Сегодня 21 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → возобновляемая энергия
Быстрый переход

В Финляндии тепловой аккумулятор ёмкостью 100 МВт·ч на мыльном камне пройдёт зимние испытания

В конце октября финский стартап Polar Night Energy завершил наполнение ёмкости теплового аккумулятора 2000 тонн измельчённого мыльного камня. Аккумулятор будет хранить до 100 МВт·ч тепловой энергии с пиковой отдачей мощности 1 МВт. Этой ёмкости хватит на отопление небольшого городка неделю зимой и на месяц нагрева воды летом. Ввод в эксплуатацию состоится в 2025 году. Испытания начнутся через месяц или чуть позже.

 Источник изображений: Polar Night Energy

Источник изображений: Polar Night Energy

О начале строительства масштабного накопителя тепла от избыточной выработки энергии солнечными и ветряными установками в регионе было сообщено в начале 2024 года. Ранее компания Polar Night Energy на примере пилотной установки мощностью 100 кВт и ёмкостью 8 МВт·ч показала, что идея хранить тепло в нагретом песке для последующего использования вполне рабочая и достаточно эффективная.

Для реализации масштабного проекта был заключён договор с общиной Порнайнен на юге Финляндии. Проект предусматривал наполнение бункера теплового аккумулятора диаметром 15 м и высотой 13 м 2000 тоннами песка. Точнее, песок использовался в пилотном проекте. Для масштабного проекта был выбран более теплоёмкий материал и по совместительству отходы производства одной из местных компаний — талькохлорит, который ещё называют мыльным камнем. Этот материал используется компанией Tulikivi для облицовки каминов и печей для саун. Использование для теплоаккумулятора отходов производства — это высший пилотаж в сфере безотходной экономики, и финны оказались в этом вопросе на высоте.

Поскольку основная часть работы завершена и остался только монтаж внешних узлов, работы вскоре перейдут в область проверки накопителя в условиях зимней эксплуатации. Ожидается, что полностью заряженный тепловой аккумулятор сможет неделю снабжать теплом дома граждан округа Lämpö. Накопитель будет подключёна к системе централизованного отопления и сможет обогревать до 5 тысяч граждан. Сдача объекта в эксплуатацию ожидается позже в 2025 году по результатам испытаний.

Учёные превратили отходы полистирола в бесконечный источник чистой энергии

Исследователи из Австралии и Латвии открыли способ превратить бесполезные отходы из полистирола в источник чистой и условно бесконечной энергии. Полистирол оказался наиболее перспективным материалом для генерации статического электричества среди других пластиков. Статику можно снимать с полистирола, накапливать и превращать в бесплатную электроэнергию. А всё что нужно для возникновения зарядов — это лишь поток воздуха через пластинки полистирола.

 Источник изображения: RMIT

Источник изображения: RMIT

Полистирол, использующийся, преимущественно, для упаковок, ежегодно производится в объёме 25 млн тонн. После использования он в основном оказывается на свалках. В переработку поступает лишь малая часть этого материала. Свойства полистирола делают его мусором длительного разложения — до 500 и более лет. Но эти же качества сделали его лучшим выбором для создания электростатических генераторов.

Учёные из Австралийского университета RMIT и Латвийского технического университета в Риге обнаружили, что обдуваемые потоком воздуха тончайшие пластинки из полистирола активно вырабатывают статическое электричество. Пластинки должны быть толщиной в десять раз тоньше человеческого волоса. Движение воздуха между ними заставляет их тереться друг от друга и возбуждать статический заряд, который затем направляется для зарядки конденсатора и дальше в электрическую цепь.

 Источник изображения: Advanced Energy and Sustainability Research 2024

Источник изображения: Advanced Energy and Sustainability Research 2024

Такую установку для выработки электричества из множества параллельно расположенных полистироловых пластинок учёные предлагают устанавливать в местах постоянного движения воздуха. Например, в системах вентиляции. Установки смогут подпитывать местную сеть и даже сэкономят до 5 % потребления кондиционеров, если в последние встроить предложенную систему по сбору статического электричества.

Параллельно созданию электростатических генераторов из вторсырья исследователи глубже изучили природу возникновения статического заряда, чем двинули дальше фундаментальную науку. А ещё раньше подобное исследование провели учёные из США, которые изучили тонкости возникновения статики на примере шерсти домашних котиков. Возвращаясь к полистиролу, отметим, что сама идея вторичного использования полистирола не менее ценная, чем изобретение способа добывать энергию с его помощью.

В Китае установлен крупнейший в мире наземный ветрогенератор — у него 270-м ротор

Наземные ветрогенераторы сдержано наращивают размеры и диаметры роторов. Чем длиннее лопасти, тем выше уровень шума и общее воздействие на среду. В море нет недовольных жителей, которым это может навредить. Поэтому морские ветряные турбины без ограничений растут в размерах. Но свои рекорды есть и у наземных ветряных установок. Недавно китайская компания Sany Renewable Energy установила крупнейшую в мире установку с ротором диаметром 270 м.

