Опрос
|
реклама
Быстрый переход
В США испытали геомеханический аккумулятор — он запасает энергию в сжатии земных пород
28.02.2025 [15:35],
Геннадий Детинич
Компания Quidnet Energy из США предложила недорогую альтернативу гидроаккумулирующим накопителям энергии. Вместо подъёма воды на высоту для последующего спуска через турбины технология Quidnet предполагает закачку воды под давлением в недра земли — шахты и пещеры. В феврале 2025 года технология была испытана в Техасе в масштабе хранения мегаватт-часов энергии и доказала свою готовность к повсеместному внедрению. ![]() Источник изображения: Quidnet Energy Компания Quidnet была основана в 2015 году и на сегодняшний день привлекла более 60 млн долларов инвестиций от таких компаний, как Hunt Energy Network, Prime и Breakthrough Energy Билла Гейтса (Bill Gates). Основатель Microsoft в 2020 году передал Quidnet 10 млн долларов на развитие и подготовку демонстрационного проекта в масштабе хранения мегаватт-часов энергии. В конечном итоге эксперимент был проведён на площадке Quidnet в Техасе недалеко от Далласа. Создание традиционных гидроаккумулирующих мощностей требует организации огромной запруды на значительной высоте. Для хранения достаточного объёма энергии в воде, поднятой на высоту, необходимы поистине циклопические сооружения, которые по определению не могут быть дешёвыми. Идея Quidnet Energy состоит в том, чтобы закачивать воду в резервуары, расположенные в земле, — естественные или специально созданные. Согласно расчётам, затраты на создание таких подземных накопителей энергии в пересчёте на каждый киловатт будут как минимум в два раза ниже, чем на строительство традиционных гидроаккумулирующих хранилищ. Как и в случае гидроаккумулирующих накопителей, геомеханический аккумулятор Quidnet использует излишки энергии из возобновляемых источников для закачки воды под землю под давлением. Однако этот процесс значительно проще: вода поступает в шахту под давлением из близлежащего водоёма (пруда). Поскольку вода практически не сжимается, накопление энергии происходит за счёт увеличения механического напряжения в горной породе — в стенках импровизированного резервуара. В идеале резервуар должен иметь линзовидную структуру, но для удешевления проекта подойдёт практически любой. После закачки воды под землю клапан перекрывают и открывают только при необходимости выработки электроэнергии. Вода проходит через турбины и возвращается в наземный водоём, откуда её можно снова закачать под землю. Благодаря замкнутому циклу потери воды минимальны. В Quidnet подчёркивают, что создание подобных накопителей уже фактически отлажено буровиками: все процессы и процедуры — от бурения до прокладки труб — стандартизированы и имеют промышленную базу. Это немаловажный фактор для массового внедрения подобных геомеханических аккумуляторов. Вдохновлённые результатами эксперимента, разработчики готовы приступить к масштабному проекту по интеграции системы в национальную электрораспределительную сеть. Заброшенную шахту в Австралии превратят в первое в стране хранилище энергии на сжатом воздухе
27.02.2025 [19:55],
Геннадий Детинич
Властям Австралии пришлась по душе идея хранения запасов энергии под землёй в сжатом воздухе. Впервые эту технологию реализовали в Германии пятьдесят лет назад, но сегодня абсолютными лидерами в этой области стали китайцы. В Австралии имеется буквально море солнечной энергии, и её излишки становятся головной болью для энергетиков континента. Первый в стране проект по закачке воздуха под землю начнёт реализовываться в этом году и, по всей видимости, не станет последним. ![]() Источник изображения: Hydrostor Строительством воздушно-компрессионной системы накопления излишков энергии из возобновляемых источников в Австралии займётся канадская компания Hydrostor. Для его реализации выбрана заброшенная шахта недалеко от шахтёрского городка Брокен-Хилл (Broken Hill) в Новом Южном Уэльсе (NSW). Оборудование площадки позволит запасать 1,6 ГВт·ч электричества при совокупной мощности 200 МВт. Компания Hydrostor уже заключила договор с владельцем местной высоковольтной линии электропередачи, подключающей городок к национальной австралийской электрораспределительной сети, на поставку излишков в национальную сеть. Сам городок сможет питаться от аккумулятора на сжатом воздухе в течение нескольких дней и даже недель. Компания специально зарезервирует 250 МВт·ч энергии при мощности 50 МВт для питания города в периоды перебоев с электричеством, которые в этом регионе случаются довольно часто из-за ураганов. В настоящее время для этих целей используются два дизельных генератора, которые будут ликвидированы после запуска проекта. По оценкам подрядчика, строительство объекта займёт три–четыре года. Работы начнутся позже в этом году. После ввода объекта в эксплуатацию воздух будет сжиматься и закачиваться в шахту, используя излишки энергии ветровых и солнечных электростанций региона. При необходимости воздух будет нагреваться и направляться на турбины генераторов, вырабатывающих электричество для потребителей. Инвестиции в проект составят 655 млн австралийских долларов ($415 млн). Несмотря на риск землетрясений, геотермальную энергию ждёт светлое будущее, считают учёные
