Опрос
|
реклама
Быстрый переход
BYD выпустит недорогие электромобильные LFP-батареи с быстрой зарядкой и плотностью хранения энергии выше, чем у Tesla
10.12.2024 [13:22],
Алексей Разин
Китайская компания BYD заметно уступает лидеру рынка электромобильных батарей CATL, но остаётся вторым по величине производителем в мире. В следующем полугодии она рассчитывает предложить клиентам второе поколение батарей семейства Blade, которые будут сочетать высокую плотность хранения заряда с умеренной стоимостью и высокой скоростью зарядки. Ресурсу CarNewsChina удалось узнать, что себестоимость производства батарей Blade 2.0 окажется на 15 % ниже, чем у предшественников. При этом плотность хранения заряда будет увеличена до 210 Вт‧ч/кг, а рейтинг скорости разряда у младшей версии достигнет 16C. Последняя характеристика означает, что в течение часа условная батарея может полностью разрядиться 16 раз. Другими словами, теоретически на полный разряд должно уходить не более четырёх минут, но на практике появляются разного рода ограничения, которые увеличат это время в несколько раз. Аналогичным образом определяется и время полного заряда. Например, батарея с индексом 8C теоретически способна полностью заряжаться за 7,5 минуты, но в действительности сила тока в рамках цикла зарядки постоянно изменяется, а потому фактическое время заряда существенно увеличивается. Важно, что батареи Blade 2.0 продолжат использовать сочетание лития и фосфата железа, которые наделяют их не только относительно низкой себестоимостью, но и более высоким эксплуатационным ресурсом и более высокой пожаробезопасностью по сравнению с вариантами, содержащими никель и марганец. Старшая версия батареи Blade 2.0 будет сочетать плотность хранения заряда 210 Вт‧ч/кг с рейтингом разряда 8C и рейтингом заряда 3C. Другими словами, они смогут принимать больше заряда на единицу массы, но будут это делать медленнее более дешёвых версий с уменьшенной плотностью хранения заряда. Себестоимость старшей версии батареи Blade 2.0 с плотностью хранения заряда до 210 Вт‧ч/кг компания BYD надеется сократить на 15 % по сравнению с существующей. Батареи Blade 2.0 будут выпускаться и в укороченном варианте, которые будут сочетать рейтинг разряда 16C с рейтингом разряда 8C и плотностью хранения заряда 160 Вт‧ч/кг. Это чуть выше тех 150 Вт‧ч/кг, которые предлагают батареи Blade первого поколения. Младшая версия батареи Blade 2.0 не будет существенно отличаться по стоимости от предшественницы. Для сравнения, передовые батареи Tesla типоразмера 4680 обеспечивают плотность хранения заряда от 244 до 296 Вт‧ч/кг, но они имеют более дорогой химический состав. Если же рассматривать плотность хранения заряда LFP-батарей, которыми комплектуются электромобили Tesla, то она на уровне упаковки достигает 166 Вт‧ч/кг, причём поставляется такой вариант конкурирующей с BYD компанией CATL. При разумной ценовой политике новыми батареями BYD могут заинтересоваться многие автопроизводители, и не менее важна возможность за счёт перехода на неё снизить себестоимость собственных электромобилей BYD. По прогнозам аналитиков Goldman Sachs Research, к 2026 году стоимость тяговых батарей снизится на 50 %. Например, к концу текущего года стоимость хранения 1 кВт‧ч энергии упадёт до $111, а к 2026 году она опустится до $80 за 1 кВт‧ч. Тяговые батареи BYD Blade первого поколения имели плотность хранения заряда 140 Вт‧ч/кг, которая позже выросла до 150 Вт‧ч/кг. С тех пор CATL выпустила несколько поколений своих LFP-батарей, поэтому продукции BYD жизненно необходимо обновление характеристик, не говоря уже о снижении себестоимости. Батареи поколения Blade 2.0 обеспечивают достижение обеих целей. Представлен электроскутер на солнечных панелях Lightfoot — плюс 5 км пути за час на солнце
14.11.2024 [04:46],
Анжелла Марина
Компания из США Otherlab разработала электрический самокат Lightfoot на солнечных панелях, которые способны добавить до 5 км к запасу хода на каждый час, проведённый на солнце. В идеальных погодных условиях, это позволит увеличить дальность поездки летом до 32 км, а зимой до 16 км в сутки. Сообщается, что Lightfoot предназначен для тех, кто обеспокоен ограниченным запасом хода компактного электротранспорта. Скутер работает от двух двигателей мощностью 750 Вт, питающихся от 48-вольтовой батареи ёмкостью 1,1 кВт·ч, обеспечивая максимальный запас хода до 59 км на полном заряде. При этом максимальная скорость Lightfoot составляет чуть менее 32 км в час. Хотя на рынке можно найти более дешёвые модели с большим запасом хода, уникальность Lightfoot заключается в его независимости от розеток. Интересно, что солнечные панели не единственный источник энергии для Lightfoot. Скутер также заряжается через систему рекуперативного торможения, что позволяет немного увеличивать заряд во время движения. Однако для максимальной эффективности устройство необходимо оставлять на улице, что не