 Источник изображения: Sany Renewable Energy

Источник изображения: Sany Renewable Energy

Предыдущий рекорд принадлежал наземной ветряной турбине с ротором диаметром 240 м — установке компании Goldwind мощностью 12 МВт, развёрнутой в 2023 году. Компания Sany Renewable Energy легко побила этот рекорд, установив 15-МВт генератор SI-270150 с лопастями длиной по 131 м каждая. К тому же компания заявляет, что её лопасти частично перерабатываемы, что повышает экологичность, так как многие полимерные компоненты ветряков трудно поддаются переработке.

В целом на суше немного мест с постоянными сильными ветрами, что является одной из причин, почему наземные ветряные турбины не стремятся к гигантским размерам. Но ситуация постепенно меняется. Например, компания Sany Renewable Energy в этом году начала массовое производство лопастей длиной 131 м и не планирует останавливаться на этом. Также компания утверждает, что её новые турбины смогут работать 25–30 лет и дольше после небольшой модернизации, что обещает значительно окупить инвестиции в установку новых ветряков.

На фоне морских ветряных турбин новая установка Sany выглядит сравнительно скромно, занимая седьмое место в мире по размерам. Крупнейшая действующая установка принадлежит другой китайской компании — Mingyang Smart Energy, которая возвела 20-МВт морскую турбину с ротором диаметром 292 м. В 2025 году компания Mingyang обещает построить ещё более мощную и крупную морскую ветроустановку — 22-МВт с ротором диаметром 310 м.

Огнеупорные кирпичи станут популярным и дешёвым хранилищем экологичной энергии

Группа учёных Стэнфордского университета опубликовала работу, в которой дала прогноз по темпам роста в США тепловой аккумуляции в огнеупорных кирпичах. К 2050 году специалисты ожидают полный переход теплоёмких производств в США на возобновляемые источники энергии. Кирпичи станут недорогой альтернативой химическим аккумуляторам, накапливая и отдавая около 14 % энергии для теплоёмких производств.

 Источник изображений: Rondo Energy

Источник изображений: Rondo Energy

Огнеупорные кирпичи изготавливаются из обычных материалов, поэтому стоимость системы хранения тепла из огнеупорного кирпича будет более чем в десять раз дешевле, чем создание эквивалентной системы хранения энергии на обычных электрических аккумуляторах. В зависимости от используемого материала, кирпичи можно будет нагревать прямым способом, если они будут токопроводными, например, с графитом, или внешним нагревательным элементом, если кирпичи не будут пропускать через себя ток.

Тепловые аккумуляторы из кирпичей рассматриваются действующими властями США как проекты с высокой степенью повторяемости, что чрезвычайно удобно при массовом создании установок. В частности, Министерство энергетики США в настоящее время обсуждает вопрос субсидии в размере $75 млн компании Diageo North America, если она согласиться разместить на своих мощностях две теплоаккумулирующие установки на кирпичах производства компании Rondo Energy. Последняя поддержана фондом Билла Гейтса, и строит в Тайланде мегазавод по производству теплоаккумулирующих кирпичей, а производству нужен сбыт.

Согласно выводам учёных из Стэнфорда, в США возобновляемые источники энергии могут обеспечить теплом до 90 % энергоёмких промышленных процессов. Чтобы удовлетворить этот спрос, системы накопления энергии из кирпичей должны достичь ёмкости 2,6 ТВт·ч с пиковой отдачей 170 ГВт. Это позволит сократить вредные выбросы промышленности США на 9,6 %. В случае обеспечения кирпичами мирового теплоёмкого производства с использованием исключительно возобновляемой энергии, необходимо будет аккумулировать и выдавать в нагрузку 2,1 ТВт тепловой мощности.

В обозначенных масштабах системы накопления тепла из огнеупорного кирпича не только заменят 14 % ёмкости аккумуляторов, но и сократят годовое производство водорода для электрогенерации примерно на 31 % и мощности подземных хранилищ тепла примерно на 27 %.

Что касается себестоимости хранения тепловой энергии в кирпичах, то аналитики заявляют, что она будет, как минимум, в десять раз дешевле стоимости хранения энергии в аккумуляторах. Так, по некоторым оценкам в 2035 году стоимость хранения энергии в электрических аккумуляторах составит $60 за каждый кВт·ч. Это даёт стоимость энергии на уровне $6 за 1 кВт·ч в случае её хранения в огнеупорных кирпичах. А с учётом быстрого удешевления химических аккумуляторов остаётся вероятность, что суммы будут ещё меньше.

Солнечная энергетика в пять раз превзошла атомную по установленным мощностям

Отчет о состоянии мировой атомной промышленности (WNISR) за 2024 год, составленный немецким специалистом Майклом Шнайдером (Mycle Schneider), говорит о значительном превосходстве установленных солнечных электростанций над атомными. Несмотря на всю поднятую вокруг возрождения мирного атома шумиху, новых реальных проектов АЭС совсем немного, тогда как солнечная энергетика развивается очень и очень стремительно.