22.02.2025 [22:07],
Геннадий Детинич
Новые методы бурения и прогрессивные технологии извлечения тепла из недр Земли обещают быстро сделать геотермальную энергетику конкурентоспособным игроком на рынке выработки электричества, уверены учёные из США. Это произойдёт стремительно — всего за пару лет. Прогнозы говорят, что уже в 2027 году стоимость генерации электричества с помощью тепла недр планеты сравняется со стоимостью сегодняшнего электричества «из розетки». ![]() Геотермальная электростанция Google. Источник изображения: Google Доклад о перспективах геотермальной энергетики (EGS) представил ведущий специалист в отрасли Роланд Хорн (Roland Horne), профессор энергетики и инженерии Стэнфордского университета (Stanford University). Он начал с того, что исторически доступ к геотермальной энергии был связан исключительно с географическими факторами. Для обычных геотермальных электростанций требуются горячие, проницаемые породы и большое количество подземных жидкостей, что характерно для мест с недавней вулканической активностью, таких как Япония, Новая Зеландия, Филиппины, Кения, Сальвадор, Исландия и западная часть Соединённых Штатов. Но это было в прошлом. За последние 50 лет придуманные нефтяниками методы бурения и разрыва пластов открыли возможность доступа к теплу недр на большей части планеты, а не только рядом с вулканами. Пока новыми технологиями воспользовались лишь единичные компании, но в них скрыт огромный потенциал для производства электрической энергии в больших масштабах. Сегодня в глобальном масштабе доля геотермальной энергетики по-прежнему составляет менее половины процента. Доля солнечной и ветряной энергии более чем в 25 раз выше, что можно исправить в обозримые сроки. Для доступа к подземному теплу следует использовать методы бурения, разработанные для добычи сланцевого газа, включая горизонтальное бурение и гидроразрыв пластов. Закачивая в скважины жидкость под большим давлением, нефтяники расширяют существующие в породе трещины и создают новые, за счёт чего происходит приток нефти и других жидкостей к поверхности. В геотермальных системах с улучшенными характеристиками жидкость представляет собой просто горячую воду из естественных подземных резервуаров. ![]() Другие адаптированные методы включают бурение нескольких скважин с одной площадки для повышения эффективности и снижения затрат. Синтетические алмазные буровые коронки, которые могут эффективно проходить через твёрдые породы, также оказались критически важными, позволяя завершить строительство новой геотермальной скважины за несколько недель, а не месяцев. «Ускорение бурения оказывает огромное влияние на экономику EGS в целом», — пояснил учёный. Согласно проведённым расчётам, более высокая скорость бурения может уже к 2027 году сделать геотермальные системы конкурентоспособными по отношению к системам «наземной» выработки электричества на большей части территории США, что сегодня примерно равно $80 за МВт·ч. В Калифорнии, которая в настоящее время получает около 5 % электроэнергии из геотермальных источников, авторы подсчитали, что с помощью EGS геотермальная мощность может увеличиться в десять раз и к 2045 году достичь 40 ГВт, что позволит заменить ископаемое топливо в качестве базовой генерации. Таким образом, EGS дополнит нестабильные возобновляемые источники энергии, такие как ветер и солнце, и повысит стабильность безуглеродной энергосистемы. Но есть один момент, который обязательно нужно учитывать. Как и при гидроразрыве пластов для добычи нефти и газа, дробление глубинных пород для доступа к геотермальным резервуарам может вызвать землетрясения. Для снижения риска катастроф профессор рекомендует не бурить там, где риск землетрясений высокий и где проходят разломы земной коры. Также следует бурить с осторожностью и прекращать работы каждый раз, как только сейсмические события превысят определённый уровень. Если тряска будет не сильной, работы можно не останавливать. ![]() Ещё одним способом избежать землетрясений в местах бурения может быть мягкое нагнетание воды для гидроразрыва — не под высоким давлением, а намного более слабым. «Постепенное закачивание жидкости вместо использования напора под давлением может значительно снизить риск и масштабы индуцированной сейсмической активности», — сказал Хорн. Учёный и его коллеги надеются, что новое исследование послужит стимулом для дальнейших исследований и разработок EGS как устойчивого и надёжного источника энергии. «EGS может изменить правила игры в производстве экологически чистой энергии не только в Калифорнии, но и по всей территории США и во всём мире, — сказал Хорн. — Безопасное использование внутреннего тепла Земли может существенно повлиять на энергетику нашего будущего». Китайцы полезли под землю в поисках места для хранения энергии в сжатом воздухе
21.02.2025 [10:31],
Геннадий Детинич