совсем безопасно в смысле его сохранности. Тем не менее, компания уверяет, что солнечные панели — это решение для тех, кто хочет быть уверенным в том, что их транспорт не остановится в самый неподходящий момент. Lightfoot также обладает рядом других преимуществ. Его рама выполнена из авиационного алюминия, что говорит о прочности и долговечности, можно перевозить двух пассажиров, а под солнечными панелями находится водонепроницаемое багажное отделение с приблизительным объёмом в 42 литра, что сопоставимо с размером ручной клади. Кроме того, как утверждают разработчики, обслуживание и ремонт устройства не будет сложным, так как используются доступные и надёжные комплектующие. В Австралии запустили опытное производство гибких солнечных панелей из перовскита, но КПД разочаровал
31.10.2024 [15:14],
Геннадий Детинич
В Австралии, спустя 15 лет после начала разработки технологии производства гибких солнечных панелей из перовскита, стартовало их опытное производство. Предприятие стоимостью $4,4 млн начало работать в пригороде Мельбурна — Клейтоне. Солнечные элементы на заводе производятся в непрерывном цикле методом печати в виде рулонов. Технология близка к коммерческому уровню, но до выхода на рынок может пройти ещё не менее 5–10 лет. Гибкие солнечные панели печатаются в виде 4–5-слойной структуры в непрерывном цикле, включая ламинирование. На выходе получается готовый к использованию продукт. В сутки производство способно выдавать 14 тыс. солнечных элементов. Однако это всё ещё лаборатория, управляемая исследователями CSIRO — Австралийского научно-исследовательского агентства. Для коммерциализации технологии будут важны масштаб производства, эффективность панелей и длительность их жизненного цикла, с чем у перовскитов есть проблемы. Что касается эффективности, в марте 2024 года представители CSIRO сообщили, что КПД гибких перовскитных фотопанелей в сборе (для панелей большой площади) составляет 11 %, а для индивидуальных ячеек — 15,5 %. С таким КПД на рынок не выйти, разве что для панелей, предназначенных для особенных условий эксплуатации. Австралийские учёные считают, что даже низкий КПД лучше, чем его полное отсутствие. Гибкие солнечные панели могут использоваться для энергетического обеспечения электромобилей, домов на колёсах, строений, носимой электроники и там, где нет возможности устанавливать классические кремниевые солнечные панели. Гибкие перовскитные элементы не призваны заменить кремниевые панели, а лишь гармонично дополняют их. Вся производимая заводом гибкая фотовольтаика будет передаваться исследователям и разработчикам для оценки её возможностей и проектирования перспективных изделий с её использованием. Это пока не коммерциализация технологии, но шаг к приближению этого момента. В Китае создали самый ёмкий в мире аккумулятор в стандартном 6-метровом контейнере — 8 МВт·ч
17.09.2024 [13:32],
Геннадий Детинич
Переход на возобновляемую энергетику не имеет смысла без сетевых накопителей энергии, которые сглаживали бы пики потребления и выработки. Для этой задачи в Китае создали самый ёмкий в мире аккумулятор в формфакторе стандартного шестиметрового контейнера. Он может хранить 8 МВт·ч, которых хватит почти на месяц для электропитания среднестатистического дома в США. Производством рекордной сетевой батареи отметилась китайская компания Envision Energy. Батареи японской компании AESC заняли только половину контейнера, а остальное пространство было отдано под систему жидкостного охлаждения аккумуляторов, электронику контроля (даже с элементами искусственного интеллекта!) и решения по организации безопасной эксплуатации установки, включая систему гашения пламени и ограничения взрывного распространения продуктов горения, которые могли бы образоваться при аварии. Впрочем, в контейнер установлены наиболее безопасные литий-железо-фосфатные аккумуляторы (LiFePO4) с банками по 700 А·ч. Батареи организованы для рабочих напряжений от 1500 В до 2000 В постоянного тока с гарантией на 16 тыс. циклов перезарядки. Полностью заряженная батарея ёмкостью 8 МВт·ч сможет питать среднестатистическое домохозяйство в США до 640 часов или почти 27 суток. Вес контейнера при этом достигает 55 т. Но это не накопитель для дома. Батарея настроена отдавать накопленную мощность в течение 2–8 часов. Она поможет справляться с пиками расхода и выработки, что облегчит утилизацию возобновляемой энергии, а Китай, по некоторых слухам, уже не знает, куда девать излишки солнечной энергии. В режиме разряда каждые два часа батарея выработает свой ресурс примерно за 3,5 года, что можно считать обоснованной жертвой в попытке сделать энергетику более чистой. Разработаны тонкоплёночные солнечные панели: их можно крепить на чём угодно — от рюкзаков до автомобилей
10.08.2024 [16:36],
Геннадий Детинич