 Этап строительства атомного энергоблока. Источник изображения: Hullernuc, Wikimedia

Этап строительства атомного энергоблока. Источник изображения: Hullernuc, Wikimedia

В отчёте WNISR указано, что по состоянию на 2024 год в мире насчитывается 408 действующих атомных реакторов, которые в середине года выдавали суммарно 367 ГВт электроэнергии. Это более чем в пять раз меньше установленных мощностей на солнечных электростанциях, совокупная мощность которых приближается к 2 ТВт (по прогнозу — 1,9 ТВт на конец июня). При этом необходимо понимать, что солнечные электростанции работают с перерывами и с разной эффективностью в светлое время суток. Поэтому реальная выработка в солнечной энергетике будет, очевидно, меньше.

Тем не менее солнечные мощности растут впечатляющими темпами и явно продолжат опережать атомную энергетику. В отчёте показано, что атомная энергетика остаётся ниже уровней 2019 и 2021 годов. В текущем году хоть и стало на один блок АЭС больше, но количество энергоблоков всё ещё остаётся на 30 меньше, чем в 2002 году, когда был отмечен пик по одновременно действующим реакторам. За прошедший год добавилось всего 0,3 ГВт атомных мощностей, что является довольно скромным показателем.

Интересно, но в стране с одним из самых больших количеством реакторов — в США — в 2024 году не подано ни одной заявки на строительство полномасштабного реактора. Заявка подана только на малый модульный реактор Билла Гейтса Natrium, который пока даже не получил лицензию от регулятора. Также от строительства новых блоков в этом году воздержались ОАЭ и Бразилия.

В отчёте также говорится, что только в прошлом году в Беларуси, Китае, Словакии, Южной Корее и США было введено в эксплуатацию пять новых ядерных реакторов общей мощностью 5 ГВт, и добавляется, что этого небольшого роста было недостаточно для увеличения действующих ядерных мощностей в мире, поскольку еще пять электростанций общей мощностью 6 ГВт были закрыты в Германии, Бельгии и на Тайване.

«За два десятилетия, в 2004–2023 годах, было 102 запуска и 104 закрытия, — отмечается в отчёте. — Из них 49 запусков были в Китае, где не было закрыто ни одного реактора. В результате за пределами Китая за тот же период произошло резкое чистое снижение на 51 реактор, а чистая мощность сократилась на 26,4 ГВт».

Авторы отчёта также сообщают, что на конец июня в 13 странах строилось 59 атомных станций мощностью 60 ГВт, что сопоставимо с 64 проектами в 2023 году. На долю Китая приходится около 46 % от общего числа строящихся 27 проектов.

«Все строящиеся реакторы, по крайней мере, в девяти из 13 стран столкнулись с задержками, часто на год, — заявили авторы отчёта. — Из 23 реакторов, задокументированных как отстающие от графика, по меньшей мере, для 10 сообщалось об увеличении задержек, а о 2 реакторах сообщалось как о первых задержках за последний год».

По словам аналитиков, ключевым моментом является анализ доминирующей роли Китая и России. С декабря 2019 года и до середины 2024 года в мире было начато 35 строительных работ, 22 в Китае и 13 осуществлялись в различных странах Россией.

«Больше ничего, нигде и никем, — говорит автор исследования. — Но даже в единственной стране, которая ведёт массовое строительство [реакторов], Китае, развитие ядерной энергетики сравнительно незначительно. В 2023 году Китай запустил один новый ядерный реактор, то есть плюс 1 ГВт, и более 200 ГВт только солнечной энергии. Солнечная энергия вырабатывает на 40 % больше энергии, чем ядерная, а все не гидроэнергетические возобновляемые источники энергии — в основном ветер, солнце и биомасса — вырабатывают в 4 раза больше энергии, чем ядерная».

Авторы приходят к выводу, что, несмотря на распространенное мнение о том, что ядерная энергетика набирает обороты, она становится «неактуальной» на мировом рынке. «Использование солнечной энергии и накопителей может изменить правила игры для адаптации политических решений к текущим промышленным реалиям», — добавляют они.

В Китае заработал крупнейший в мире 30-МВт маховичный накопитель энергии

Китай стал полигоном для испытаний перспективных накопителей энергии, среди которых выделяется только что заработавшая буферная электростанция на маховиках. Система хранит кинетическую энергию во вращающихся маховиках, превращая её в электрическую почти мгновенно, ведь двигатель и генератор в ней — это одно и то же устройство.