Испытанный ещё в Германии 70-х проект хранения энергии в сжатом воздухе получил второе дыхание в эру возобновляемых источников энергии. Их прерывистый характер выработки требует аккумулирующих мощностей, чтобы ночью и в безветренную погоду подача электричества не прерывалась. В Китае активно подхватили идею закачки воздуха в подземные пещеры, чтобы затем использовать сжатый газ для выработки энергии. Однако естественные пещеры заканчиваются, а спрос на них остаётся. ![]() Источник изображения: China Energy Storage Нехватка пещер для хранения энергии в сжатом воздухе заставила китайцев бурить искусственные подземные резервуары, а это требует разработки целого ряда технологий для надёжности циклопических подземных конструкций и предотвращения утечек. К тому же, под землёй можно создать условия для хранения воздуха с более высоким давлением, чем в естественных пещерах. Как сообщают источники, в Китае стартовал первый крупномасштабный проект по хранению энергии сжатого воздуха (CAES) с использованием полностью искусственной подземной пещеры, что является важным шагом на пути к коммерциализации этой технологии. Проект разработан государственным консорциумом и реализуется при поддержке местного государственного предприятия Xinyang Construction Investment Group, специалиста по технологиям CAES China Energy Storage National Engineering Research Center (China Energy Storage) и двух других государственных инвестиционных компаний. Сдать в эксплуатацию комплекс планируется в 2026 году. Он будет обладать мощностью 300 МВт и хранить 1200 МВт·ч энергии. Стоимость проекта оценивается в 2,15 млрд юаней ($300 млн). Подземные работы предусматривают вскрытие и обустройство пещеры диаметром 15 м и длиной 1800 м. Это ёмкость объёмом 318 тыс. м³. В сжатом состоянии туда поместится намного больше воздуха. Заявленное рабочее давление искусственной пещеры будет на уровне 14 МПа, что позволит закачать в неё более 50 млн м³ атмосферы. Страхи Александра Беляева о появлении «продавцов воздуха» становятся реальнее. Для удержания воздуха под землёй под давлением и без утечек разработаны технологии усиления конструкции, бетонной облицовки и герметичного стального слоя. По состоянию на декабрь 2024 года было построено около 400 метров транспортного туннеля, что составляет почти 80 % от запланированного объёма работ. Также в хранилище уже ведутся земляные работы. Ожидается, что после ввода в эксплуатацию эффективность преобразования энергии составит 72,1 %, а мощность — 420 млн кВт·ч в год, что достаточно для обеспечения электроэнергией 350 000 домохозяйств. Система включает в себя многоступенчатые компрессоры, выдерживающие высокую нагрузку турбины и усовершенствованные теплообменники. Последние позволили отказаться от нагрева воздуха с использованием ископаемого топлива, забирая тепло в процессе рекуперации, что сделает проект экологически чистым. Успех мероприятия откроет дорогу для строительства подобных объектов повсеместно. Аэропорт Далласа начал вырабатывать энергию от реактивных струй взлетающих самолётов
15.02.2025 [21:22],
Геннадий Детинич
В энергетический баланс Техаса добавился уникальный и единственный такой в мире источник энергии — модульная ветряная турбина JetWind для выработки электричества от реактивных струй взлетающих самолётов. С ноября 2024 года электричеством от модулей JetWind в аэропорту воспользовались свыше 10 000 раз, включая подзарядку электромобилей. Ряд мировых аэропортов заинтересовались установкой и хотят такие же. ![]() Источник изображения: JetWind «Основная цель нашего проекта — использовать постоянный ветер, создаваемый реактивными самолётами, и преобразовать его в экологически чистый источник энергии, — пояснили разработчики установки. — То, что когда-то считалось потраченной впустую энергией, теперь может принести пользу энергетическим сетям, в конечном итоге способствуя развитию более разумной и устойчивой инфраструктуры по всему миру». Первые пять модулей ECP (Energy Capturing Pods) из заказанных 13 установили и подключили в аэропорту Love Field в Далласе. Внедрение началось после трёх лет испытаний в период с 2021 по 2024 год, когда прототипы оценивались на предмет их эффективности улавливания реактивных выхлопных газов от двигателей самолётов. Решение понравилось руководству аэропорта, и оно заказало 13 установок, пять из которых изготовили минувшим летом и ещё восемь произведут и установят в течение следующих трёх лет. Каких-либо подробностей о проекте источник не приводит, однако отмечает, что публичное представление технологии JetWind вызвало значительный международный резонанс. Такие страны, как Австралия, Бразилия, Эквадор, Швейцария, Великобритания и Франция выразили восторг по поводу потенциального применения этой инновационной системы и хотели бы иметь подобные у себя. Представители JetWind сообщили, что переговоры на эту тему уже проводятся. В Китае придумали, куда девать лопасти старых ветряков — они помогут создавать идеальные дороги
13.02.2025 [16:18],
Геннадий Детинич