Исследователи с факультета физики Оксфордского университета разработали революционный подход для повсеместного распространения солнечной энергетики. Они создали многослойное мультиспектральное покрытие в 150 раз тоньше обычной кремниевой солнечной панели. Такое покрытие можно наносить на рюкзаки, задние панели телефонов, автомобили и стены зданий, в корне меняя подход к производству электричества. «Всего за пять лет экспериментов с нашим подходом к укладке или многопереходной [компоновке] мы повысили эффективность преобразования энергии примерно с 6 % до более чем 27 %, что близко к пределам того, чего сегодня могут достичь однослойные фотоэлектрические системы, — сказал доктор Шуайфэн Ху (Shuaifeng Hu), научный сотрудник Оксфордского университета по физике. — Мы считаем, что со временем такой подход позволит фотоэлектрическим устройствам достичь гораздо большего КПД, превышающего 45 %». Задолго до публикации работы об исследовании, команда учёных получила сертификат на свой фотоэлемент от Японского национального института передовых промышленных наук и технологий (AIST). Согласно документу AIST, созданный командой из Оксфорда тандемный фотоэлемент на основе перовскита обладает КПД свыше 27 %. Но эффективность — не главный конёк изобретения. Самое важное, что команда разработала технологию нанесения тончайших фотоэлементов едва ли ни на любую основу. Более того, 14 лет назад из стен университета вышла компания Oxford PV, которая занимается коммерциализацией фотоэлектрических разработок учёных Оксфордского университета. Компания имеет производственное предприятие в пригороде Берлина. На этом заводе, если верить заявлениям учёных, уже стартовало производство опытных партий тонких и гибких тандемных перовскитных солнечных элементов с заявленными выше характеристиками. Это только первый шаг к тому, чтобы уйти от тяжёлого и неудобного для повсеместного использования кремния в солнечной энергетике, верят исследователи, и обещают ещё многократно улучшить характеристики своей разработки. Четверо друзей за 13 дней преодолели США от побережья до побережья на самодельном солнечном автомобиле
25.07.2024 [19:32],
Сергей Сурабекянц
Гонка «Пушечное ядро» (Canonball) протяжённостью 4800 км от восточного до западного побережья США обычно ассоциируется со скоростью, опасностями, столкновениями с полицией, недостатком сна, отсутствием остановок для отдыха и литрами энергетических напитков. На этот раз всё было по-другому, потому что скорость не была целью энтузиастов, которые построили автомобиль на солнечной энергии и проехали через всю страну за рекордные 13 дней, 15 часов и 19 минут. Построенный друзьями «солнцемобиль», который они назвали «Солнечный Скиталец» (Sunstrider), состоит из трубчатого каркаса, гофрированного пластика, деталей, напечатанных на 3D-принтере, самодельного аккумуляторного блока на 320 ячеек, трёх двигателей, восьми солнечных панелей и трёх велосипедных колёс. По словам команды, постройка автомобиля обошлась им примерно в $12 000 и 90 % этой суммы было профинансировано за счёт собственных средств. Водитель автомобиля управляет им, находясь в лежачем положении. Из органов управления имеются педаль акселератора, педаль переднего тормоза и пара ручек на руле для тормозов от горного велосипеда на задних колёсах. Автомобиль имеет габариты, схожие с пикапом Ford F150, но весит всего 254 кг. У машины гигантский радиус поворота, поэтому при прохождении крутых поворотов автомобиль переставляли вручную. Sunstrider зарегистрирован как мотоцикл в Мичигане, его разрешено использовать на дорогах, кроме автострад, так как автомобиль физически не может развивать скорость выше 88 км в час. Максимальная скорость, зафиксированная во время автопробега на спуске по Анхелес-Крест в сторону Тихого океана, составила 82 км в час. Полиция дважды останавливала электромобиль «за слишком медленную скорость», но штрафов выписано не было. Это не первая попытка Уилла Джонса (Will Jones), Кайла Самлюка (Kyle Samluk) и Дэнни Эццо (Danny Ezzo) построить автомобиль на солнечных батареях, и не первая попытка преодолеть маршрут из Нью-Йорка в Лос-Анджелес на «солнцемобиле». Предыдущий заезд в 2021 году закончился неудачей на одной трети дистанции из-за неисправности контроллера двигателя. Команда извлекла уроки и внесла существенные изменения в новый автомобиль. Эццо говорит, что они использовали более эффективные компоненты, чтобы сделать автомобиль на 48 % легче, и проехали 965 км во время тестирования. «С того момента, как мы решили это сделать, до момента, когда мы были в Нью-Йорке с работающим и ездящим автомобилем на солнечных батареях, прошло пять месяцев, так что сроки были очень сжаты, — добавил Эццо. — Мы были безумно амбициозными и, возможно, немного наивными». Четвёртым водителем стал Бретт Сезар (Brett Cesar), а отец Уилла Брайан Джонс (Brian Jones) управлял автомобилем сопровождения. В хорошую погоду водители сменялись примерно каждые два часа. При пересечении пустыни команда столкнулась с аномальной жарой. Температура в