 Общий принцип маховичного накопителя энергии. Источник изображения: Pjrensburg, Wikimedia Commons

Общий принцип маховичного накопителя энергии. Источник изображения: Pjrensburg, Wikimedia Commons

Проект маховичного накопителя энергии разработала китайская компания BC New Energy. Главным инвестором стала Shenzhen Energy Group. Производством установок занималась компания Shanxi Electric Power Construction Company совместно с Шаньсийским институтом энергетики, также в строительстве электростанции приняла участие компания China Energy Construction. Объект получил название электростанции Dinglun Flywheel Energy Storage. На его создание было потрачено 340 млн юаней ($48 млн). Плановое введение в эксплуатацию ожидалось в декабре 2023 года, но задержалось до конца лета 2024 года.

Общая мощность установки в городе Чанчжи провинции Шаньси достигает 30 МВт. Она состоит из 120 маховичных генераторов (накопителей), которые разделены на 10 блоков по 12 установок. Частота вырабатываемой энергии стабилизируется на уровне каждого из блоков. Все они подключены к высоковольтной сети напряжением 110 кВ.

Для безопасности каждая установка с маховиком полупогружена в колодец в земле. Для повышения эффективности работы маховики находятся в вакууме и подвешены на магнитной подвеске, что также снизило уровень шума от работающих машин. Созданная система стала самой мощной в мире и, вероятно, единственной на Земле, которая обслуживает потребителей на уровне коммунальных предприятий.

Подобные маховичные установки могут очень быстро переключаться между режимами накопления и расходования энергии, представляя собой идеальные буферы не только для хранения энергии, но и для сглаживания пиков её потребления и накопления.

В Китае установлен мощнейший в мире морской ветрогенератор — 292 м в диаметре и 20 МВт

На днях в Китае был установлен мощнейший в мире морской ветрогенератор, лопасти которого охватывают площадь эквивалентную девяти футбольным полям. Пиковая мощность установки достигает 20 МВт. За год при средней скорости ветра 8,5 м/с генератор будут вырабатывать 80 ГВт·ч электричества. Ему не страшны даже тайфуны со скоростью ветра до 79,8 м/с. И это не предел гигантомании. Ветряки в Китае продолжат увеличиваться в размерах и по мощности.

 Источник изображения: Mingyang Smart Energy

Источник изображения: Mingyang Smart Energy

Поднебесная колоссальными темпами движется к углеродной нейтральности. Обилие угольных электростанций в Китае не позволяет сделать это быстро, но цель обещает быть достигнута ближе 2040–2050 году. Постройка мощнейших ветряных генераторов приближает этот момент, позволяя заметно повышать эффективность отдачи от каждого введённого в строй ветряка. Только в июне этого года стало известно о постройке в Китае 18-МВт морской ветроэлектростанции, а в конце августа пришло сообщение о завершении монтажа 20-МВт установки.

Создателем турбины называется компания Mingyang Smart Energy. Завершение строительство отмечено 28 августа. Турбина MySE18.X-20 может работать как с выходной мощностью 18 МВт, так и в диапазоне мощностей до 20 МВт включительно. Конструкция ветряка, по словам компании, лёгкая и модульная, что достигается благодаря использованию углепластика. Это допускает простую транспортировку частей турбины к месту сборки.

В следующем году компания Mingyang обещает установить ветрогенератор мощность 22 МВт с ротором диаметром 310 м — выше Эйфелевой башни. И вряд ли это станет последним достижением.

В Австралии построят крупнейшую в мире солнечную электростанцию — она запитает 3 млн домов, а излишки продадут в Сингапур

Действующий министр окружающей среды Австралии Таня Плиберсек (Tanya Plibersek) объявила о выдаче экологического разрешения на создание в стране крупнейшей в мире солнечной электростанции. Детали проекта будут улажены к 2027 году, а ввод станции в строй ожидается в 2030 году. Две трети энергии Австралия оставит себе для питания 3 млн домов, а остальное по подводному кабелю передаст Сингапуру, став мировым центром солнечной энергетики.

 Источник изображения: SunCable

Источник изображения: SunCable

Проект намерена реализовать местная компания SunCable. Его стоимость составит $24 млрд. Экологи согласились выдать разрешение только после того, как проектировщик убедил власти в бережном отношении к местам популяции местной разновидности бурундуков — кроличьих бандикутов.

Солнечная ферма раскинется на севере Австралии на площади 12 тыс. га. В стоимость работ войдёт создание линии электропередачи длиной 800 км до города Дарвин и прокладка подводного кабеля длиной 4300 км до Сингапура. Пиковая мощность выработки будущей электростанции будет достигать 20 ГВт. Буфером станет пул аккумуляторов ёмкостью до 42 ГВт·ч. Для потребностей Дарвина и округи будет предоставлено 4 ГВт, а для Сингапура — 2 ГВт. Министр и источники путаются в размерностях, но, скорее всего, речь о гигаватт-часах.

До сих пор самой мощной в мире солнечной электростанцией был новый объект в Китае с проектной мощностью 8 ГВт. Если власти Австралии сдержат обещания, то смогут гордиться новой супердержавой на карте мира — самой могучей в мире солнечной энергетикой.

