Опрос
|
реклама
Быстрый переход
Детектор гравитационных волн LIGO начал новый цикл наблюдений после 3 лет модернизации
23.05.2023 [16:04],
Геннадий Детинич
Уникальный в своём роде прибор — лазерный интерферометр LIGO — приступил к четвёртой по счёту научной вахте. Он будет вести наблюдения рекордно долго — полтора года, что почти в два раза дольше предыдущего цикла работы. LIGO построен для детектирования гравитационных волн, которые он же и открыл, хотя эти явления были предсказаны Эйнштейном более 100 лет назад. Теперь таких событий будет регистрироваться ещё больше. ![]() Художественное представление о гравитационных волнах. Источник изображения: personal.soton.ac.uk Модернизация позволила значительно повысить чувствительность интерферометра. Сделаны как аппаратные улучшения — построен дополнительный резонатор длиной 300 м, так и программные. Резонатор снизит уровень шумов детектора, а новый алгоритм станет ещё лучше выискивать полезный сигнал среди шума. В совокупности улучшения позволят детектировать ещё более слабые гравитационные волны — либо от слияния объектов меньшей массы, либо расположенные ещё дальше от нас. Следует сказать, что алгоритм поиска гравитационного события — это само по себе произведение искусства. Программе необходимо перебрать миллионы комбинаций теоретически возможных трактовок зарегистрированного сигнала, чтобы понять, что именно уловил детектор. Это необходимо сделать достаточно быстро, чтобы в режиме реального времени попытаться отыскать на небе источник события. Обсерватория LIGO может лишь приблизительно указать участок неба, откуда пришли гравитационные волны и он очень большой — примерно как 400 полных лун. Вместе с LIGO искать источники событий будет комплекс телескопов BlackGEM в Европейской южной обсерватории в Чили. Недавно для этого запущены три роботизированных телескопа, а всего их будет 15. Привязать к гравитационному сигналу наблюдения объектов в видимом диапазоне и в радиодиапазоне — это высший пилотаж в астрономии. За прошедшие годы с момента открытия гравитационных волн восемь лет назад было зарегистрировано только одно такое событие, хотя всего было зарегистрировано до 100 гравитационных явлений. «Сбор информации по нескольким каналам об одном событии — астрофизика нескольких сообщений — подобен добавлению цвета и звука к чёрно-белому немому фильму и может обеспечить гораздо более глубокое понимание астрофизических явлений», — заявляют астрономы. Повысить точность детектирования направления на гравитационное явление может работа нескольких интерферометрических лабораторий одновременно. С 2015 года вместе с двумя детекторами LIGO в США начала работать гравиметрическая обсерватория Virgo в Италии. Именно коллаборация LIGO-Virgo первой зафиксировала гравитационные волны, за что была дана Нобелевская премия. С началом нового цикла наблюдений, который официально стартует 24 мая, вместе с LIGO и Virgo начнёт работать обсерватория Kamioka Gravitational Wave Detector (KAGRA) в Японии, что ещё сильнее повысит точность регистрации, хотя японский детектор сам по себе не такой чувствительный. К 2030 году, о чём рано говорить, но всё же, должна быть построена установка-близнец LIGO в Индии. Это даст ещё более широкую базу для детектирования направления на гравитационные события. Сам по себе детектор LIGO — это строение в виде буквы L с каждым плечом около 4 км. По каждому из плеч циркулирует лазерный луч с многократным отражением. Если через объект проходит гравитационная волна, то она, как положено искажающему пространство-время сигналу, делает одно плечо короче, а другое — длиннее. В результате лазерный импульс в каждом плече пролетит разное расстояние и детекторы это зафиксируют. По разнице можно будет понять, что произошло и примерно в каком участке неба. Появление этого инструмента сродни такой революции в астрономии, как внедрение радиотелескопов. Теперь нам есть чем «пощупать» Вселенную кроме оптики и радио. И это уже принесло и ещё принесёт свои плоды. 50 оттенков золотого: представлены самые детальные фото Солнца — 20 км на пиксель
23.05.2023 [09:57],
Геннадий Детинич
