Опрос
|
реклама
Быстрый переход
Важная для зарождения жизни молекула впервые обнаружена за пределами Земли — её искали более 50 лет
27.06.2023 [10:19],
Геннадий Детинич
Международная группа учёных сообщила о знаковом открытии — в космосе впервые найдена особая молекула углерода, которая важна для зарождения биологической жизни. Молекула обнаружена в протопланетном диске молодой звезды на удалении 1350 световых лет от нас. Но это не единственная странность в этой звёздной системе, а для движения науки вперёд, чем больше лежит на пути загадок, тем лучше! Анализ спектральных данных, собранных обсерваторией «Джеймс Уэбб», обнаружил невиданные ранее линии спектра. В течение четырёх недель занятые в работе учёные смогли идентифицировать сигналы до определения источника — молекулы метил-катиона (CH3+). Это стало первым подтверждённым обнаружением данного соединения за пределами Земли. Ещё в 70-х годах прошлого века появилась теория, что для зарождения биологической жизни на Земле и в космосе важным этапом должно стать образование такого соединения углерода, как метил-катион. Это своего рода катализатор или посредник для запуска множества химических реакций, которые в итоге могут привести к образованию соединений, породивших органическую химию. Чтобы подтвердить эту гипотезу метил-катион должен обнаруживаться в космосе, но радиотелескопы не способны его уловить из-за особенностей строения молекулы, а инфракрасные телескопы с Земли банально не работают. Прорыв произошёл благодаря инфракрасной космической обсерватории «Джеймс Уэбб» с её революционной спектральной и инфракрасной чувствительностью, а также высочайшим на сегодня пространственным разрешением. Молекула метил-катиона обнаружена в протопланетном диске небольшого красного карлика d203-506 в туманности Ориона. Особенность данного объекта в том, что протопланетный диск подвергается сильной бомбардировке ультрафиолетом от близлежащих молодых и более массивных звёзд. Сам красный карлик на такое не способен. Ультрафиолет, как ни странно для нас это звучит, не разрушает метил-катион, а даёт энергию для запуска процесса его синтеза. Такое, вероятно, происходит на ранних стадиях зарождения органической химии и не вредит ей, а даёт толчок к развитию. Обнаружение метил-катиона в протопланетном диске d203-506 оказалось не единственной странностью. Так, в системе вообще не выявлено наличие молекул воды, хотя обычно её следы есть везде. На этот счёт учёные предполагают, что в этом снова виновато сильное ультрафиолетовое излучение на определённом этапе развития протопланетных дисков. В любом случае исследователи получили больше информации для прослеживания ранних этапов развития органической химии и зарождения жизни на Земле и в космосе, что рано или поздно ляжет в основу стройной теории и будет подтверждено новыми наблюдениями. В июле в космос запустят телескоп «Евклид» для поиска следов тёмной материи и энергии
20.06.2023 [13:02],
Геннадий Детинич
Европейское космическое агентство сообщило, что космическая обсерватория «Евклид» (Euclid) проходит этап заправки топливом перед запуском в космос. Заправка осуществляется на предприятии Astrotech во Флориде недалеко от места будущего старта. Обсерватория будет запущена на ракете SpaceX Falcon 9, хотя первоначально она должна была лететь на «Союзе». Целью «Евклида» станет поиск следов тёмной материи и энергии во Вселенной. ![]() Источник изображения: ESA «Евклид» — это европейский проект. Обсерватория будет выведена в точку Лагранжа L2 на удалении 1,5 млн км от Земли, где уже работает обсерватория «Джеймс Уэбб». «Евклид» будет смотреть на небо как в видимом диапазоне, так и в ближнем инфракрасном, поэтому чем дальше он от Солнца, тем лучше будет его работа. Научная программа обсерватории рассчитана на шесть лет. Но её продолжительность будет зависеть, в том числе, от расхода топлива. ![]() Для доставки обсерватории в точку базировании, ежемесячной коррекции положения в пространстве и для последующей утилизации обсерватория будет заправлена 140 кг гидразина. Это топливо будет питать десять двигателей обсерватории, и будет храниться в одном баке. За стабилизацию телескопа в процессе съёмки будут отвечать шесть импульсных газовых двигателей на азоте. На борту «Евклида» четыре бака для азота под высоким давлением, которые вмещают 70 кг газа. Непосредственной работой обсерватории «Евклид» станет съёмка галактик на удалении до 10 млрд световых лет. Обсерватория охватит участок до 30 % неба, на котором отметит миллиарды галактик на всю глубину наблюдения до этапа юности Вселенной и определит их красное смещение. Эти данные позволят с высочайшей точностью вычислить параметры поведения как тёмной материи, так и тёмной энергии. Телескоп не сможет напрямую увидеть эти объекты и явления, но их воздействие на Вселенную он определит с предельно возможной для современной науки точностью. По поведению галактик во времени можно будет узнать, как росло ускорение их разлёта — это путь для уточнения свойств тёмной энергии, а трансформация галактик во времени даст характеристики для вычисления свойств тёмной материи. Тем самым «Евклид» предоставит информацию для лучшего моделирования поведения «тёмной» стороны Вселенной. Дождёмся запуска, до которого остались считанные дни — запланирован он на июль 2023 года, но точной даты пока нет. Обнаружена самая быстрая звезда Млечного пути — она движется на скорости в четыре раз выше галактической
