Сегодня 22 января 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → бак

БАК создал самую тяжёлую частицу антиматерии на Земле — антигипергелий-4

ЦЕРН сообщил, что научная коллаборация ALICE впервые обнаружила самые тяжёлые на сегодня экзотические частицы и их антиподы из антивещества. Учёных давно волнует проблема, по какой причине в нашем мире много материи и практически полностью отсутствует антиматерия. Материя и антиматерия должны были появиться в равных пропорциях, но в какой-то момент после Большого взрыва что-то пошло не так и антивещество почти исчезло из Вселенной. Ответ ищут в БАКе.

 Источник изображения: Janik Ditzel / ALICE collaboration

Источник изображения: Janik Ditzel / ALICE collaboration

Ранее в этом году коллаборация STAR на релятивистском коллайдере тяжёлых ионов (RHIC) наблюдала антигиперводород-4 (antihyperhydrogen-4). Это связанные состояния антипротона, двух антинейтронов и антилямбды. Всё это антиматерия, эксперименты с которой позволяют разобраться в причинах дисбаланса вещества и антивещества во Вселенной. В коллаборации ALICE, работающей в ЦЕРНе на Большом адронном коллайдере (БАК), решили пойти дальше и найти следующий по тяжести атом и его версию в виде антивещества.

Примечательно, что обнаружить следы новых частиц помог искусственный интеллект. Учёные взяли данные по экспериментам 2018 года, где на БАК сталкивались два пучка ионов свинца. Программа впервые смогла выявить признаки антигипергелия-4 (antihyperhelium-4) — антиматерии по отношению к экзотическому гипергелию-4. Атом антигипергелия-4 состоит из двух антипротонов, антинейтрона и антилямбды. Полученный результат имеет значение в 3,5 стандартных отклонения (сигма), а также представляет собой первое свидетельство существования самого тяжёлого гиперядра из антивещества, когда-либо полученного на БАКе.

Также в данном разборе было обнаружено ядро антигиперводорода-4 со стандартным отклонением на 4,5 сигма. Сотрудники ALICE подтвердили открытие своих коллег и смогли измерить выходы и массы обоих гиперядер. Надо сказать, что впервые гиперядра были обнаружены около 70 лет назад при распаде в атмосфере космических частиц. Учёные могут только завидовать космической энергии таких частиц, уровень которой едва ли возможно повторить в земных лабораториях.

К слову, антигипергелий-4 возник на БАК при энергии столкновений 5,02 ТэВ (тераэлектронвольт), что просто меркнет на фоне рекордных регистраций космических частиц с энергией в сотни эксаэлектронвольт, а это разница до восьми порядков.

Зарегистрированный учёными выход антигипергелия-4 равен единице, что означает, что он поровну образуется с атомами гипергелия-4. Учёные снова убедились, что вещества и антивещества во Вселенной должно быть поровну. Ищем причину асимметрии дальше.

Российские учёные потеряли доступ к Большому адронному коллайдеру

С 1 декабря 2024 года в стенах Европейской организации ядерных исследований (CERN) больше не будет места для учёных, постоянно проживающих в России. Летом в этом было отказано учёным из Беларуси. Обеим странам отказали в продлении договора на получение статуса стран-наблюдателей, что давало право на научную работу в CERN. Европейские учёные сожалеют о принятом решении не меньше российских коллег, но признаются, что выбор делали за них.

 Источник изображения: Samuel Joseph Hertzog/CERN

Источник изображения: Samuel Joseph Hertzog/CERN

Как ранее сегодня сообщили «Ведомости» со ссылкой на слова Андрей Фурсенко, помощника Владимира Путина, «…решение об исключении России из проектов Европейской организации ядерных исследований (ЦЕРН) выносили на уровне правительств, и при голосовании не хватило одного голоса стран, чтобы оно не было принято». Немецкий ресурс Heise online также это подтверждает, цитируя ряд немецких физиков, признающих, что это было решение властей.