кабине доходила до 54 °C, кондиционер по понятным причинам отсутствовал, так что участникам автопробега приходилось меняться с интервалом в 30–45 минут, чтобы избежать теплового удара и обезвоживания. Технике тоже пришлось нелегко — контроллер заряда не выдержал перегрева и потребовал замены. Исследователи многому научились за время пробега и работы над автомобилем. «Это очень много значит для нас как команды, — говорит Эццо. — Все 100-часовые недели, пропущенные семейные встречи и жертвы, на которые мы пошли, стоили того». Полученный опыт пригодится молодым инженерам — Джонса ждут на работу в SpaceX, Самлюка — в Ford, а Эццо заканчивает Мичиганский технологический институт. Взрыв литийионной батареи привёл к крупнейшему пожару на аккумуляторном заводе недалеко от Сеула
25.06.2024 [05:49],
Анжелла Марина
На аккумуляторном заводе в Южной Корее недалеко от Сеула произошёл крупный пожар, который произошёл после взрыва литийионной батареи. Погибло более 20 человек, большинство из которых были гражданами Китая. Ещё двое рабочих находятся в тяжёлом состоянии, передаёт агентство Reuters. Трагедия на заводе Aricell в Хвасоне, что недалеко от столицы Южной Кореи Сеула, унесла жизни 22 человек. Взрыв произошёл в понедельник утром, когда на заводе находилось около 100 рабочих. Большинство погибших были гражданами Китая, сообщили местные пожарные. Пожар, последовавший за взрывом, продолжался более четырёх часов, прежде чем спасателям удалось взять пламя под контроль. Крыша здания была повреждена, а части верхнего этажа обрушились. На момент инцидента на заводе хранилось около 35 000 аккумуляторных батарей. Президент Южной Кореи Юн Сук Ёль (Yoon Suk-yeol) призвал власти продолжать «концентрироваться на поиске и спасении людей». По словам профессора пожарной и аварийно-спасательной техники Ким Чжэ Хо (Kim Jae-ho), спасателям было трудно добраться до места происшествия быстро, поскольку никель и другие материалы, из которых изготовлены батареи, легко воспламеняются. Кроме того, в этих батареях сработала «цепная реакция», которая приводила к постоянным взрывам. Точная причина трагедии на заводе Aricell пока не установлена, но эксперты полагают, что это могло быть вызвано физическим повреждением, какими-либо дефектами или электрическим повреждением батарей, также сообщает PCMag. Известно, что литиевые батареи, которые используются в телефонах, ноутбуках и электромобилях, взрываются или загораются из-за явления, известного как тепловой разгон, которое может возникнуть при перегреве или повреждении батареи. Этот промышленный инцидент стал одним из самых серьёзных в Южной Корее за последние годы, вызвав широкий общественный резонанс. Власти Хвасона советуют населению оставаться дома и закрывать окна из-за дыма от пожара. Canon создала покрытие, которое вдвое повысит долговечность солнечных панелей
18.06.2024 [10:57],
Алексей Разин
Деградация солнечных панелей свойственна как более традиционным кремниевым изделиям, так и перовскитным. Последние считаются более перспективными благодаря меньшим затратам на производство и гибкости своей структуры, но под воздействием атмосферной влаги и нагрева они быстро разрушаются. Компания Canon разработала покрытие, которое увеличивает срок службы солнечных панелей из перовскита вдвое до 20 или 30 лет. По крайней мере, на двукратное увеличение эксплуатационного ресурса солнечных панелей из перовскита после использования фирменного покрытия рассчитывают специалисты Canon. Его толщина будет варьироваться от 100 до 200 нм, наличие такого покрытия заметно снизит потребность солнечных панелей из перовскита в обслуживании и ремонте. Японские производители лидируют в разработке солнечных панелей из перовскита, а потому надеются быстрее перейти к их серийному выпуску, обеспечив себе технологическое превосходство над китайскими конкурентами. Последние уже обошли японских производителей в сегменте традиционных кремниевых солнечных панелей, поэтому японская промышленность рассчитывает на реванш именно благодаря внедрению перовскита. Canon при разработке покрытия для солнечных панелей опиралась на свой опыт в создании фоторецепторов, являющихся важным компонентов при изготовлении лазерных принтеров. Компания советовалась с изобретателем перовскитной солнечной панели Цутому Миясакой (Tsutomu Miyasaka). Массовый выпуск защитного покрытия Canon рассчитывает освоить в 2025 году на своём предприятии в префектуре Фукуи. К концу десятилетия компания рассчитывает получать десятки миллионов долларов выручки от реализации данного вида продукции. Компания Eneos Holdings попутно нарастит производство йода, который используется при изготовлении перовскитных солнечных панелей. К 2032 году, по оценкам Fortune Business Insights, ёмкость мирового рынка перовскитных солнечных панелей достигнет $6,58 млрд, увеличившись в 36 раз относительно нынешнего уровня. Власти Японии предусмотрели крупные субсидии, направленные на развитие производства перовскитных солнечных панелей на территории страны. Представлен экологичный аккумулятор без лития и с анодом растительного происхождения