Национальный научный фонд США представил серию снимков Солнца, сделанных солнечным телескопом им. Дэниела Иноуэ (Daniel K. Inouye Solar Telescope, DKIST). Каждый пиксель на картинке соответствует 20 км солнечной поверхности. Это самые детальные изображения нашей звезды. Что в этом интересного? Земная наука плохо представляет себе физику процессов на Солнце и для неё каждый такой снимок — это путь к удивительным открытиям. В целом учёные сходятся, что в основе «работы» Солнца и звёзд как мы это видим, лежат законы квантовой физики. Вероятностный характер квантово-механических явлений (конкретно — туннельный эффект) позволяет идти термоядерным реакциям внутри звёзд медленно и верно. Вопреки распространённому мнению, только лишь колоссальных давления и температуры в ядре звёзд недостаточно для запуска термоядерной реакции. Необходим квантовый переход, чтобы протоны водорода преодолели электромагнитное отталкивание и сблизились до начала сильных взаимодействий. Но это всё крайне сложная физика. Детальные изображения Солнца со всеми его тонкими структурами (размерами от полутысячи до полутора тысяч км) позволяют точнее представить модель конвективных процессов на нашей звезде и с высочайшей точностью проследить за миграцией магнитных полей. Телескоп «Иноуэ», как показали первые полученные им изображения, может помочь в разгадке циклической активности Солнца и тайну такой же периодической смены его магнитных полюсов. Классическая физика в этом вполне может помочь и данные телескопа станут для учёных ценнейшим подспорьем в этом деле. Наконец, это просто красиво. В максимальном разрешении все изображения можно найти на сайте Национального научного фонда США. В NASA завершили сборку 288-Мп камеры космического телескопа «Роман» — её поле зрения в 100 раз больше, чем у «Хаббла»
17.05.2023 [09:41],
Геннадий Детинич
В NASA сообщили, что 288-Мп мультиспектральный датчик изображений установлен в камеру Wide Field Instrument (WFI), которая станет основой космического телескопа «Нэнси Грейс Роман» (WFIRST). Телескоп «Роман» будет за раз делать снимок в 100 раз большего участка неба, чем способен «Хаббл», но с тем же уровнем детализации. Это будет невообразимый по возможностям инструмент, запуск которого ожидается в мае 2027 года. ![]() Последний штрих — установка защитной крышки на массив датчиков. Источник изображения: NASA/Chris Gunn Массив датчиков с электроникой или Focal Plane System (FPS) разработан инженерами Центра космических полетов NASA им. Годдарда в Гринбелте, штат Мэриленд, и специалистами компании Teledyne Scientific & Imaging в Камарилло, штат Калифорния. Команда NASA также разработала электронику и собрала FPS. Непосредственно сборкой камеры Wide Field Instrument (WFI) занимаются инженеры компании Ball Aerospace в Боулдере, штат Колорадо. Некоторое время назад массив датчиков был доставлен в сборочный центр и на днях его установили в прибор. Массив состоит из 18 отдельных матриц изображения, каждая из которых имеет разрешение 16,8 Мп. Все вместе они будут делать огромные инфракрасные снимки неба, каждый из которых по полю зрения будет в сто раз превышать кадр, сделанный «Хабблом». ![]() Завершится сборка камеры WFI установкой систем охлаждения. Датчики инфракрасного телескопа должны надёжно охлаждаться до очень и очень низких температур, без чего свет от далёких звёзд и галактик просто не получить. В частности, рабочая температура датчиков должна быть -178 °C. Тепло будет отводить массив радиаторов, который рассеет его в открытое пространство. ![]() Телескоп «Нэнси Грейс Роман» в представлении художника После установки радиаторов камера «Роман» будет готова к термальным вакуумным испытаниям, которые пройдут этим летом. Для интеграции камеры в состав обсерватории она будет возвращена в центр NASA, что ожидается весной будущего года. Запуск обсерватории, напомним, предварительно намечен на май 2027 года. Гравитационные детекторы получили «глаза» — к работе приступили первые роботизированные телескопы BlackGEM
17.05.2023 [08:17],
Геннадий Детинич
Европейская южная обсерватория (ESO) сообщила о начале работы первых трёх телескопов BlackGEM, которые в оптическом диапазоне будут искать источники гравитационных волн. Детекторы гравитационных волн LIGO и Virgo не могут указать точку в небе, где произошло слияние чёрных дыр или нейтронных звёзд, а без этого информация о событии неполная. Восполнять этот недостаток будет массив BlackGEM, который с огромной скоростью будет осматривать южное небо. ![]() Источник изображения: ESO Всего массив будет состоять из 15 телескопов. У каждого из них сравнительно небольшое зеркало — всего 65 см. Тем не менее, за счёт расположения — на высокогорном плато в Чили (в Ла Силла) — обзор и разрешение обещают быть превосходными по сравнению с даже большими телескопами в других местах. В лучшем случае, детекторы LIGO и Virgo могут определять участок неба, откуда пришли зафиксированные гравитационные волны, площадью около 400 полных лун. Массив BlackGEM должен быстро осмотреть этот участок и зафиксировать все видимые быстрые изменения. Если роботизированные телескопы обнаружат изменения в зоне наблюдения, цель для детального изучения будет передана на по-настоящему большие телескопы. Определение направления на источники гравитационных волн станет не единственной задачей комплекса BlackGEM. Массив будет определять другие быстрые переходные процессы, например, искать взрывы сверхновых в Южном полушарии, а также выявлять потенциально опасные для Земли астероиды и кометы. «Джеймс Уэбб» нашёл воду на комете из главного пояса астероидов, но не обнаружил на ней углекислого газа