ЦЕРН существует в Женеве уже 70 лет. Сотрудничество с российскими учёными не прерывалось даже в эпоху холодной войны. Вопрос о сотрудничестве остро встал в феврале 2022 года и в конце декабря 2023 года Совет ЦЕРН решил прекратить сотрудничество с Россией и Беларусью — не продлевать с ними договоров о предоставлении статуса стран-наблюдателей, которые заканчивались, соответственно, 30 декабря 2024 года и 27 июня 2024 года. У США, кстати, в ЦЕРН тоже статус страны-наблюдателя.

По данным организации, под занавес в проектах участвуют чуть больше 400 россиян. В феврале 2022 года таковых насчитывалось около 1000 человек. За это время около 100 учёных выехали из России и Беларуси и сменили официальное место проживания, чтобы сохранить своё участие в проектах CERN. На таких исследователей ограничительные санкции не распространяются.

Практически все ключевые европейские учёные выражают беспокойство в связи выдворением из ЦЕРН России и россиян. Ректор Швейцарской высшей технической школы Цюриха (ETH Zurich) Гюнтер Диссертори (Günther Dissertori) сказал буквально следующее: «Будет потеряно много ноу-хау. ЦЕРН ещё предстоит смириться с этой потерей».

Ханнес Юнг (Hannes Jung), физик и почетный профессор DESY (Немецкий Электронный Синхротрон), также опасается последствий: «В мире так много конфликтов. Если научное сотрудничество будет ограничено, это будет иметь последствия для будущих проектов и сотрудничества ЦЕРН». Кроме того, он также ожидает финансовой дыры в бюджете ЦЕРН и, следовательно, потенциально более серьёзной проблемы.

Россия вносила в бюджет CERN около 2,7 млн швейцарских франков в год (примерно 4,5 % годовых затрат на эксперименты на БАК или €2,9 млн). C одной стороны, это немного — на порядок меньше, чем Швейцария и на два порядка меньше, чем главный вкладчик — Германия. Но недавние встречи учёных с властями Германии обеспокоили их — власти говорят о значительном сокращении финансирования научных программ. Поэтому российская «копеечка» была бы не лишней, это не говоря об интеллектуальном вкладе, который ничем нельзя будет компенсировать. Кстати, сотрудничество CERN и российского Объединенного института ядерных исследований (ОИЯИ) в наукограде Дубна продолжено. Российская сторона финансирует 80 % расходов, а 20 % — ЦЕРН.

Более того, Европа стоит на пороге создания нового кольцевого ускорителя в разы больше Большого адронного коллайдера. Это проект на €10–20 млрд. Судьба проекта и так под вопросом и сокращение числа его участников не сделает её лучше.

ЦЕРН намерен построить «суперколлайдер» Future Circular Collider, но не все учёные с этим согласны

Несмотря на климатическую повестку, Европейская организация по ядерным исследованиям (CERN) настаивает на необходимости построить в Европе более мощный кольцевой коллайдер. Возможности Большого адронного коллайдера себя почти исчерпали. Чтобы продвинуться в изучении тайн мироздания, необходимо сталкивать частицы с намного большими энергиями. Но ряд европейских учёных требуют остановиться и направить финансы на решение насущных проблем.

 Сравнение БАК () и FCC. Источник изображения: CERN

Сравнение БАК (LHC) и Future Circular Collider (FCC). Источник изображения: CERN

По мере продвижения в процессе технико-экономического обоснования проекта будущего коллайдера Future Circular Collider (FCC) его стоимость понемногу растёт. На нынешнем этапе проект оценивается примерно в $17 млрд. Если он будет утверждён, то платить придётся из бюджета ЕС и Великобритании. Причём для этого придётся экономить на определённых научных программах и довольно долго — не одно десятилетие. Поэтому учёных понять можно. Они живут и работают сейчас, и что произойдёт в 2050 году, когда заработает первая очередь FCC и, тем более, в 2070 году, когда планируют запустить вторую очередь — это волнует немногих.