15.06.2023 [14:06],
Геннадий Детинич
Около 20 лет назад в нашей галактике впервые была обнаружена одна из так называемых «убегающих» звёзд, скорость которых превышает галактическое притяжение. Это заставит такие звёзды рано или поздно покинуть галактику. Впоследствии астрономы обнаружили ещё несколько таких звёзд и продолжают находить новые. Среди четырёх новых открытий найдены два рекордсмена и один абсолютный чемпион, который движется на скорости в четыре раз выше галактической. ![]() Источник изображения: Pixabay Сегодня доминирует теория, что убегающие звёзды возникают после термоядерного взрыва белого карлика — это класс сверхновых Ia. Обычные сверхновые возникают после коллапса более массивных звёзд на закате их эволюции, тогда как сверхновые типа Ia появляются после накопления белым карликом критической массы. Эту массу белый карлик ворует у звезды-партнёра по двойной системе. Если это лёгкий водород, то термоядерный взрыв происходит как обычно, но если вторая звезда по системе такой же белый карлик, то от него можно получить в основном более тяжёлый гелий и тогда происходит двойной термоядерный взрыв. Сначала термоядерная реакция возникает в оболочке, а затем происходит вторичная детонация ядра звезды. Это процесс называется Dynamically Driven Double-Degenerate Double-Detonation или D6. «Убегающие» звёзды, как считается, появляются в результате двойной детонации белых карликов. Двойной термоядерный взрыв придаёт второй звезде в паре достаточное ускорение, чтобы та в итоге вышла за пределы галактики. Предполагалось, что в нашей галактике Млечный путь около 1000 таких звёзд. Часть из них могли приблудиться из других галактик, благо их скорости это позволяют. Но точно определить количество летящих в межзвёздном пространстве блуждающих звёзд было сложно. Свежие данные европейского астрометрического спутника «Гайя» (Gaia) позволили обнаружить четыре новых гиперскоростных звезды, две из которых оказались рекордсменами. Это J1235, движущаяся на относительной скорости 1694 км/с, и J0927 — летящая относительно Солнца на огромной скорости 2285 км/с. Новое открытие с учётом ранее обнаруженных звёзд-беглецов в количестве 10 штук, позволило уточнить модель появления таких объектов и ещё прочнее связать их со сверхновыми типа Ia, что, в свою очередь, позволило по-новому рассчитать скорость рождения таких звезд. Скорость их появления оказалась хорошо согласованной со скоростью рождения сверхновых типа Ia. Поскольку сверхновые этого типа хорошо видны в телескопы и, более того, они являются «стандартными маяками» для определения расстояний в галактике, можно рассчитать, сколько всего в нашей галактике носится звёзд с безумной скоростью. Расчёты показывают, что таких звёзд может быть миллионы, просто значительная часть из них — это слабосветящиеся объекты, и они пока не обнаружены. На этом фоне возникают опасения, что одна из таких пока необнаруженных звёзд может внезапно оказаться на пути Солнечной системы с весьма неприятными последствиями для Земли и нас с вами. «Если значительная часть сверхновых типа Ia порождает звезду D6, то галактика [Млечный Путь], вероятно, запустила в межгалактическое пространство более 10 млн таких звезд, — пишут исследователи. — Интересным следствием этого является то, что должно существовать большое количество слабых, близких [к нам] звезд D6, запущенных из галактик по всему объёму пространства включая тот, в который входит Солнечная система». Исследование было представлено в журнале Open Journal of Astrophysics и доступно на сайте arXiv. «Джеймс Уээб» сфотографировал древние галактики в пузырях
13.06.2023 [12:45],
Геннадий Детинич