10.06.2024 [19:27],
Сергей Сурабекянц
Шведский разработчик натрий-ионных батарей Altris предложил способ сделать безлитиевые батареи ещё более экологичными. В партнёрстве с Stora Enso разработана технология использования углерода, полученного из древесной целлюлозы, в качестве сырья для изготовления анодов. По утверждению разработчиков, созданный ими материал Lignode потенциально может стать самым экологичным сырьём для изготовления анодов в мире. Лигнин, побочный продукт производства древесной массы, давно исследуется на предмет возможного использования в качестве более экологичного электродного материала. Финская компания по производству возобновляемых материалов Stora Enso в 2022 году начала поставки своего запатентованного материала Lignode шведскому производителю аккумуляторов Northvolt для использования в анодах литийионных аккумуляторов. Stora Enso описывает Lignode как твёрдый углеродный материал, получаемый в процессе очистки лигнина. Натрий-ионные батареи устраняют потребность в редких минералах, таких как литий, кобальт и никель, используя значительно более распространённый натрий. Заменяя графит, обычно используемый в конструкции анодов, на Lignode, полученный из натуральных побочных продуктов, Altris и Stora Enso могут ещё больше снизить зависимость от китайского импорта, источника более 90 процентов графита в ЕС. Кроме того, аноды Lignode, по утверждению Stora Enso, обеспечивают более высокую скорость зарядки и разрядки. Stora Enso владеет и арендует более 2 миллионов гектаров лесных земель. Компания перерабатывает древесную массу на своём заводе в Котке, Финляндия, уже более 80 лет, а с 2015 года извлекает лигнин в промышленных масштабах. В 2021 году она начала пилотное производство Lignode и сейчас работает над расширением производства до коммерческих масштабов. Поскольку от 20 до 30 процентов получаемого из древесины сырья представляет лигнин, это делает его широко доступным и легко возобновляемым ресурсом за счёт методов устойчивого лесопользования. «Материалы на биологической основе являются ключом к повышению устойчивости аккумуляторных элементов, — заявил старший вице-президент Stora Enso Юусо Конттинен (Juuso Konttinen). — Поскольку Lignode потенциально может стать самым экологичным анодным материалом в мире, это партнёрство с Altris идеально согласуется с нашим общим обязательством поддерживать стремление к более устойчивой электрификации». Новые аккумуляторные батареи Altris на сегодняшний день претендуют на звание самых экологичных в мире. Катоды новых батарей изготавливаются на основе «прусских белил» (PW), которые считаются одним из наиболее перспективных катодных материалов для натрий-ионных аккумуляторов из-за больших каналов диффузии ионов, низкой деформации решётки, простоты изготовления, нетоксичности и низкой стоимости. Altris пока не начала коммерческое производство новых аккумуляторов. В прошлом году компания продемонстрировала аккумулятор коммерческого размера с плотностью энергии 160 Вт·ч/кг, что соответствует литий-железо-фосфатным батареям (LFP), используемым в современных электромобилях. Компания планировала довести плотность энергии до 200 Вт·ч/кг. Ячейка была разработана в рамках исследовательского сотрудничества с Northvolt. В Германии установили слишком много солнечных панелей — энергию продают за бесценок
24.05.2024 [21:26],
Анжелла Марина
Германия столкнулась с избытком солнечной энергии из-за широкомасштабного наращивания объёмов установленных солнечных панелей в 2023 году. По данным исследования шведского банка SEB Research, страна установила больше мощностей, чем требуется для удовлетворения текущего спроса на электроэнергию. Как сообщает издание Businessinsider, в часы пиковой выработки солнечной энергии, её производители вынуждены снижать цены в разы, чтобы хоть как-то реализовать избыток. Так, за последние 10 дней производители вынуждены были снижать цены на электроэнергию в пиковые часы на 87 %, то есть до 9,1 евро за 1 МВт·ч по сравнению с ценой в 70,6 евро в вечернее и ночное время. По словам аналитика SEB Бьярне Шилдропа (Bjarne Schieldrop), такая ситуация возникла из-за рекордного ввода в эксплуатацию новых солнечных мощностей в 2023 году. К концу прошлого года общая мощность солнечной генерации в Германии достигла 81,7 ГВт, тогда как средняя нагрузка потребления составила 52,2 ГВт. Таким образом, общая мощность солнечной энергетики оказалась почти на 30 ГВт выше среднего спроса. Разрыв между предложением и спросом ещё больше увеличивается летом, когда выработка солнечных панелей максимальна, а энергопотребление снижается. При этом потребители не получают особой выгоды от низких цен, так как потребляют большую часть энергии в вечерние часы. Если рост