, чтобы навязать конкуренцию x86 19 мин.
HPE готова ответить на любые вопросы Минюста США по расследованию покупки Juniper за $14 млрд 25 мин.
Thermaltake представила компактный, но вместительный корпус The Tower 250 для игровых систем на Mini-ITX 2 ч.
Флагманы Oppo Find X8 и X8 Pro на Dimensity 9400 стали доступны не только в Китае — старший оценили в €1149 3 ч.
«ВКонтакте» выросла до 88,1 млн пользователей — выручка VK взлетела на 21,4 % на рекламе 3 ч.
«Квантовые жёсткие диски» стали ближе к реальности благодаря разработке австралийских учёных 4 ч.
Электромобили станут более автономными и долговечными: Honda через несколько лет стартует массовый выпуск твердотельных батарей 4 ч.
Большой планшет Oppo Pad 3 Pro вышел на глобальный рынок за €600 4 ч.
Гигантские ракеты SpaceX Starship смогут летать в пять раз чаще с 2025 года 4 ч.