16.05.2023 [04:31],
Николай Хижняк
Космический телескоп «Джеймс Уэбб» нашёл водяной пар вокруг кометы, расположенной в главном поясе астероидов между Юпитером и Марсом. Наблюдение космического аппарата вносит очередное доказательство в копилку гипотезы, что вода на Земле могла появиться благодаря кометам. Открытие телескопа также показывает, что вода в ранней Солнечной системе могла сохраняться в виде льда в главном поясе астероидов. ![]() Источник изображения: NASA, ESA Вопреки названию, в главном поясе астероидов помимо астероидов также присутствуют объекты, которые периодически показывают ореол, называемый комой, а также хвост из газа и пыли. Недавно они были классифицированы как кометы. 238P/Read является одним из трёх объектов главного пояса астероида, попавшего под эту классификацию. ![]() Комета 238P/Read в объективе «Джеймса Уэбба» 8 сентября 2022 года. Источник изображения: NASA, ESA, CSA, M. Kelley, H. Hsieh, A. Pagan До этого считалось, что все кометы возникают в поясе Койпера за Нептуном или в так называемом облаке Оорта, на окраинах Солнечной системы, где лёд может храниться вдали от Солнца. Ледяной материал, который испаряется, когда комета приближается к Солнцу, это то, что придаёт ей характерную кому и хвост, отличающие её от астероидов. Долгое время исследователи предполагали, что водяной лёд может сохраняться и в более теплом поясе астероидов внутри орбиты Юпитера. Однако экспериментально подтвердить это удалось только благодаря наблюдениям «Джеймса Уэбба». «В прошлом мы наблюдали объекты в главном поясе со всеми характеристиками комет, но только благодаря таким точным спектральным данным от "Уэбба" мы можем сказать, что этот эффект определённо создаётся водяным льдом. Благодаря наблюдениям кометы 238P/Read, проведённым "Уэббом", мы можем показать, что водяной лёд из ранней Солнечной системы может сохраниться в поясе астероидов», — говорится в заявлении ведущего автора исследования, астронома Мэрилендского университета Майкла Келли (Michael Kelley). В то же время наблюдение за кометой 238P/Read породило новую загадку. На объекте не оказалось углекислого газа, который ожидали увидеть учёные. Исследователи поясняют, что обычно около 10 % летучих веществ кометы составляет углекислый газ, который легко испаряется под воздействием солнечного тепла. Однако у 238P/Read углекислого газа обнаружено не было. ![]() Спектральный анализ комет 238 P/Read (белым) и 109 P/Hartley 2 (синим) на наличие воды и углекислого газа. Источник изображения: NASA, ESA, CSA, J. Olmsted Учёные выдвинули несколько предположений. Одно из них заключается в том, что комета содержала углекислый газ в момент своего формирования, но со временем полностью его потеряла под воздействием Солнца. Углекислый газ испаряется легче, чем водяной лёд, и его запасы могли исчезнуть за миллиарды лет. Согласно альтернативному предположению, комета из главного пояса астероидов могла образоваться в особенно тёплой части Солнечной системы, где углекислый газ был недоступен. «Джеймс Уэбб» открывает новый сезон научной работы — теперь в его прицел попадут даже астероиды
13.05.2023 [15:13],
Геннадий Детинич
Институт исследований космоса с помощью космического телескопа (STScI) объявил об утверждении программы второго года общих наблюдений с помощью обсерватории «Джеймс Уэбб». Из 1600 поданных с начала года заявок отобрано 249, рассчитанных на 5000 часов прямой работы телескопа и 1215 часов параллельных наблюдений. Выбор сбалансирован по широкому спектру научных тем — от астероидов и экзопланет до космологии. ![]() Источник изображения: NASA Всего заявки на наблюдения подавало более чем 5450 учёных из 52 стран, включая США, страны-члены ЕКА (Европейского космического агентства) и Канаду. Заявки охватывали все темы астрономии и астрофизики — от тел Солнечной системы, экзопланет, остатков сверхновых и сливающихся нейтронных звёзд до близких и далёких галактик, сверхмассивных чёрных дыр в центрах галактик и крупномасштабной структуры Вселенной. В совокупности поданные заявки потребовали бы более 35 000 часов работы телескопа, что значительно превышает выделенные 5000 часов работы обсерватории. Отбор заявок методом двойного анонимного экспертного обзора (DAPR) проводили 225 приглашённых экспертов, а также 350 членов Комитета по распределению рабочего времени телескопов и команды «Джеймса Уэбба» в STScI и NASA. Метод DAPR был введён в 2016 году и подразумевает, что эксперты ничего не знают о подающих заявки учёных и учёные не знают, кто занимается отбором и по какой теме. Утверждается, что это сразу возымело эффект. Например, выросло число одобренных заявок от руководителей-студентов и женщин. Кроме общих часов, наблюдения второго года будут включать 