Исследователи из Ланьчжоуского института химической физики (Lanzhou Institute of Chemical Physics) в китайской провинции Ганьсу предложили и проверили на практике метод укрепления дорожного полотна и строительных конструкций добавками из материала отработавших лопастей ветряных турбин. Опыт удался: спустя пять месяцев после укладки дороги асфальтом с «лопастной» присадкой на участке не образовалось ни одной трещины. ![]() Источник изображения: unsplash/Karsten Würth Для Китая необходимость утилизации закончивших срок эксплуатации ветряных турбин — это не пустой звук. Эта страна является лидером в развёртывании электростанций на возобновляемых ресурсах, включая ветряную генерацию. Она также первой столкнётся с огромной волной отходов, которые трудно переработать, среди которых основную массу составят лопасти от ветряных турбин. Основной состав лопастей — стеклоткань, углеволокно и эпоксидная смола для пропитки. Сегодня лопасти либо складируются в специально отведённых для этого местах (по сути, на свалках), либо закапываются в рвах как мусор. Археологи будущего смогут по этим останкам восстановить картину развития производства лопастей в Поднебесной, если какой-нибудь астероид внезапно разорвёт цепь развития земной цивилизации. Если серьёзно, то проблема утилизации лопастей не имеет простого решения. Учёные из Китая предложили их измельчать, обрабатывать по специальной технологии и добавлять в асфальт и бетон как присадки при укладке дорог и строительстве зданий и сооружений. В сентябре 2024 года в качестве эксперимента асфальт с присадкой из лопастей был использован для покрытия участка дороги в провинции Ганьсу. Спустя пять месяцев дорога выглядит как новая, не имея ни единой трещины в полотне, если верить источнику. Учёные вместе с подрядчиком надеются расширить эксперимент, укладывая «чудо-асфальт» на других участках дорог и в строительстве, обещая эффективность утилизации лопастей ветряков. Выглядит интересно, но до тех пор, пока не станет известно об обнаружении микропластика в живых тканях животных и человека. Эти опасения не решат проблему утилизации лопастей, но, возможно, заставят задуматься о поиске других методов. Американцы научились производить «зелёный» аммиак, просто закачивая сточную воду под землю
25.01.2025 [13:20],
Геннадий Детинич
Аммиак — это не только удобрение для спасения сельского хозяйства. Это соединение азота и водорода содержит в себе в 20 раз больше энергии по отношению к весу, чем литиевые аккумуляторы. Огорчают лишь современные «грязные» методы производства аммиака, с чем решили побороться учёные из США. У них получилось. ![]() Художественное представление установки по естественному производству аммиака. Источник изображения: Iwnetim Abate and Yifan Gao Традиционное производство аммиака, 80 % которого потребляет сельское хозяйство, требует высоких температур и сопровождается выбросами парниковых газов. На каждую тонну этого соединения в атмосферу выбрасывается 2,4 т углекислого газа. В целом эта ниша химической промышленности ответственна за 1 % вклада нашей цивилизации в ежегодные выбросы антропогенных газов. Поэтому предпринимаются попытки производить аммиак с использованием возобновляемых источников энергии, что делает его чистым во всех смыслах. В августе прошлого года в Дании был запущен первый в мире завод по производству аммиака с использованием солнечной и ветровой энергии. Производство может выпускать до 5000 т аммиака в год. Если говорить об аммиаке как о зелёном топливе, то уже разработаны двигатели внутреннего сгорания на аммиаке. Есть ряд моделей транспортных средств на этом топливе, а также планируется спуск на воду в 2026 году в Норвегии первого в мире контейнеровоза на аммиаке. Учёные из Массачусетского технологического института (MIT) нашли способ практически естественного воспроизводства аммиака без привлечения любых искусственных источников энергии. К открытию подтолкнуло обнаруженное ещё в 80-х годах явление, когда одна из скважин в Мали начала выдавать чистый водород. Учёные заключили, что глубоко под землёй, с привлечением горных пород и температуры недр, идут процессы, которые естественным образом производят водород из воды в породах. «Это был отличный момент, — говорят исследователи. — Возможно, мы сможем использовать Землю как фабрику, используя её тепло и давление для производства ценных химических веществ, таких как аммиак, более чистым способом». На основе сделанного предположения учёные построили модельную систему для ввода обогащённой азотом воды в богатые железом синтетические минералы, имитируя породы, которые находятся под поверхностью земли. В результате процесса был получен аммиак без образования какого-либо CO2 и без необходимости какой-либо дополнительной внешней энергии для активизации химического процесса. На втором этапе исследователи заменили синтетическую породу оливином, который в природе встречается повсеместно и также богат железом. Также был добавлен медный катализатор и произведён нагрев до 300 °C. Примерно такая температура будет на глубине нескольких километров под поверхностью земли. Было обнаружено, что азот в воде вступает в реакцию с железом в породе с образованием чистого водорода, который, в свою очередь, вступает в реакцию с азотом с образованием аммиака. В результате процесса на тонну оливина было получено 1,8 кг аммиака. Подобный метод можно реализовать в любой точке мира, ведь оливин есть везде. Более того, под землю можно даже закачивать обычные сточные воды, обычно насыщенные аммиаком. Это буквально неисчерпаемый источник чистой энергии. Учёные рассказали об открытии в журнале Joule и подали заявку на патент. На практике они надеются провести эксперимент в течение следующего года или двух. Европа установила рекорд по отрицательным и нулевым ценам на электричество в 2024 году