солнечных мощностей не будет стимулироваться субсидиями, снижение рентабельности может остановить дальнейшее развитие отрасли в Германии, считает Шилдроп. Вместо этого внимание сместится на решения по более эффективному использованию вырабатываемой энергии, в частности, на инвестиции в аккумуляторы и модернизацию электросетевой инфраструктуры. Вообще дисбаланс спроса и предложения не является новой проблемой для Германии, и не только этот регион сталкивается с этим. В прошлом году европейский рынок в целом активно устанавливал солнечные мощности из-за прекращения поставок ресурсов из России. Избыток зеленой энергии, усугубляемый активной установкой новых ветряных турбин и атомной энергетики, уже спровоцировал неоднократные случаи падения цен в разных регионах Европы. Тем не менее, по мере реализации различных мер и временного смещения акцента с роста производства солнечной энергии на сети, аккумуляторы и другие возможные способы её использования, приведут к нормализации ситуации в ближайшее время, уверен Шилдроп. В Китае запустили первую станцию хранения электроэнергии на натрий-ионных элементах
19.05.2024 [19:16],
Владимир Фетисов
По данным китайской госкомпании China Southern Power Grid Energy Storage, 11 мая в стране начала функционировать первая промышленная станция хранения энергии, использующая натрий-ионные аккумуляторные батареи. Её построили в Наньнине, административном центре и крупнейшем городе Гуанси-Чжуанского автономного районе на юге Поднебесной. По данным источника, ёмкость станции на момент запуска составляет 10 мегаватт-часов, а после того, как будет завершены все этапы её расширения, этот показатель увеличится до 100 мегаватт-часов. В сообщении сказано, что на станции используются натрий-ионные элементы питания ёмкостью 210 А·ч каждый. Отмечается, что зарядить такой аккумулятор до 90 % можно всего за 12 минут. В общей сложности в состав системы входит 22 тыс. элементов питания. Когда проект выйдет на полную мощность, станция будет отдавать ежегодно 73 тыс. мегаватт-часов энергии в год. Этого достаточно для обеспечения энергией 35 тыс. домохозяйств. При этом выбросы углекислого газа в атмосферу снизятся на 50 тыс. тонн в год. По данным китайских специалистов, эффективность преобразования энергии в системе хранения на основе натрий-ионных аккумуляторов превышает 92 %. Это сопоставимо с аналогичным показателем традиционных систем хранения энергии на основе литий-ионных элементов, где показатель эффективности обычно составляет 85-95 %. Отмечается, что к моменту организации крупномасштабных производств натрий-ионных аккумуляторов, цена таких элементов может снизиться на 20-30 %. Этому также будет способствовать дальнейшее совершенствование конструкции элементов питания, улучшение производственных процессов, используемых материалов и др. Конечная цель состоит в том, чтобы за счёт перераспределения максимально снизить стоимость электроэнергии для конечных потребителей. Учёные создали недорогой и нетоксичный аккумулятор, который сохранит 80 % ёмкости после 8000 циклов перезарядки
15.05.2024 [23:02],
Анжелла Марина
Группа ученых из Университета Линчепинга в Швеции представила инновационную аккумуляторную батарею, способную кардинально изменить доступ к электроэнергии в странах с низким уровнем жизни. Основу новой разработки составляют экономичные и одновременно экологичные материалы из цинка и лигнина. Как отмечает автор исследования, профессор Лаборатории органической электроники Реверант Криспин (Reverant Crispin), солнечные панели уже активно применяются в бедных тропических странах. Однако с наступлением сумерек люди вновь остаются без электричества, что сильно ограничивает развитие этих регионов. С помощью же новой технологии можно накапливать избыточную энергию днём и затем использовать ее после захода солнца, сообщает сайт Liu.se. Новая перезаряжаемая батарея обещает стать дешевой и экологически чистой альтернативой литийионным аккумуляторам. Она может выдерживать более 8000 циклов перезарядки, сохранив около 80 % своей емкости. По плотности энергии новинка сопоставима со свинцово-кислотными батареями, но без использования токсичного свинца. Кроме того, она может сохранять заряд около недели, что намного дольше в сравнении с другими типами аккумуляторов. Главная проблема цинковых батарей состоит в их низкой стабильности из-за взаимодействия цинка с водой в электролите, что приводит к выделению водорода и образованию дендритов. Чтобы стабилизировать работу цинкового электрода, ученые использовали специальный водно-полимерный электролит на основе полиакрилата калия (суперабсорбент, SAP), благодаря чему новая батарея демонстрирует очень высокую стабильность при заряде-разряде. При этом стоимость одного цикла использования такой батареи значительно ниже, чем у литийионных аналогов. «Хотя литийионные батареи полезны при правильном обращении, они могут быть взрывоопасными, их