«Это будет самый большой солнечный комплекс в мире, который провозгласит Австралию мировым лидером в области зеленой энергетики», — заявила министр окружающей среды Таня Плиберсек.

Подводный электрический кабель сможет удовлетворять до 15 % потребностей Сингапура в электричестве. В основном проект направлен на обеспечение Австралии экологически чистой энергией. Правда австралийские учёные бьют тревогу, указывая на то, что страна стремительно превращается в свалку убитых солнечных панелей. Однако политики у руля Австралии непреклонны — атомной энергетики с её дорогими и медленно строящимися реакторами в стране не будет.

Ветряная и солнечная электрогенерация в США превосходит угольную уже семь месяцев подряд

Хотя 2024 год обещает установить новый рекорд по нагреву Земли, возобновляемые источники энергии успешно справляются с возросшей потребностью в электричестве, которую раньше закрывали угольные электростанции. В США в 2024 году впервые солнечные и ветряные электростанции седьмой месяц подряд выдают больше энергии, чем угольные. Это на два месяца дольше, чем год назад, в чём помогли новые установленные мощности в сфере солнечной и ветряной энергетики.

 Источник изображения: Copilot

Источник изображения: Copilot

О достижении рекордного результата сообщили в Управлении энергетической информации США (EIA). В США впервые за первые семь месяцев года было произведено больше энергии из возобновляемых источников, чем при использовании угольных электростанций. Кроме того, в течение двух месяцев подряд — в марте и апреле — выработку энергии с использованием угля превзошла одна только ветряная энергетика. Ветроэнергетические установки произвели в марте 45,9 ГВт·ч и рекордно высокие 47,7 ГВт·ч в апреле, по сравнению с произведёнными угольными электростанциями 38,4 ГВт·ч в марте и 37,2 ГВт·ч в апреле.

В США пик спроса на электрическую энергию приходится на летние месяцы и начало осени, а также на конец весны. Решающими окажутся данные за август — сможет ли возобновляемая энергетика перебить хребет ископаемой? Но поскольку в США продолжают наращивать объёмы производства чистой энергии, перелом не за горами. Так, если в прошлом году в США было введено в работу 18,4 ГВт солнечных мощностей, то в текущем году прирост составит уже 36,4 ГВт.

Похожие тенденции происходят также в сфере ветровой генерации. По сообщению Scientific American, производство энергии силой ветра в США выросло примерно на 8 % по сравнению с прошлым годом. По состоянию на июнь 2024 года было добавлено около 2,5 ГВт ветровой мощности, и ожидается, что еще 4,5 ГВт будут введены до конца 2024 года. Представители техасского и калифорнийского операторов энергосистем отметили, что вопреки рекордной жаре этого лета системы впервые ведут себя стабильно, за что они благодарят солнечную и ветряную энергетику, а также резервные (батарейные) системы хранения энергии.

Норвегия построит первую в мире плавучую стену из ветряных турбин

Норвежская компания Wind Catching Systems сообщила о получении экспертного одобрения на создание прототипа гигантской плавучей стены ветряных турбин. Будут построены четыре 40-МВт установки для размещения вдоль побережья Норвегии. Каждая из них будет представлять собой вертикальное поле из множества турбин с роторами уменьшенного диаметра. Такой подход обеспечит простоту производства, развёртывания и обслуживания на фоне кратного роста выработки.

 Источник изображений: Wind Catching Systems

Источник изображений: Wind Catching Systems

Плавающая ветряная ферма WCS получила поддержку от крупных мировых инвестиционных фондов. В случае успеха она может преобразить ветроэнергетику. Вместо одиночных ветряных турбин большой мощности, а Китай уже приблизился к производству одиночных 22-МВт ветряков с лопастями до 150 м, норвежцы предлагают фактически модульную сборку из множества турбин меньшей мощности с лопастями длиной до 15 м. Модульная ферма многократно снизит затраты на логистику, а также обслуживание. Ремонтникам не нужно будет быть скалолазами. К месту ремонта на ветряке их доставит обычная строительная гондола.

Полученное компанией экспертное одобрение поступило от международного регистратора Det Norske Veritas (DNV), который известен разработкой стандартов, правил и инструкций, на основе которых национальные агентства и регуляторы создают собственные и международные стандарты в области судоходства, нефтегазовой отрасли, возобновляемой энергетики и других сферах промышленности. Это запускает создание проекта 40-МВт установки «стены ветряков», первая из которых будет установлена у побережья Ойгардена на юго-западе Норвегии.

Проект плавающей стены из ветряков компании WCS был представлен в 2021 году. Подход компании впечатлял и вызывал сомнения — она предложила ферму высотой с Эйфелеву башню (324 м) мощностью 126 МВт. Тем не менее, проект заинтересовал инвесторов. В ходе первого раунда сбора инвестиций компания получила около $10 млн от GM Ventures и заключила с General Motors стратегическое соглашение о разработке технологий.