12 больших финансируемых властями программ общей длительностью 1650 часов. Из примерно 5000 часов общих наблюдений 48 % времени будет отдано малым программам (менее 25 ч), 35 % — средним (от 25 до 75 ч) и 17 % крупным (более 75 ч). Отобранные заявки были подготовлены более чем 2088 исследователями из 41 страны, включая 38 штатов и территорий США, 14 стран-членов ЕКА и 6 провинций Канады. Десять процентов заявок подготовлены возглавляющими свои проекты студентами. ![]() Первый год наблюдений «Джеймса Уэбба» был насыщен открытиями. Новый год обещает оказаться ещё более интересным. Год спустя учёные намного лучше понимают, чего можно ждать от нового телескопа и как его лучше использовать. Миллион снимков в одном изображении — Европейская южная обсерватория поделилась панорамой «питомника» звёзд
12.05.2023 [12:37],
Геннадий Детинич
Расположенная в Чили Европейская южная обсерватория представила изображение звёздных яслей, составленный из более миллиона фотографий неба. Уникальность снимка не только в годах сбора информации для него, но также в способности передать видимый и невидимый человеческому глазу инфракрасный свет. Без последней возможности мы не могли бы заглянуть вглубь облаков из космической пыли, где и рождаются молодые звёзды. Любуйтесь! Данные о нескольких регионах звездообразования собрал обзорный телескоп VISTA. У него небольшое зеркало — всего 4,1 м, но широкое — на три полных Луны — поле обзора. Это позволяет за ночь сделать снимки неба всего Южного полушария. Телескоп введён в строй в 2009 году. Он выдаёт колоссальный объём информации. Инструмент такого рода способен выявлять быстро происходящие явлений от вспышек сверхновых до астероидов и комет в Солнечной системе. Его затмит только телескоп им. Веры Рубин, когда начнёт работать в следующем году. «На этих изображениях мы можем обнаружить даже самые слабые источники света, например, звёзды, гораздо менее массивные, чем Солнце, открывая объекты, которые никто раньше не видел, — сказал Стефан Мейнгаст (Stefan Meingast), астроном из Венского университета в Австрии и ведущий автор нового исследования, опубликованного в журнале Astronomy & Astrophysics. — Это позволит нам понять процессы, которые превращают газ и пыль в звёзды». Звёзды образуются, когда облака газа и пыли сжимаются под действием собственной гравитации, но детали того, как это происходит, не до конца понятны. Сколько звёзд рождается из облака? Насколько они массивны? Сколько звёзд будут иметь планеты? Наблюдения с помощью VISTA позволяет собирать данные в наилучшей доступной динамике. Мы сможем видеть, как отдельные звёзды покидают место рождения и это сделает оценки их параметров наиболее точными. Данные VISTA дополнят данные европейского астрометрического спутника «Гайа» (Gaia). У «Гайи» только работа в видимом диапазоне. Она не может заглянуть внутрь облаков из пыли и газа. Оба инструмента помогут создать наиболее полный и точный каталог объектов в нашей галактике и даже за её пределами, и это даст основу для множества новых открытий. «Джеймс Уэбб» разглядел далёкий мир, окутанный паром, туманами и облаками
12.05.2023 [08:27],
Геннадий Детинич
Используя приборы телескопа «Джеймс Уэбб», учёные изучили атмосферу далёкой экзопланеты необычным способом. Инопланетный мир оказался покрыт плотным туманом, дымкой или облаками. Это могла быть планета-океан, и таких может быть множество во Вселенной. ![]() Экзопланета GJ 1214 b в представлении художника. Источник изображения: NASA/JPL-Caltech/R. Hurt (IPAC) Исследователи направили телескоп в сторону экзопланеты GJ 1214 b. Это так называемый мининептун — планета промежуточной массы между Нептуном и Землёй. Наши наблюдения показывают, что это один из самых распространённых из зарегистрированных на сегодня типов экзопланет. Система красного карлика GJ 1214 находится в 40 световых годах от нас и была изучена ранее. Об атмосфере GJ 1214 b также было известно, что она парообразная. Однако состав атмосферы в целом был неизвестен. «Уэбб» помог собрать больше данных по атмосфере этой экзопланеты и сделал это необычным образом. Обычно подсказку о химическом и физическом составе атмосферы экзопланеты мы получаем транзитным способом, когда планета проходит по диску своей звезды и часть спектра её света поглощается атмосферой. По провалам в спектральных линиях мы можем узнать, какими газами богат воздух экзопланеты. В случае наблюдения за GJ 1214 b приборы «Уэбба» использовались для фиксации температуры планеты в течение её полного орбитального периода, благо она делает полный оборот вокруг своего «солнца» всего за 1,6 суток. Выяснилось, что разница между температурами на дневной и ночной сторонах экзопланеты очень большая: днём она достигала 279 °C, а ночью — 165 °C. Подобная разница возможно только в том случае, если в атмосфере преобладают тяжёлые