21.01.2025 [23:16],
Геннадий Детинич
В Европе рост генерации из возобновляемых источников в совокупности с другими факторами привёл к тому, что в 2024 году количество периодов с предложением нулевой и даже отрицательной стоимости электроэнергии за год удвоилось. Но успех праздновать рано. Цены на энергию обвалило увядание промышленности в ЕС и отсутствие линий электропередач между странами с зелёной генерацией. ![]() Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Статистику по ценам на электрическую энергию в Европе собрало агентство Montel Analytics. Оно отмечает, что в 2024 году в разных странах Европы было зафиксировано 4838 случаев падения цен на электроэнергию до нуля или ниже на сутки вперед, что является рекордно высоким показателем, обусловленным ростом мощностей возобновляемой генерации, вялым спросом и ограниченной гибкостью электросетей. Тем самым общее количество случаев падения цен до нуля и ниже почти вдвое превысило 2442 случаев, которые были зарегистрированы в 2023 году. Финляндия лидировала по отрицательным ценам в течение 721 часа, в основном из-за высокой генерации ветровыми электростанциями и невозможности поделиться излишками со Швецией и Эстонией, с которыми имеет кое-какие общие линии электропередачи, но недостаточные по пропускной способности. В это же время в Нидерландах был переизбыток солнечной электроэнергии, в Швеции — ветряной и, впервые, переизбыток был зафиксирован на Пиренейском полуострове. В совокупности в 2024 году на возобновляемые источники энергии пришлось 50,4 % от общего энергобаланса Европы, что стало рекордно высоким показателем. Тем временем ископаемое топливо упало до доли менее чем 25 % от общего объёма генерации на континенте, а атомная энергетика выросла до 24,7 %, чему способствовало восстановление парка АЭС Франции. «Доступность атомной энергии во Франции постепенно восстановилась в течение 2023 года и в начале 2024 года после исторического минимума в 2022 году, — сказал директор Montel Analytics Жан-Поль Харреман (Jean-Paul Harreman) в своём комментарии к публикации. Более того, Франция экспортировала самый большой за 22 года объём электроэнергии в 2024 году, за что, похоже, надо благодарить власти Германии, которые остановили все свои АЭС. Снижение цен на электроэнергию не привело к снижению цен на газ. Цена газовой генерации выросла за год на 5,6 % (до 43 евро за 1 МВт·ч). К началу года хранилища были заполнены на 76 %, что при средних условиях зимы считается достаточным. При всей кажущейся дешевизне и обилии солнечной генерации в Европе ещё сильнее увеличился разрыв между дешёвой энергией в часы пика выработки и дорогой в вечернее время, когда электричество необходимо гражданам в максимальном объёме. Возобновляемая энергетика вытесняет традиционную и в вечернее и ночное время дешёвого электричества больше нет. Промышленный спрос в Европе на электричество в 2024 году оставался ниже «доковидного» уровня, а солнечные панели на крышах продолжали компенсировать потребление электроэнергии в домашних хозяйствах. Сообщается, что общий спрос на электроэнергию в Европе упал на 7,7 % в годовом исчислении до 2678 ТВт·ч, что подчёркивает ослабление промышленности, особенно в Германии. В Китае заработала крупнейшая в мире гидроаккумулирующая электростанция мощностью 3,6 ГВт
10.01.2025 [18:20],
Геннадий Детинич
31 декабря 2024 года в работу вступил последний из 12 энергоблоков гидроаккумулирующей электростанции Фэннин (Fengning), расположенной в одноимённом уезде в Китае. Это крупнейший в мире объект такого рода, накапливающий избытки возобновляемой энергии путём закачки воды в искусственный водоём, расположенный на возвышении. Общая мощность электростанции составляет 3,6 ГВт, а запасённой воды хватает на работу в течение 10,8 часа. ![]() Источник изображений: State Grid Corporation of China Гидроаккумулирующая электростанция в Фэннин строилась 11 лет, а её реализация обошлась в $2,6 млрд (19,24 млрд юаней). Объём верхнего резервуара, служащего аккумулятором, достигает 45,04 млн м³, а нижнего — 71,56 млн м³. На полной мощности электростанция может работать 10,8 часа, аккумулируя почти 40 ГВт·ч электричества. Избытки энергии для подъёма воды на высоту поступают от ветряных и солнечных электростанций соседнего уезда. Электросеть гидроаккумулирующей электростанции подключена к тому же сегменту и сглаживает пики выработки, поставляя энергию в ночное время и в периоды безветрия. Аппаратный зал электростанции также поражает