Затем в сентябре 2022 и феврале 2023 годов последовали гранты в размере 22 млн и 9,3 млн норвежских крон ($2,1 млн и $0,9 млн). Эти гранты предоставлены норвежским государственным предприятием Enova SF, которое занимается сокращением выбросов парниковых газов и изучением новых технологий экологически чистой энергетики. На полученные средства было проведено несколько разработок, включая создание и испытание прототипа плавающего основания для гигантской фермы. Будет удивительно увидеть реализацию этого проекта в море.

Китай достиг цели по «зеленой» энергетике на 6 лет раньше намеченного срока

Национальное бюро статистики Китая представило данные о финансировании в области климатической энергетики (CEF), где сообщило, что достижение промежуточных климатических целей произойдёт в КНР на шесть лет раньше запланированного. Так, одной из задач до 2030 года было получение из возобновляемых источников 1200 ГВт энергии. По состоянию на май 2024 года, в Китае уже развернули солнечные и ветряные установки суммарной мощностью 1152 ГВт, значительно опередив планы.

 Источник изображения:

Очевидно, знаковый рубеж будет пройден в ближайшие недели. Китай, считающийся одной из самых загрязнённых стран с точки зрения промышленных выбросов парниковых газов, показал пример, как надо заботиться об экологии. Это не исключает того факта, что Поднебесная продолжает создавать угольные электростанции, но введение новых мощностей в строй существенно снизилось. В частности, на 45 % в годовом отношении, если говорить о периоде с января по май 2024 года.

За первые пять месяцев 2024 года в Китае было введено в эксплуатацию 103,5 ГВт экологически чистых энергетических мощностей (включая атомную и гидроэнергетику). Как и в 2023 году, солнечная энергетика остаётся лидером в стране по наращиванию мощности. За первые пять месяцев этого года установленная мощность в этой сфере составила 79,2 ГВт или 68 % от новых установленных источников энергии. За год этот показатель вырос на 29 % и продолжает расти.

 Источник изображения: CEF

Источник изображения: CEF

Ветряная энергетика стала вторым по распространённости источником экологичной энергии в Китае, достигнув в 2024 году в общей сложности 19,8 ГВт новых мощностей, что составляет 17 % от общего объёма. Количество ветроэнергетических установок выросло на 21 % в годовом исчислении и, как и количество солнечных, продолжает расти с рекордного уровня 2023 года. Тем самым общая установленная мощность ветряной и солнечной энергии в Китае достигла в конце мая 2024 года 1152 ГВт и, исходя из текущих темпов, совсем скоро должна превысить целевой показатель, ранее установленный для 2030 года.

Несмотря на впечатляющие достижения в сфере чистой энергетики, любое отклонение от планов — даже опережающее график — должно вызывать вопросы и даже опасения. Ранее была информация, что китайская инфраструктура неспособна воспринять настолько бурный прирост солнечной выработки.

Китай создал первую в мире морскую двуглавую ветряную турбину — она будет работать даже в сильный тайфун

Китайская компания Mingyang Smart Energy завершила создание уникальной морской двухроторной ветряной турбины OceanX общей мощностью 16,6 МВт. Установка способна оставаться в работе даже при скорости ветра 260 км/ч. Масса этого уникального плавучего объекта достигает 16 500 т, а конструкция выдерживает волны высотой 30 м. Вскоре вдоль морского побережья Китая могут появиться сотни и тысячи таких ветряных установок, обеспечивая материк чистой энергией.

 Источник изображений: Mingyang Smart Energy

Источник изображений: Mingyang Smart Energy

Прототип двухроторной плавучей ветряной установки OceanX в масштабе 1:10 компания Mingyang изготовила ещё в 2020 году. На днях было завершено производство полномасштабной серийной версии турбины. Колоссальная плавучая установка изготовлена из высоконадёжного бетона, устойчивого к агрессивной среде. Поплавок имеет вид буквы Y. Он крепится ко дну глубиной свыше 35 м одним якорем, что позволяет ветряной турбине всегда разворачиваться по ветру.

Две турбины мощностью по 8,3 МВт каждая размещены на вершинах стойки в форме буквы V. Турбины дополнительно закреплены растяжкой из тросов. Диаметр каждого ротора составляет 182 м. Лопасти вращаются в разных направлениях, чтобы избежать центробежной нагрузки на установку. Вся система выдерживает турбулентность на уровне 0,135, что означает возможность работы в чрезвычайно сложных условиях. Обычно турбины отключают при превышении турбулентности значения 0,06, чтобы механизм не вышел из строя от сильных вибраций, что, явно, не грозит китайской морской турбине.

По данным Глобального совета по ветроэнергетике, Китай шестой год подряд занимает первое место в мире по развитию морской ветроэнергетики. Цель Китая — обеспечить к 2025 году треть своего национального энергопотребления за счет возобновляемых источников. Протяженность береговой линии Китая составляет около 9 010 миль (14 500 км), поэтому для морских ветряных электростанций там вполне достаточно места. Но кроме всего этого, мало кого оставит равнодушным полёт инженерной мысли — это просто колоссально.