После Большого взрыва газ в родившейся Вселенной был настолько горячий и плотный, что поглощал едва ли не все электромагнитные излучения. Тёмные века закончились с появлением первых звёзд, свет которых запустил повторную ионизацию газа в пространстве, что в итоге сделало Вселенную прозрачной для всех диапазонов наблюдения. Но это всё в теории. Как обстояли дела на практике, учёные могли только догадываться. Но «Джеймс Уэбб» изменил правила игры. Высокий уровень чувствительности в инфракрасном диапазоне помог космической обсерватории «Джеймс Уэбб» заглянуть так далеко в раннюю Вселенную, как никогда раньше. Выбранное астрономами время наблюдения лежало на рубеже 900 млн лет после Большого взрыва. Это фактически на границе завершения эпохи реионизации, что позволяло увидеть картину распределения прозрачности газа в большом масштабе. Для нас как для наблюдателей в это время вокруг галактик образовывалось что-то в виде огромных пузырей прозрачного газа. «Пузыри» были уже достаточно большими, чтобы увидеть их границы, и они ещё не начали сливаться друг с другом у соседних галактик. Это произойдёт намного позже — через сотни миллионов лет, и тогда Вселенная станет практически прозрачная для наблюдения во всех направлениях. До наблюдений «Уэбба» эти пузыри эпохи реионизации никто воочию не наблюдал, но чтобы их обнаружить потребовались наблюдения целого ряда других телескопов. Более того, просто так «пузыри» были бы невидны. Потребовалось в некотором роде везение. Там далеко в ранней Вселенной ещё до появления искомых галактик обнаружился квазар. Кстати, «Уэбб» подтвердил, что это самый яркий квазар из обнаруженных в ранней Вселенной — масса чёрной дыры в центре этой активной галактики в 10 млрд раз превышает массу Солнца. Этот квазар как фонарик подсветил все галактики от него до нас, высветив прозрачные пузыри и снизив интенсивность свечения в непрозрачных областях. ![]() Пример эволюции (реионизации) газа под воздействием активной «жизнедеятельности» галактик в ранней Вселенной Картина получилась настолько интересной, что проводившие наблюдения астрономы поспешили опубликовать данные до полного разбора всей информации. В направлении квазара «Уэбб» сделал шесть снимков глубокого поля и сразу выхватил 117 галактик, разгоняющих «вселенский туман». Представленные сегодня данные опираются на анализ только одного снимка, а пять ещё в обработке. Но даже первый результат не позволил учёным сдержать себя, ведь такого ещё никто не видел. Самый мощный в истории гамма-всплеск проявил необычную физику
10.06.2023 [12:23],
Геннадий Детинич
Зафиксированный в октябре 2022 года гамма-всплеск GRB 221009A был в 1000 раз ярче, чем в среднем регистрируется при событиях такого рода. За это он получил собственное имя — BOAT (brightest of all time). Оказалось, что этот гамма-всплеск был нетипичным также в других проявлениях. Его джет по своей структуре отличался от типичной струи вещества. Это означает, что за явлением BOAT лежит другая и неизвестная нам физика процесса. ![]() Джет в представлении художника. Источник изображения: NASA Goddard Space Flight Center Анализ «ярчайшего за всё время» гамма-всплеска затруднён тем, что учёные не были готовы к его регистрации. Сигнал из космоса в буквальном смысле ослепил все гамма-детекторы в космосе и на Земле. Этого чудом удалось избежать единственному гамма-телескопу — китайской обсерватории GECAM-C. По чистой случайности часть её детекторов была отключена и этим была сильно понижена чувствительность оборудования. Тем самым китайцы помогли установить верхнюю границу события, которая, по их информации, была в 50 раз выше самого мощного ранее зарегистрированного гамма-всплеска. Реконструкция NASA по данным нескольких гамма- и рентгеновских обсерваторий даёт более высокую оценку событию — в 70 раз мощнее предыдущего рекорда. Но суть явления это не меняет. И китайцы, и NASA сходятся в оценке порядка события. Но это, как оказалось, ещё не всё. Дальнейший анализ данных, в частности, с рентгеновских датчиков, выявил другие необычные особенности длинного гамма-всплеска GRB 221009A. Так, разбор информации от космической рентгеновской обсерватории NASA NuSTAR позволил выявить значительную неоднородность в структуре джета — энергичной струи вещества, рождающего гамма-всплеск. Джет образуется в момент коллапса звезды в чёрную дыру. До сих пор джеты от таких явлений напоминали пулю — однородный по структуре энергии выброс. Рентгеновское наблюдение за ударными волнами после джета GRB 221009A показало, что выброс вещества в данном случае был энергетически неоднородным по всей своей протяжённости, что было впервые зарегистрировано для гамма-всплесков. Учёные не исключают, что всему виной могла быть звезда, родившая гамма-всплеск в момент коллапса. Но мы уже не можем понять, какой она была, и почему джет во время её коллапса отличался от тысяч таких же во всех других случаях. Расшифровка поведения джета GRB 221009A может дать ответ на этот вопрос, подобно изучению следов на снегу. Возможно, в этом помогут данные других рентгеновских телескопов, хотя они не видят сам гамма-всплеск, но могут регистрировать его последствия по распространению ударных волн от джета. |