воображение, особенно учитывая, что он полностью скрыт под землёй. Его длина составляет 414 м, высота — 54,5 м, ширина — 25 м. Вспомогательная инфраструктура включает 190 тоннелей общей протяжённостью 50 км. Перекачку воды и выработку энергии обеспечивают 12 реверсивных турбин, каждая из которых имеет мощность 300 МВт. Две из них отличаются переменной скоростью вращения, что необходимо для более гибкой выработки и стабилизации частоты. Для закачки полного объёма воды в верхний резервуар требуется 8,71 ТВт·ч электроэнергии в год. Чистая выработка при спуске воды составляет 6,61 ТВт·ч в год, что означает потери на уровне около 2 ТВт·ч. Эти потери являются платой за использование восполняемых ресурсов. ![]() Проект гидроаккумулирующей электростанции разработан компанией State Grid Xinyuan Group, дочерним подразделением Государственной сетевой корпорации Китая. Это далеко не единственная гидроаккумулирующая электростанция в стране. К концу 2024 года Государственная сетевая корпорация Китая управляла гидроаккумулирующими мощностями общей мощностью 40,56 ГВт, а ещё 53,48 ГВт находились в стадии строительства. С учётом активного создания электростанций на возобновляемых источниках энергии, Китай нуждается в аккумулирующих и гидроаккумулирующих мощностях для формирования устойчивой энергосистемы. Цены на электричество были отрицательными почти три недели в Германии в прошлом году
07.01.2025 [14:31],
Геннадий Детинич
Федеральное сетевое агентство Германии (Bundesnetzagentur) сообщило, что в 2024 году был установлен рекорд по выработке электроэнергии с отрицательными ценами. Если в 2023 году на оптовом рынке отрицательные цены сохранялись в течение 301 часа, то в 2024 году цены на электроэнергию оставались отрицательными уже 457 часов. ![]() Источник изображения: ИИ-генерация Кандинский 3.1/3DNews Также в минувшем году биржевая цена на электроэнергию реже пересекала критическую отметку в €0,10 за 1 кВт·ч. Превышение фиксировалось в течение 2296 часов, тогда как годом ранее такое наблюдалось в течение 4106 часов. Таким образом, средняя оптовая цена на рынке «на сутки вперёд» в годовом исчислении снизилась на 17,5 % — до €0,07851 за 1 кВт·ч. Агентство также сообщило, что в 2024 году на возобновляемые источники энергии пришлось 59 % чистой выработки электроэнергии, что на 3 % больше, чем в 2023 году. Аналитики Fraunhofer ISE определили долю солнечной энергетики в Германии чуть выше — на уровне 62,7 %. При этом Bundesnetzagentur учитывает только ту электроэнергию, которая поступила в сеть, исключая собственное потребление владельцами генераторов. В 2024 году общий объём выработки электроэнергии в Германии снизился на 4,2 %, составив 431,7 ТВт·ч. Возобновляемые источники энергии произвели 254,9 ТВт·ч, из которых на ветровую энергетику пришлось 111,9 ТВт·ч, а на солнечную — 63,3 ТВт·ч (по сравнению с 55,7 ТВт·ч в 2023 году). Доля солнечных систем составила 14,7 % выработки, а ветровых установок — почти 26 %. Выработка электроэнергии из ископаемых ресурсов сократилась примерно на 11 %, составив 176,8 ТВт·ч. Производство электроэнергии на основе каменного угля уменьшилось на 31,2 %, бурого угля — на 8,8 %, тогда как выработка на газе увеличилась на 8,6 %. В Китае начали строить крупнейшее в мире хранилище энергии в сжатом воздухе в пещерах
24.12.2024 [19:05],
Геннадий Детинич
В Китае успех первой очереди системы по хранению излишков возобновляемой энергии в сжатом воздухе в пещере вдохновил на 10-кратное увеличение мощности установки. Проект Jintan в Чанчжоу (провинция Цзянсу) получит два 350-МВт генератора, которые смогут вырабатывать 2,8 ГВт·ч электричества в год. Энергия будет накапливаться в соляной пещере объёмом 1,2 млн м³, что сделает этот проект крупнейшим в мире решением в данной области ![]() Источник изображения: CNSIG Первая в мире установка по хранению излишков энергии в сжатом воздухе в подземных условиях была создана в Германии в 1978 году (электростанция Huntorf). Она способна вырабатывать 290 МВт в течение двух часов ежедневно. В 1991 году подобная станция была построена в США — McIntosh Power Plant, её мощность составляет 110 МВт. В Китае сегодня работают от девяти до десяти таких станций с общей мощностью около 700 МВт, где сжатый воздух преимущественно хранится в контейнерах. Проект Jintan, запущенный совместно с Китайской национальной группой соляной промышленности (CNSIG), Huaneng International Power Jiangsu Energy Development (дочерней компанией Huaneng Group — главного инвестора проекта), а также учёными из Университета Цинхуа, основан на использовании соляной шахты, выведенной из эксплуатации. Первая фаза проекта включала запуск 60-МВт установки по выработке энергии. Успешная реализация проекта подтвердила его эффективность, и теперь площадка будет дополнена двумя турбинами мощностью по 350 МВт каждая. Система рассчитана на 330 циклов заряда и разряда в год. Днём она будет накапливать излишки солнечной энергии, закачивая воздух в пещеру, а ночью — вырабатывать электричество, используя сжатый воздух для вращения турбин. Для повышения КПД воздух будет предварительно подогреваться. Энергия для подогрева будет браться из предыдущего цикла: тепло, выделяемое при сжатии воздуха компрессором, будет сохраняться для использования в процессе генерации. ![]() Эти технологии позволили поднять КПД установки до 60 %. Для сравнения: КПД аналогичной установки в США достигает 54 %, а в Германии — 40 %. После модернизации система автоматики позволяет запустить генерацию энергии за пять минут нажатием одной кнопки, тогда как ранее для этого требовалось 20 минут и последовательное выполнение операций специально обученным персоналом. В Финляндии тепловой аккумулятор ёмкостью 100 МВт·ч на мыльном камне пройдёт зимние испытания