Бывший главный научный советник правительства Великобритании, профессор сэр Дэвид Кинг (David King), назвал расходы на FCC «безрассудными», призвав перенаправить эти средства на решение неотложных глобальных проблем, таких как чрезвычайная ситуация с климатом. Ему вторит немецкий физик и популяризатор наук Сабина Хоссенфельдер (Sabine Hossenfelder), которая не верит в способность FCC добавить что-то новое к уже известной физике элементарных частиц.

Генеральный директор ЦЕРН, профессор Фабиола Джанотти (Fabiola Gianotti), в защиту проекта назвала коллайдер «прекрасной машиной», которая поможет человечеству добиться значительных успехов в понимании фундаментальной физики и внутреннего устройства Вселенной.

Большой адронный коллайдер начал работать с 2008 году. В 2012 году он, наконец, помог обнаружить неуловимую раньше частицу, бозон Хиггса, что формально завершило построение Стандартной модели в физике элементарных частиц. Диаметр кольца БАК составляет 27 км. Диаметр кольца коллайдера FCC будет 91 км. Это на несколько порядков увеличит энергию столкновений частиц, обещая обнаруживать неизвестные ранее взаимодействия между частицами и новые частицы. Даже тот самый бозон Хиггса будет производиться в большем объёме, что поможет лучше изучить его характеристики. Собственно будущий коллайдер уже называют «хиггсовской фабрикой».

Решение ЦЕРН создать FCC последовало после тщательных консультаций с участием физиков со всего мира. Целью процесса было оценить реакцию стран-членов, включая Великобританию, которая как и другие участники проекта оплатит счета за это монументальное научное начинание. Параллельно разрабатываются ещё четыре проекта перспективных коллайдеров, три из которых относятся к линейным. В ЦЕРН подсчитали, что только проект FCC окажется самым предпочтительным с точки зрения климатической повестки. Он будет меньше всего вырабатывать CO2 в пересчёте на каждый полученный на нём бозон Хиггса.

Утверждение плана строительства FCC ожидается в 2025 году. Строительство тоннеля под кольцо коллайдера начнётся в 2033 году. Электрон-позитронный коллайдер начнёт работать в 2048 году. Ещё 20 лет спустя по кольцу FCC запустят более тяжёлые частицы — протоны, что ещё сильнее повысит энергию столкновений.

На Большом адронном коллайдере впервые поймали рукотворные нейтрино — помог собранный на коленке детектор FASERnu

Нейтрино являются вторыми по распространённости во Вселенной фундаментальными частицами после фотонов, но они настолько слабо взаимодействуют с веществом, что одно время даже были кандидатами на роль тёмной материи. Всё-таки их можно улавливать и учёные это делают с 1956 года. Однако в коллайдерах нейтрино ещё не получали, пока в 2022 году на БАК не поставили серию экспериментов, уверенно доказавших детектирование нейтрино, полученных искусственным путём.

 Трек нейтрино на фотоэмульсионной плёнке. Источник изображений: FASER

Трек нейтрино на фотоэмульсионной плёнке. Источник изображений: FASER

Любопытно, что установка FASERnu для детектирования нейтрино в ходе экспериментов на БАК собрана из комплектующих, оставшихся от прошлых экспериментов. Детектор поместили в один из боковых служебных коридоров коллайдера, но это не означает, что открытие рукотворных «призрачных частиц» не имеет важного научного значения. До сих пор учёные фиксировали в основном нейтрино низких энергий, тогда как из глубин космоса к нам приходят нейтрино высоких энергий. На БАК были получены как раз высокоэнергичные частицы, что открывает возможность использовать полученные данные для понимания астрофизических процессов.

Отдельно приятно, что значительную часть теоретической работы и обработку данных провели российские физики. В коллаборации FASER эту задачу взял на себя Объединённый институт ядерных исследований (ОИЯИ). В экспериментах по физике нейтрино для регистрации частиц использовалась ядерная фотоэмульсия — чередование вольфрамовых пластин для замедления нейтрино с фоточувствительной эмульсией.