В Сан-Франциско начинает курсировать первый в мире пассажирский паром на водородном топливе

С 19 июля по заливу Сан-Франциско начнёт регулярные рейсы первый в мире коммерческий пассажирский паром на водородном топливе. В течение шести месяцев (пока будут длиться испытания судна) услуга будет бесплатной. В каждый рейс судно сможет брать до 75 пассажиров. По словам властей, этот маленький шаг станет первым на пути к безуглеродному морскому судоходству.

 Источник изображений: AP/Terry Chea

Источник изображений: AP/Terry Chea

Судно-катамаран MV Sea Change длиной 21 м построено компаниями Bay Ship and Yacht в Аламеде, Калифорния, а также All-American Marine в Беллингеме, Вашингтон. Его электрические силовые установки питаются от энергии, вырабатываемой топливными водородными ячейками. Запаса водорода на борту хватит для преодоления 300 морских миль (555 км) или путешествия длительностью 16 часов. Сколько именно и в каком режиме судно будет проводить в пути, не уточняется. Сказано, что оно будет курсировать вдоль побережья по заливу от пирса 41 к пирсу у центрального пассажирского терминала Сан-Франциско.

Водородное топливо обещает стать центральным в усилиях стран по декарбонизации транспорта от грузового автомобильного до железнодорожного, авиационного и судоходного. Но произойдёт это лишь тогда, когда водород будет производиться с использованием возобновляемой энергетики. В таком случае он будет получаться с помощью электролиза — расщепления воды на водород и кислород под воздействием электричества, а электричество будет генерироваться солнечными и ветряными электростанциями. В этом идеальном мире из выхлопных труб транспортных средств будет вытекать обычная вода, а не углекислый газ с примесями тяжёлых металлов.

Ещё раньше топливные ячейки для судоходства стали использовать в Европе. Так, с лета 2023 года по Рейну начал курсировать контейнеровоз на водородном топливе. Вскоре парк таких судов будет насчитывать не один десяток штук. Опыт США с водородными пассажирскими паромами станет ещё одним вкладом в копилку безуглеродного судоходства и примером практической реализации экологически чистых транспортных технологий.

В России разработали солнечные панели, которые лучше всех работают в тени

Учёные Университета МИСИС и Института синтетических полимерных материалов им. Н.С. Ениколопова (ИСПМ РАН) представили органические полупроводники для солнечных перовскитных модулей, которые при низком освещении увеличивают мощность выработки до 90 %, а КПД на 2,42 %. Подобный тип солнечных батарей позволит эффективно вырабатывать электроэнергию вдали от солнечных регионов, в условиях плотной облачности и даже внутри зданий.

 Источник изображений: Journal of Power Sources

Источник изображений: Journal of Power Sources

Исследователи занимались вопросом повышения эффективности и практической надёжности солнечных элементов из таких тонкоплёночных структур, как галоидные перовскиты. Это нанокристаллический перовскитный поглотитель, который размещается между слоями переноса заряда. Такая структура способна вырабатывать больше энергии, чем кремний, и обещает быть дешевле в производстве. Максимальный КПД, который учёные смогли достигнуть в лаборатории, сегодня составляет 26,1 % и продолжает расти.

Перовскитные материалы и галоидные соединения в частности очень чувствительны к внешней среде — температуре, влажности, освещению и прочему. Поэтому во всём мире учёные ищут возможность защитить их от коррозии и химического (фотохимического) разрушения, без чего коммерческая эксплуатация подобных фотоэлементов будет невозможна. Российские учёные также двигались в этом направлении. В ходе исследований коллектив учёных МИСИС и ИСПМ РАН синтезировал органический самособирающийся монослойный материал, который оказался химически совместим с перовскитными соединениями и обладал необходимыми защитными функциями.

По сути, учёные создали технологию образования упорядоченной (защитной) молекулярной структуры толщиной в одну или несколько молекул, образующейся при поглощении активных веществ с поверхности. Такие активные вещества образуются естественным образом под воздействием тепла и света. Например, это могут быть летучие соединения йода и другие побочные продукты, которые вызывают коррозию и окисление. Исследователи смогли обратить этот негативный эффект себе на пользу, заставив его работать на создание защитного слоя.

Химическую работу при самосборке монослоя производит состав на основе трифениламина с карбоксильной связующей группой. Его применение также улучшило перенос заряда между перовскитными поглотителями и неорганическими слоями.

«Новый самособирающийся монослой — один из наиболее простых с точки зрения синтеза. Подобные материалы широко применяются благодаря высокой стабильности и адгезии. Однако для получения материала важно учитывать ряд требований. Среди них: термическая, фото- и электрохимическая стабильность, подходящий уровень молекулярной орбитали для переноса положительно заряженных носителей заряда с перовскита на электрод и химическая совместимость между покрытиями. Также важно избегать "паразитического" поглощения энергии при прохождении солнечных лучей через трёхслойную структуру материала», — рассказала сотрудница лаборатории перспективной солнечной энергетики НИТУ МИСИС Екатерина Ильичёва.