16.11.2024 [14:33],
Геннадий Детинич
В конце октября финский стартап Polar Night Energy завершил наполнение ёмкости теплового аккумулятора 2000 тонн измельчённого мыльного камня. Аккумулятор будет хранить до 100 МВт·ч тепловой энергии с пиковой отдачей мощности 1 МВт. Этой ёмкости хватит на отопление небольшого городка неделю зимой и на месяц нагрева воды летом. Ввод в эксплуатацию состоится в 2025 году. Испытания начнутся через месяц или чуть позже. ![]() Источник изображений: Polar Night Energy О начале строительства масштабного накопителя тепла от избыточной выработки энергии солнечными и ветряными установками в регионе было сообщено в начале 2024 года. Ранее компания Polar Night Energy на примере пилотной установки мощностью 100 кВт и ёмкостью 8 МВт·ч показала, что идея хранить тепло в нагретом песке для последующего использования вполне рабочая и достаточно эффективная. Для реализации масштабного проекта был заключён договор с общиной Порнайнен на юге Финляндии. Проект предусматривал наполнение бункера теплового аккумулятора диаметром 15 м и высотой 13 м 2000 тоннами песка. Точнее, песок использовался в пилотном проекте. Для масштабного проекта был выбран более теплоёмкий материал и по совместительству отходы производства одной из местных компаний — талькохлорит, который ещё называют мыльным камнем. Этот материал используется компанией Tulikivi для облицовки каминов и печей для саун. Использование для теплоаккумулятора отходов производства — это высший пилотаж в сфере безотходной экономики, и финны оказались в этом вопросе на высоте. ![]() Поскольку основная часть работы завершена и остался только монтаж внешних узлов, работы вскоре перейдут в область проверки накопителя в условиях зимней эксплуатации. Ожидается, что полностью заряженный тепловой аккумулятор сможет неделю снабжать теплом дома граждан округа Lämpö. Накопитель будет подключёна к системе централизованного отопления и сможет обогревать до 5 тысяч граждан. Сдача объекта в эксплуатацию ожидается позже в 2025 году по результатам испытаний. Учёные превратили отходы полистирола в бесконечный источник чистой энергии
06.11.2024 [13:11],
Геннадий Детинич
Исследователи из Австралии и Латвии открыли способ превратить бесполезные отходы из полистирола в источник чистой и условно бесконечной энергии. Полистирол оказался наиболее перспективным материалом для генерации статического электричества среди других пластиков. Статику можно снимать с полистирола, накапливать и превращать в бесплатную электроэнергию. А всё что нужно для возникновения зарядов — это лишь поток воздуха через пластинки полистирола. ![]() Источник изображения: RMIT Полистирол, использующийся, преимущественно, для упаковок, ежегодно производится в объёме 25 млн тонн. После использования он в основном оказывается на свалках. В переработку поступает лишь малая часть этого материала. Свойства полистирола делают его мусором длительного разложения — до 500 и более лет. Но эти же качества сделали его лучшим выбором для создания электростатических генераторов. Учёные из Австралийского университета RMIT и Латвийского технического университета в Риге обнаружили, что обдуваемые потоком воздуха тончайшие пластинки из полистирола активно вырабатывают статическое электричество. Пластинки должны быть толщиной в десять раз тоньше человеческого волоса. Движение воздуха между ними заставляет их тереться друг от друга и возбуждать статический заряд, который затем направляется для зарядки конденсатора и дальше в электрическую цепь. ![]() Источник изображения: Advanced Energy and Sustainability Research 2024 Такую установку для выработки электричества из множества параллельно расположенных полистироловых пластинок учёные предлагают устанавливать в местах постоянного движения воздуха. Например, в системах вентиляции. Установки смогут подпитывать местную сеть и даже сэкономят до 5 % потребления кондиционеров, если в последние встроить предложенную систему по сбору статического электричества. Параллельно созданию электростатических генераторов из вторсырья исследователи глубже изучили природу возникновения статического заряда, чем двинули дальше фундаментальную науку. А ещё раньше подобное исследование провели учёные из США, которые изучили тонкости возникновения статики на примере шерсти домашних котиков. Возвращаясь к полистиролу, отметим, что сама идея вторичного использования полистирола не менее ценная, чем изобретение способа добывать энергию с его помощью. В Китае установлен крупнейший в мире наземный ветрогенератор — у него 270-м ротор