молекулы, например, воды или метана. Нюанс в том, что звезда-хозяин бедна на такие элементы и экзопланета, скорее всего, сформировалась вдали от неё и приближалась к ней постепенно. Учёные предполагают, что GJ 1214 b могла сразу сформироваться как мир, богатый водой и льдами — как водный мир. Это дало ей впоследствии парообразную атмосферу. Это те кусочки головоломки, которые помогут в итоге сложить более полную картину об одних из самых часто встречающихся во Вселенной экзопланет. Без инструментов «Уэбба» подобное наблюдение сделать было невозможно. И оно будет не единственным. Только так можно будет увидеть всю картину целиком. Учёные придумали, как увеличить на несколько порядков чувствительность детекторов гравитационных волн
09.05.2023 [15:20],
Геннадий Детинич
Детектирование гравитационных волн стало важным открытием прошлого десятилетия. Сделала это в 2015 году наземная обсерватория-интерферометр LIGO. Тем самым у учёных появился новый инструмент для изучения объектов во Вселенной кроме традиционных оптики и радио. Следующим шагом на этом пути должен стать космический детектор гравитационных волн LISA. Однако группа европейских учёных предложила на порядки более чувствительный прибор LISAmax. ![]() Проект LISA. Источник изображений: ЕКА Каждое из двух плеч наземных обсерваторий LIGO (США) и VIRGO (Италия) имеет длину примерно 3 км. Это накладывает ограничение на регистрируемые гравитационные волны — детекторы могут определить события от слияния объектов в несколько десятков солнечных масс. Ограничение обусловлено тем, что длина плеча интерферометра — это чувствительность к определённой длине волны (частоте). Для регистрации событий с участием сверхмассивных чёрных дыр от миллиона солнечных масс и больше требуется длина плеча интерферометра в несколько миллионов километров. Это проект не для Земли. Такой космический проект под названием LISA разрабатывается Европейским космическим агентством в рамках многоэтапной программы космических исследований Voyage 2050. Проект утверждён в 2017 году и находится в стадии проектирования с целью запустить комплекс LISA в космос где-то в середине 30-х годов. Каждое из плеч космического интерферометра будет длиной 2,5 млн км. Это станет настоящим рывком вперёд по изучению Вселенной с помощью нового типа детекторов. Но всё можно сделать ещё лучше, считает группа учёных, подготовивших статью для журнала Classical and Quantum Gravity (она пока вышла на arxiv.org), если интерферометры развести на удаление до 295 млн км и такая возможность потенциально есть. Учёные рассказали, что развитием проекта LISA может стать проект LISAmax. Для этого космические интерферометры необходимо подвесить в точках Лагранжа в системе Солнце-Земля. Это даст плечо длиною 295 млн км, что позволит детектировать события в диапазоне волн менее 1 мГц. Это сделает детекторы на два порядка чувствительнее почти за те же ресурсы и приведёт к настоящему цунами открытий от детектирования слияний чёрных дыр, нейтронных звёзд в широком диапазоне масс до поиска «реликтовых» гравитационных волн, образовавшихся в процессе Большого взрыва. ![]() Отдельный интерферометр. Таких будет три — по одному в вершинах равносторонненго треугольника в космосе Также такой большой детектор позволит с невероятной точностью обнаруживать на небе гравитационные события, которые он регистрирует. Будет ли этот проект серьёзно воспринят европейским научным сообществом, нам ещё предстоит узнать. А пока Индия взяла на себя обязательство построить к 2030 году близнеца детектора LIGO. Это приведёт к появлению ещё одной точки детектирования гравитационных волн на Земле и вместе с другими детекторами на порядок увеличит чувствительность сети детекторов. При обзоре системы Фомальгаута «Уэбб» искал астероиды, а нашёл планеты
09.05.2023 [07:57],
Геннадий Детинич
Ближайшая к нам молодая звезда Фомальгаут своим ярким сиянием тысячелетиями завораживала наших предков и не могла оставить равнодушными современных астрономов, вооружённых передовыми телескопами. Это позволило ещё в 1983 году обнаружить вокруг звезды пылевое кольцо наподобие нашего пояса Койпера, но в два раза больше. Учёные не могли упустить случая рассмотреть инопланетный пояс астероидов с помощью «Джеймса Уэбба» и сильно удивились увиденному. ![]() Источник изображения: NASA, ESA, CSA Полученная «Уэббом» картинка системы Фомальгаута показала наличие там сложной внутренней структуры пылевых колец, кроме обнаруженного там ранее внешнего пояса. «Уэбб» работает в инфракрасном диапазоне и способен в деталях наблюдать нагретые тела и области. Исследователи были очень удивлены, когда увидели сильную неоднородность в структуре внутреннего пылевого диска. «Рассматривая узоры в этих кольцах, мы можем сделать небольшой набросок того, как должна выглядеть планетная система, как если