Выяснилось, что после образования монослоя эффективность носителей заряда выросла, а также снизилась потеря энергии. Тесты при естественном свете показали, что перовскитные элементы с монослоем сохраняют до 98 % своей первоначальной производительности после 1000 часов работы, тогда как необработанные устройства теряют более 20 % мощности уже через 400 часов. Результаты исследования подробнее описаны в журнале Journal of Power Sources.

«В ходе исследования мы также изготавливали перовскитные солнечные модули с применением новой технологии. Их КПД вырос с 13,22 % до 15,64 %, а при низком освещении максимальная мощность увеличилась на 47–90 %. Мы выяснили, что монослой значительно снижает количество дефектов и усиливает взаимодействие между слоями, что ведёт к более стабильной работе перовскитных солнечных элементов. Кроме того, обработанные образцы оказались менее подвержены влиянию внешних факторов, таких как свет, влага и температура», — поделилась Полина Сухорукова, инженер лаборатории перспективной солнечной энергетики НИТУ МИСИС, исследователь лаборатории полимерных солнечных батарей ИСПМ РАН.

Работающие в условиях слабой освещённости солнечные панели и панели для работы внутри помещений — это одно из важных направлений в фотовольтаике. В условиях плотной городской застройки солнечный свет редкий гость на улицах городов. Фотопанели для выработки электрической энергии в таких условиях будут востребованы и сыграют свою роль в сфере возобновляемой энергетики.

Учёные создали автономную установку для добычи водорода с помощью энергии Солнца

Исследователи научной сети им. Фраунгофера (Fraunhofer) представили автономный компактный модуль по извлечению водорода из воды с помощью энергии Солнца. Модуль поддерживает простое масштабирование. Со 100 м2 модулей в год можно получить 30 кг водорода, что обеспечит среднестатистическому легковому автомобилю пробег до 20 тыс. км.

 Источник изображения: Fraunhofer IKTS

Quadratisch, Praktisch, Gut. Источник изображения: Fraunhofer IKTS

Предложенная немецкими специалистами разработка использует эффект фотоэлектрохимической катализации. Это не электролизёр, который расщепляет воду на кислород и водород с помощью электрического тока, хотя обычные солнечные панели также встроены в данный модуль. Вырабатываемая солнечными панелями энергия используется для «турбонаддува», что ускоряет реакцию по извлечению водорода из воды.

Основную работу по расщеплению воды на кислород и водород выполняет катализатор, произведённый из почти что обычного листового стекла. На стекло методом осаждения в вакууме наносятся специально подобранные материалы, плёнка которых получается не толще нескольких нанометров с каждой стороны. Точность нанесения также играет роль в увеличении эффективности катализатора, как и выбранные для этого полупроводниковые материалы.

Когда солнечный свет падает на стекло, коротковолновое излучение поглощается на его внешней поверхности и производит кислород. Длинноволновое излучение проникает вовнутрь и на внутреннем покрытии производит водород. Оба газа разделены перегородкой и собираются раздельно. При размерах рабочей поверхности модуля 50 см2, поле из модулей площадью 100 м2 позволит каждый год производить до 30 кг экологически чистого водорода. Для автомобиля на водородном топливе это обеспечит пробег от 15 000 до 20 000 км, что примерно соответствует годовому пробегу среднестатистического автомобиля в России.

Добавим, фотоэлектрические катализаторы — это изобретение не сегодняшнего дня. Но у них всегда была одна серьёзная проблема — очень быстрый износ. Как с этим обстоят дела у немецких модулей, не уточняется.


window-new
Soft
Hard
Тренды 🔥
Arm будет добиваться повторного разбирательства нарушений лицензий компанией Qualcomm 2 ч.
Японцы предложили отводить тепло от чипов на материнских платах большими медными заклёпками 3 ч.
Поставки гарнитур VR/MR достигнут почти 10 млн в 2024 году, но Apple Vision Pro занимает лишь 5 % рынка 4 ч.
Первая частная космическая станция появится на два года раньше, но летать на неё будет нельзя 5 ч.
В США выпущены федеральные нормы для автомобилей без руля и педалей 6 ч.
Для невыпущенного суперчипа Tachyum Prodigy выпустили 1600-страничное руководство по оптимизации производительности 7 ч.
Зонд NASA «Паркер» пошёл на рекордное сближение с Солнцем 8 ч.
Qualcomm выиграла в судебном разбирательстве с Arm — нарушений лицензий не было 12 ч.
Американских субсидий на сумму $6,75 млрд удостоятся Samsung, Texas Instruments и Amkor 13 ч.
Apple начала снимать с продажи iPhone SE, iPhone 14 и iPhone 14 Plus в Европе 21 ч.