11.10.2024 [19:28],
Геннадий Детинич
Наземные ветрогенераторы сдержано наращивают размеры и диаметры роторов. Чем длиннее лопасти, тем выше уровень шума и общее воздействие на среду. В море нет недовольных жителей, которым это может навредить. Поэтому морские ветряные турбины без ограничений растут в размерах. Но свои рекорды есть и у наземных ветряных установок. Недавно китайская компания Sany Renewable Energy установила крупнейшую в мире установку с ротором диаметром 270 м. ![]() Источник изображения: Sany Renewable Energy Предыдущий рекорд принадлежал наземной ветряной турбине с ротором диаметром 240 м — установке компании Goldwind мощностью 12 МВт, развёрнутой в 2023 году. Компания Sany Renewable Energy легко побила этот рекорд, установив 15-МВт генератор SI-270150 с лопастями длиной по 131 м каждая. К тому же компания заявляет, что её лопасти частично перерабатываемы, что повышает экологичность, так как многие полимерные компоненты ветряков трудно поддаются переработке. В целом на суше немного мест с постоянными сильными ветрами, что является одной из причин, почему наземные ветряные турбины не стремятся к гигантским размерам. Но ситуация постепенно меняется. Например, компания Sany Renewable Energy в этом году начала массовое производство лопастей длиной 131 м и не планирует останавливаться на этом. Также компания утверждает, что её новые турбины смогут работать 25–30 лет и дольше после небольшой модернизации, что обещает значительно окупить инвестиции в установку новых ветряков. На фоне морских ветряных турбин новая установка Sany выглядит сравнительно скромно, занимая седьмое место в мире по размерам. Крупнейшая действующая установка принадлежит другой китайской компании — Mingyang Smart Energy, которая возвела 20-МВт морскую турбину с ротором диаметром 292 м. В 2025 году компания Mingyang обещает построить ещё более мощную и крупную морскую ветроустановку — 22-МВт с ротором диаметром 310 м. Огнеупорные кирпичи станут популярным и дешёвым хранилищем экологичной энергии
25.09.2024 [14:10],
Геннадий Детинич
Группа учёных Стэнфордского университета опубликовала работу, в которой дала прогноз по темпам роста в США тепловой аккумуляции в огнеупорных кирпичах. К 2050 году специалисты ожидают полный переход теплоёмких производств в США на возобновляемые источники энергии. Кирпичи станут недорогой альтернативой химическим аккумуляторам, накапливая и отдавая около 14 % энергии для теплоёмких производств. ![]() Источник изображений: Rondo Energy Огнеупорные кирпичи изготавливаются из обычных материалов, поэтому стоимость системы хранения тепла из огнеупорного кирпича будет более чем в десять раз дешевле, чем создание эквивалентной системы хранения энергии на обычных электрических аккумуляторах. В зависимости от используемого материала, кирпичи можно будет нагревать прямым способом, если они будут токопроводными, например, с графитом, или внешним нагревательным элементом, если кирпичи не будут пропускать через себя ток. Тепловые аккумуляторы из кирпичей рассматриваются действующими властями США как проекты с высокой степенью повторяемости, что чрезвычайно удобно при массовом создании установок. В частности, Министерство энергетики США в настоящее время обсуждает вопрос субсидии в размере $75 млн компании Diageo North America, если она согласиться разместить на своих мощностях две теплоаккумулирующие установки на кирпичах производства компании Rondo Energy. Последняя поддержана фондом Билла Гейтса, и строит в Тайланде мегазавод по производству теплоаккумулирующих кирпичей, а производству нужен сбыт. Согласно выводам учёных из Стэнфорда, в США возобновляемые источники энергии могут обеспечить теплом до 90 % энергоёмких промышленных процессов. Чтобы удовлетворить этот спрос, системы накопления энергии из кирпичей должны достичь ёмкости 2,6 ТВт·ч с пиковой отдачей 170 ГВт. Это позволит сократить вредные выбросы промышленности США на 9,6 %. В случае обеспечения кирпичами мирового теплоёмкого производства с использованием исключительно возобновляемой энергии, необходимо будет аккумулировать и выдавать в нагрузку 2,1 ТВт тепловой мощности. В обозначенных масштабах системы накопления тепла из огнеупорного кирпича не только заменят 14 % ёмкости аккумуляторов, но и сократят годовое производство водорода для электрогенерации примерно на 31 % и мощности подземных хранилищ тепла примерно на 27 %. Что касается себестоимости хранения тепловой энергии в кирпичах, то аналитики заявляют, что она будет, как минимум, в десять раз дешевле стоимости хранения энергии в аккумуляторах. Так, по некоторым оценкам в 2035 году стоимость хранения энергии в электрических аккумуляторах составит $60 за каждый кВт·ч. Это даёт стоимость энергии на уровне $6 за 1 кВт·ч в случае её хранения в огнеупорных кирпичах. А с учётом быстрого удешевления химических аккумуляторов остаётся вероятность, что суммы будут ещё меньше. |