 Устройство детектора

Устройство детектора FASERnu

«Группа ОИЯИ участвует в моделировании сигнала, реконструкции и анализе фотоэмульсионных данных, проектировании и создании системы охлаждения с возможностью контроля и стабилизации температуры для FASERnu»,рассказала участник коллаборации FASER от ОИЯИ, научный сотрудник Сектора экспериментальной нейтринной физики Светлана Васина.

В предыдущих экспериментах на БАК были детектированы шесть частиц-кандидатов на роль высокоэнергетических нейтрино. Третий запуск БАК в 2022 году с повышенной яркостью дал настолько много данных, что их статистическая значимость превысила 16 сигм при требуемом уровне достоверности 5 сигм. Иначе говоря, сомнения в детектировании на БАК высокоэнергетических нейтрино при таких условиях стремятся к нулю.

 Как выглядит детектор FASERnu  в реальности

Как выглядит детектор FASERnu в реальности

Нейтрино невозможно обнаружить напрямую при сталкивании пучков частиц, но благодаря детектору FASERnu где-то в боковом тоннеле БАК это стало возможным. Тем самым БАК стал инструментом, который полностью воспроизводит весь спектр известных современной физике элементарных частиц, включая бозон Хиггса, ради поиска которого, собственно, Большой адронный коллайдер и строился.


window-new
Soft
Hard
Тренды 🔥
Хардкорный режим, скачки и три сюжетных дополнения: Warhorse рассказала, как будет поддерживать Kingdom Come: Deliverance 2 после релиза 5 ч.
HPE проводит расследование в связи с заявлением хакеров о взломе её систем 5 ч.
«Мы создали CRPG нашей мечты»: продажи Warhammer 40,000: Rogue Trader превысили миллион копий 6 ч.
Создатели Lineage и Guild Wars отменили MMORPG во вселенной Horizon Zero Dawn и Horizon Forbidden West 6 ч.
Instagram начал переманивать блогеров из TikTok денежными бонусами до $50 тысяч в месяц 7 ч.
Eternal Strands, Starbound, Far Cry New Dawn и ещё шесть игр: Microsoft рассказала о ближайших новинках Game Pass 8 ч.
ИИ превзойдёт человеческий разум в течение двух-трёх лет, уверен глава Anthropic 9 ч.
Keep Driving вышла на финишную прямую — новый трейлер и дата релиза ностальгической RPG о путешествии по стране на своей первой машине 9 ч.
Google стала на шаг ближе к ИИ, который думает как человек — представлена архитектура Titans 11 ч.
У «Ростелекома» произошла утечка данных — клиентам рекомендовано сменить пароли 11 ч.
GeForce RTX 5000 Kingpin не будет — легендарный оверклокер рассказал о планах на будущее, в которых есть место не только Nvidia 3 ч.
Слухи: OpenAI, Oracle и Softbank вложат $100 млрд в ИИ-инфраструктуру США, а в перспективе — до $500 млрд 3 ч.
Новая статья: Обзор смартфона OPPO Find X8: очень удобный флагман 3 ч.
К мемкоинам приведут настоящих инвесторов — поданы заявки на крипто-ETF в Dogecoin и TRUMP 4 ч.
Европа установила рекорд по отрицательным и нулевым ценам на электричество в 2024 году 4 ч.
Fujifilm представила гибридную камеру мгновенной печати Instax Wide Evo с широкоугольным объективом 8 ч.
Новый Apple iPhone SE получит вырез Dynamic Island вместо чёлки 10 ч.
К 2035 году США смогут получать до 84 ГВт из источников возобновляемой энергии на федеральных землях 10 ч.
Maxsun выпустила новые видеокарты на чипах Nvidia Kepler десятилетней давности 10 ч.
«Транснефть» направила повторный иск к Cisco на 56 млн рублей 10 ч.