бы мы могли сделать достаточно детальный снимок, чтобы увидеть предполагаемые планеты», — сказал Андраш Гаспар (András Gáspár) из Аризонского университета в Тусоне и ведущий автор новой статьи, описывающей эти результаты. Вскоре после образования планет в системе остаётся ещё много пыли и каменных тел различного размера — астероидов и зародышей планет. Всё это лежит, в основном, в плоскости огромного диска из пыли и камней, среди которых вращаются планеты. По сути, это оставшийся после образования планет мусор. Планеты как самые массивные тела на своих орбитах своей гравитацией формируют пояса астероидов, что издали выглядит как ярко выраженное кольцо на «мусорном» диске из пыли и камней. Именно такую структуру впервые в системе Фомальгаута помог обнаружить «Уэбб» и, как уверены учёные, эта же методика поможет обнаружить внутренние пылевые кольца в других системах, что даст представление об их планетарных структурах даже без прямого обнаружения экзопланет. Попутно «Уэбб» разгадал прошлую загадку — якобы обнаруженную «Хабблом» во внешнем пылевом кольце экзопланету. Это образование стало ещё больше с прошлого наблюдения, что заставляет предположить, что это последствия столкновения крупных астероидов с последующим разлётом обломков. Это оказалась не экзопланетой, а расширяющимся взрывом после столкновения. ![]() Облако пыли, которое раньше ошибочно приняли за планету Представленная работа с анализом структуры пылевого кольца системы Фомальгаута подана для публикации в престижном журнале Nature, но ещё не прошла рецензирование и не дошла до печати. Статистическое моделирование объяснило, почему люди до сих пор не засекли радиосигналы инопланетян
06.05.2023 [14:44],
Геннадий Детинич
Глядя на бесконечный космос, не верится, что там никого нет. Но вот уже шестьдесят лет земные радиотелескопы обшаривают Вселенную в поисках внеземных сигналов, и эти поиски так и не дали результата. Специалисты по статистике дали свой ответ на загадку, почему при всех затраченных усилиях мы не обнаруживаем сигналы инопланетян. ![]() Источник изображения: Pixabay Исследование провели учёные из лаборатории статистической биофизики Федеральной политехнической школы Лозанны (EPFL) в Швейцарии. За основу они взяли модель статистического исследования пористых губчатых материалов. Базовым условием для решения задачи стало два предположения: во-первых, в любой момент времени в Млечном Пути должен быть хотя бы один электромагнитный сигнал технологического происхождения и, во-вторых, Земля находится в «зоне молчания» как минимум 60 лет. Иначе говоря, никакие инопланетные радиосигналы за это время на Землю не попадали, а не просто по каким-то причинам оставались необнаруженными. Расчёт статистической модели строится на том, что Земля и инопланетные радиоизлучатели помещаются в «поры» условной губки. Затем строится оптимистичная и пессимистичная вероятность распределения. В самом лучшем случае, если считать встречу с инопланетным разумом удачей, радиосигнал от «чужих» мы сможем принять не ранее, чем через 60 лет. В худшем случае регистрации техногенного сигнала инопланетного происхождения придётся ждать не менее 2000 лет. ![]() Согласно статистической модели, Земля сейчас находится в зоне радиомолчания. Источник изображения: Astronomical Journal Безусловно, решение статистической задачи зависит от начальных условий. Если они будут другими, то результат также будет отличаться от полученного учёными. В сухом остатке остаётся рекомендация оставаться терпеливыми и искать признаки разумности в сигналах, получаемых на штатном оборудовании. В этом плане программа SETI может считаться оптимальным решением. Не нужно тратить ресурсы на приборы исключительно для поиска инопланетных сигналов. В потоке обычных научных данных достаточно много информации, чтобы обнаружить там даже чужой техногенный сигнал, если он туда попадёт. Четыре крупнейших спутника Урана могут иметь океаны из воды под поверхностью, и там может быть жизнь
05.05.2023 [11:24],
Геннадий Детинич
Уран и его спутники станут следующей масштабной задачей для изучения космоса силами NASA. Экспедиция может стартовать к 2031 году. Но цели и задачи надо выбирать сегодня, для чего необходимо заново поднять и проанализировать все данные по системе Урана. Ведь только так можно создать необходимые научные инструменты для изучения этой планеты и её спутников. И новый анализ удивил — на спутниках Урана, вероятно, имеются подлёдные океаны. ![]() Источник изображения: NASA/JPL-Caltech Мимо Урана — седьмой планеты нашей системы — пролетал один единственный космический аппарат — «Вояджер-2». Он предоставил данные ещё в середине 80-х годов прошлого века. С тех пор наблюдения за Ураном и его спутниками велись только удалённо — с Земли и с её орбиты, хотя ряд межпланетных станций делали это с орбит Юпитера