сложно перерабатывать и это проблематично с точки зрения экологии, — говорит Зияуддин Хан (Ziyauddin Khan), второй автор исследования. — Таким образом, наша батарея предлагает альтернативу, где плотность энергии не имеет решающего значения». В настоящее время разработанные опытные образцы имеют небольшие размеры. Однако утверждается, что по этой технологии можно создавать более крупные экземпляры размером с автомобильные аккумуляторы. Разработка новой перезаряжаемой цинко-лигниновой батареи финансировалась рядом шведских научных фондов и государственных программ. Считается, что эта экологичная и недорогая технология имеет большой потенциал для того, чтобы стать альтернативой литий-ионным батареям в будущем. Криспин также отмечает, что Швеция, как инновационная страна, может помочь другим государствам внедрять «зеленые» технологии энергообеспечения, чтобы избежать ошибок на этапе строительства инфраструктуры, что может «привести к климатической катастрофе». Первому кремниевому солнечному элементу исполнилось 70 лет
27.04.2024 [12:31],
Геннадий Детинич
25 апреля 1954 года американские исследователи представили прототип первого пригодного к практическому использованию солнечного элемента. Его КПД в то время составлял около 6 %. С тех пор многое произошло, а солнечная энергетика вышла на пик популярности. В момент демонстрации разработки 70 лет назад издание New York Times не скрывало энтузиазма: «Это изобретение может ознаменовать начало новой эры — использования почти безграничной солнечной энергии для нужд человеческой цивилизации». Но прошли десятилетия, прежде чем это пожелание обрело реальные черты. По-настоящему глобальный рост фотовольтаики начался в последние 10 лет. Так, если в 2004 году во всём мире установили солнечных панелей суммарной мощностью 1 ГВт, то к 2010 году более 1 ГВт панелей устанавливали каждый месяц. К 2015 году темпы выросли до 1 ГВт в неделю, а теперь это 1 ГВт в день. По мнению немецкой отраслевой ассоциации Bundesverband Neue Energiewirtschaft Association, в течение текущего десятилетия можно рассчитывать на ежегодный прирост солнечных мощностей на 1 ТВт в год. Более 70 лет назад перед американскими учёными Дэрилом Чапином, Джеральдом Пирсоном и Кэлвином Фуллером изначально ставилась задача разработать надежный источник энергии для удаленных телефонных систем, для которых обычные батареи были неэффективны. К тому времени уже были созданы солнечные элементы из селена, но их КПД был крайне низким для практического использования. Многомесячная работа учёных привела к созданию первого кремниевого солнечного элемента, пригодного к использованию в составе солнечного модуля. Он был представлен 25 апреля 1954 года. Заявленный на тот момент КПД составлял всего 6 %. Этот показатель медленно рос в течение нескольких десятилетий, совершив рывок только в последние 20 лет. Сегодня КПД кремниевого элемента приблизился к 25 %, что недалеко от теоретического предела для этого материала, но ему на смену идут новые технологии. Например, перовскитные и тандемные солнечные ячейки. Даже сегодня Bell Labs, которая тогда была частью компании AT&T (сейчас она работает под управлением Nokia Bell Labs), называет «солнечный элемент» одной из своих «величайших инноваций». Трое ученых были посмертно награждены за свое изобретение в 2008 году — их имена внесли в Национальный зал славы изобретателей США. Учёные создали дрон, который летает исключительно на энергии Солнца
19.04.2024 [16:13],
Геннадий Детинич
Исследователи из Линцского университета создали миниатюрный квадрокоптер, который для своего питания использует энергию исключительно от солнечных панелей. Тончайшие лепестки солнечных панелей из перовскита в 40 раз тоньше листа бумаги и вместе с креплением составляют лишь 5 % массы дрона. У них рекордный показатель соотношения вырабатываемой мощности к весу, что обещает появление интересных мобильных решений и гаджетов. Перовскитные солнечные панели имеют большие перспективы в области фотовольтаики. Однако они пока в основном проявляют себя в лабораторных условиях, поскольку крайне чувствительны, например, к влажности. Для защиты экспериментальных солнечных элементов из перовскита учёные из Австрии покрыли их оксидом алюминия, а саму основу нанесли на полимерную плёнку. Общая толщина элемента составила 2,5 мкм, что является отличительной чертой перовскитных материалов. Всего на небольшом дроне с четырьмя электродвигателями (и винтами) было установлено 24 отдельных модуля, каждый площадью в 1 см2. Генерируемой этими элементами энергии оказалось достаточно для приведения в движение роторов и взлёта дрона. КПД панелей не отличался рекордными значениями — он был не выше 20 %. Но важным стал их маленький вес: каждая из ячеек весила чуть меньше 1 мг, а их доля в общем весе дрона была значительно ниже 1 %. Есть также учесть электронику и крепёжные материалы, то даже в этом случае вклад подсистемы питания остается ниже 5 % массы квадрокоптера. Нехитрые расчёты показывают, что соотношение генерируемой панелями дрона мощности к его массе составляет 44 Вт/г. Для сравнения, обычные солнечные панели из кремния для установки на частных площадках характеризуются соотношением 0,03 Вт/г. Согласитесь, разница есть и она колоссальная. Развитие этой разработки будет встречено с радостью ценителями мобильности во всех её проявлениях. В США разработали материал для солнечных панелей с внешней квантовой эффективностью 190 %