и Сатурна. Используя новый набор данных, а также наблюдения за лунами планет-гигантов, учёные создали и проверили новую модель строения спутников Урана. Некоторые луны Юпитера и Сатурна уверенно демонстрируют признаки наличия на них глубоких — до многих десятков километров глубиной — океанов. Как раз сейчас в систему Юпитера направлен зонд JUICE для изучения его спутников и, в том числе, поиска признаков океанов на трёх крупнейших из них — Ганимеде, Европе и Каллисто. Эти признаки и данные также были использованы в новом моделировании, поскольку луны Юпитера, Сатурна и Урана могут иметь схожее геологические строения, и формировались в более-менее похожих условиях. Не учитывать такое было бы недальновидно. Повторный анализ данных с космического аппарата НАСА «Вояджер-2» и новое компьютерное моделирование позволили специалистам NASA сделать вывод, что четыре крупнейшие луны Урана, вероятно, содержат океанический слой между ядром и ледяной корой. Это исследование стало первым, в котором подробно описывается эволюция внутреннего состава и структуры всех пяти крупных лун Урана: Ариэли, Умбриэли, Титании, Оберона и Миранды. По результатам работы делается вывод, что на четырёх из этих лун имеются океаны, глубина которых может составлять десятки километров. У Урана известны 27 лун, четыре самых крупных из них — это Ариэль (1160 км в поперечнике), Умбриэль (1170 км), Оберон (1520 км) и Титания (1589 км). Давно считалось, что Титания, как самая крупная, могла сохранить достаточно внутреннего тепла от радиоактивного распада, чтобы поддерживать подлёдный океан тёплым и даже потенциально пригодным для поддержания в нём жизни. Остальные луны считались недостаточно большими для сохранения тепла и воды в жидкой фазе. Новая работа даёт надежду, что жидкие океаны могут быть также на трёх других крупных спутниках Урана. Следовательно, будущая миссия должна это учитывать и готовить соответствующие научные приборы. Приборы в миссии к Урану должны уметь определять как химический состав вещества на поверхности планеты, так и заглянуть под её поверхность. Для твёрдой породы необходим один диапазон сканирования, для поиска воды — другая методика. Например, о наличии воды подо льдом можно судить по регистрации токов, которые создают магнитные поля спутников. Также спектральный анализ вещества на поверхности вблизи вероятных разломов расскажет о содержании недр и о химическом составе подлёдной воды. Наконец, обнаружение относительно свежих разломов — это также верный признак тектонической активности лун и теплоты её недр (как вариант, наличие тёплого океана). Учитывая вновь вскрывшиеся возможности, NASA сможет лучше спланировать миссию к Урану. Инопланетяне могут составить представление о Земле и людях по сигналам вышек сотовой связи, показало исследование
02.05.2023 [12:30],
Геннадий Детинич
Опубликованная в престижном журнале Monthly Notices of the Royal Astronomical Society работа раскрыла потенциальную возможность утечки данных о Земле и людях в руки инопланетных цивилизаций. Слабым звеном назвали вышки сотовой связи, суммарная мощность которых за последние годы вышла на второе место по силе радиосигналов на Земле. Это не означает, что инопланетяне будут прослушивать наши телефоны, но ряд полезной информации они могут почерпнуть. ![]() Источник изображений: MNRAS, 2023 В 20-м веке сильнейший уровень радиосигналов на Земле создавали радио- и телестанции. Впрочем, и тогда и теперь на первом месте по излучаемой мощности были военные радарные системы и это вряд ли изменится в будущем. Сегодня вышки сотовой связи вышли на второе место по суммарной излучаемой мощности, поскольку они буквально наводнили заселённую людьми местность. При этом каждая отдельная вышка излучает сравнительно мало — от 100 до 200 Вт мощности, но вместе они создают радиофон мощностью в несколько гигаватт. Такой сигнал вполне может засечь инопланетная радиоастрономия на удалении до 10 световых лет. На основе анализа данных о расположении вышек сотовой связи учёные пришли к выводу, что наиболее сильный сигнал будет идти в сторону Северного полюса и Северного полушария в целом. В сторону Южного полюса будет идти более слабый радиосигнал, поскольку в Южном полушарии Земли расположено меньше вышек сотовой связи. Учёные проанализировали вероятное распространение радиосигнала от вышек до ближайших к нам звёздным системам: Альфа Центавра (4 световых года), Звезда Барнарда (6 световых лет) и системы HD 95735 (8 световых лет). У этих звёзд не обнаружены потенциально пригодные для биологической жизни планеты. Но радиосигнал от наших вышек сотовой связи способен донести кое-какую информацию на такие расстояния. ![]() Расчёт формы радиосигнала от вышек сотовой связи, как его могут принимать в системе HD 95735 Например, инопланетяне могут создать карту распределения населения Земли и примерные очертания её материков. Также сигналы позволят вычислить наклонение нашей планеты и скорость её вращения. Работа показала, что вся эта информация дешифруется из радиосигналов сотовых вышек, если где-то там в космосе будет что-то подобное нашему телескопу «Горизонта событий». Развёртывание более мощных сетей 5G только усилит этот процесс, открывая для инопланетных цивилизаций источник информации о цивилизации земной. На далёкой звезде произошла сильнейшая за всю историю наблюдений вспышка
02.05.2023 [10:06],
Геннадий Детинич
Наше Солнце выходит на пик очередного 11-летнего цикла активности. Далёкие звёзды в этом плане не являются исключением. Они точно также имеют свои циклы и последствия этого — пятна, выбросы коронарной массы и вспышки. И это могут быть невообразимые по своему масштабу события, которые не просто формируют космическую погоду в системе, но могут запросто уничтожить в ней всё живое. Оказалось, за примерами далеко ходить не надо. ![]() Событие в представлении художника. Источник изображения: NAOJ Японским астрономам под руководством Шуна Иноуэ (Shun Inoue) из Киотского университета удалось поймать сильнейшую за всю историю наблюдений вспышку на звезде. К счастью, наше Солнце не такое активное, как одна из звёзд в двойной системе V1355 Orionis, которая и произвела эту вспышку. Событие произошло на удалении 400 световых лет от нас и никак не могло повлиять на космическую погоду в нашей системе, но в своей родной системе оно могло наделать беды. Скорость извержения материала звезды достигла 900 км/с, что почти в три раза быстрее скорости убегания звезды. Яркость события более чем десятикратно превышала самую сильную зафиксированную в истории земных наблюдений вспышку. Астрономы не до конца понимают физику таких процессов, поэтому все подобные события тщательно анализируются, а аномалии и вовсе на вес золота. Именно исключения из правил двигают прогресс и науку, что в полной мере относится к астрономии. В наблюдениях учёные из Японии использовали как свой инструмент — 3,8-метровый телескоп Seimei Telescope, так и космическую обсерваторию Transiting Exoplanet Survey Satellite (TESS), которая ищет экзопланеты. Понимание физики вспышек, выбросов коронарной массы и активности звёзд в целом поможет в оценках вероятности жизни в иных мирах и, что более важно, позволит нам лучше прогнозировать эти же события на Солнце. Огромный суборбитальный шар NASA Super Pressure Balloon с телескопом на борту облетел Землю вокруг Антарктиды
01.05.2023 [11:44],
Руслан Авдеев
Воздушный шар сверхвысокого давления (Super Pressure Balloon) агентства NASA с большим телескопом на борту пересёк отметку в 169,24 градуса восточной долготы 26 апреля, в 06:32 по московскому времени, тем самым официально завершив своё первое кругосветное путешествие на средних широтах после запуска 15 апреля (по восточному времени США) из аэропорта Ванака в Новой Зеландии. ![]() Источник изображения: NASA На карте мира можно посмотреть отправную и конечную точки шара, как и весь его последующий маршрут. Кругосветный полёт длился всего 10 дней, 3 часа и 50 минут, на высоте около 32,6 тыс. метров, шар продолжает своё путешествие и сегодня. По словам представителя NASA, шар ведёт себя именно таким образом, как задумывали разработчики, сохраняя стабильную высоту, несмотря на охлаждение и нагрев при смене времени суток. В агентстве продолжают тестировать шар и оценивать полученные данные для будущих полётов, заодно выполняя передовые научные эксперименты. На борту шара установлен телескоп Super Pressure Balloon Imaging Telescope (SuperBIT), который, по данным учёных, обеспечил в ходе полёта блестящие результаты наблюдений. Дело в том, что на такой высоте очень разреженная атмосфера, за счёт чего значительно снижаются искажения при наблюдениях. ![]() Источник изображения: NASA Проживающие в относительной близости к пути движения шара, могут иногда видеть его, поскольку тот продолжает своё путешествие, его текущее положение можно увидеть на специальном сайте (заблокирован как минимум для некоторых IP из России). Помимо первого проекта NASA Scientific Balloon Program, ещё один шар сверхвысокого давления планируется запустить с того же аэропорта для дальнейшего тестирования технологии и выполнения миссии Extreme Universe Space Observatory 2 (EUSO-2), организованной Чикагским университетом, которая будет опираться на данные, полученные в ходе одной из миссий 2017 года. EUSO-2 поможет исследовать космические частицы сверхвысоких энергий, приходящие из других галактик и взаимодействующие с земной атмосферой. Происхождение этих частиц пока плохо изучено, поэтому данные, собранные в ходе миссии EUSO-2, помогут решить эту научную задачу. Более подробная информация о программе NASA Scientific Balloon Program имеется на сайте агентства. |