11.04.2024 [11:01],
Геннадий Детинич
На деньги Министерства энергетики США учёные из Лехайского университета (штат Пенсильвания) создали материал для солнечных панелей с невообразимой эффективностью. Благодаря разработке новые панели смогут вырабатывать до двух электронов на каждый поглощённый высокоэнергетический фотон, что намного выше теоретически предсказанного значения. Следует подчеркнуть, что привычное значение КПД панелей и внешняя квантовая эффективность фотоэлектрического материала — это не одно и то же. При падении на панель часть фотонов отражается, а другая часть нагревает панель вместо возбуждения электронов. Тем самым теоретическое значение внешней квантовой эффективности (EQE) не может быть больше 100 %, на что указывает предел Шокли-Квиссера, а КПД панелей ещё меньше. Но что это за наука, если она не может шагнуть за пределы известного? «Эта работа представляет собой значительный скачок вперёд в нашем понимании и разработке решений в области устойчивой энергетики, подчеркивая инновационные подходы, которые могут переопределить эффективность и доступность солнечной энергии в ближайшем будущем», — сказал Чинеду Экума (Chinedu Ekuma), профессор физики, который является ведущим автором статьи в журнале Science Advances. Поиск нужной комбинации материалов сначала был проведён с помощью моделирования на компьютере. Затем, на основе полученных данных, был создан прототип, подтвердивший удивительные свойства материала. Образец в качестве активного слоя в кремниевой фотоэлектрической ячейки продемонстрировал среднее фотоэлектрическое поглощение в 80 %, высокую скорость генерации фотовозбуждённых носителей и внешнюю квантовую эффективность (EQE) на беспрецедентном уровне 190 %. Скачок эффективности материала во многом объясняется его отличительными «состояниями промежуточной зоны», специфическими уровнями энергии, которые расположены в электронной структуре материала таким образом, что делают их идеальными для преобразования солнечной энергии. Эти состояния имеют уровни энергии в пределах оптимальных энергетических диапазонов, в которых материал может эффективно поглощать солнечный свет и производить носители заряда — около 0,78 и 1,26 эВ (электрон-вольт). Кроме того, материал особенно хорошо проявил себя при высоких уровнях поглощения в инфракрасной и видимой областях электромагнитного спектра. В традиционных солнечных элементах максимальное значение EQE составляет 100 %, что соответствует генерации и сбору одного электрона на каждый поглощенный фотон солнечного света. Новый материал, как и ряд других перспективных материалов, продемонстрировал способность генерировать и собирать более одного электрона из фотонов высокой энергии, что обеспечивает увеличение теоретически возможного КПД панелей до двух и более раз. Хотя такие материалы с многократным генерированием экситонов еще не получили широкого коммерческого распространения, они обладают потенциалом для значительного повышения эффективности систем солнечной энергетики. В материале, разработанном исследователями Лехайского университета, состояния промежуточной зоны позволяют улавливать энергию фотонов, которая теряется традиционными солнечными элементами, в том числе за счет отражения и выработки тепла. Исследователи разработали новый материал с использованием «ван-дер-ваальсовых зазоров», атомарно малых промежутков между слоистыми двумерными материалами. Эти промежутки могут удерживать молекулы или ионы, и материаловеды обычно используют их для вставки или «интеркалирования» других элементов для настройки свойств материала. По сути в этих зазорах различные межмолекулярные силы, определяемые как силы Ван-дер-Ваальса, крепко удерживают нужные молекулы или атомы, как в случае нового материала. В частности, учёные поместили между селенидом германия (GeSe) и сульфидом олова (SnS) атомы меди нулевой валентности. «Его быстрый отклик и повышенная эффективность убедительно указывают на потенциал Cu-интеркалированного GeSe/SnS в качестве квантового материала для использования в передовых фотоэлектрических решениях, предлагая возможности для повышения эффективности преобразования солнечной энергии, — говорят разработчики. — Это многообещающий кандидат для разработки высокоэффективных солнечных элементов следующего поколения, которые сыграют решающую роль в удовлетворении глобальных потребностей в энергии». |