Сегодня 08 октября 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → вычисления
Быстрый переход

Разработчиков квантовых компьютеров заливают деньгами — их акции взлетели на 20 % за неделю

На этой неделе акции ряда наиболее популярных компаний в сфере разработки квантовых компьютеров выросли в цене на десятки процентов, что удвоило и даже утроило стоимость ценных бумаг некоторых из них по сравнению с ценой на начало года. Подобный интерес инвесторов объясняется активностью в области квантовых вычислений и вовлечение в этот процесс лидеров отрасли.

 Источник изображения: CNBC

Источник изображения: CNBC

Хочется верить, что накачка деньгами квантовых компаний — это не очередной пузырь для инвесторов. Одни, такие как глава квантового подразделения Google — Джулиан Келли (Julian Kelly), обещают создание имеющих практическую ценность квантовых компьютеров к концу десятилетия. Другие, в число которых входит множество независимых экспертов, ожидают медленного продвижения к этой заветной цели в течение десяти и более лет.

В чём можно не сомневаться — чем дальше, тем больше будет новостей в области развития квантовых вычислений. Эти новости подогревают рынок, а представители отрасли, например, как специалисты компании Nvidia, будут ещё сильнее возбуждать интерес обещаниями скорого прорыва в развитии технологий. Более того, они уже сообщают о прорыве, обещая ускорение квантовых операций уже сейчас с помощью библиотеки CUDA-X.

Герои последних новостей — компании Rigetti Computing и D-Wave. Их акции за последние несколько дней выросли более чем на 20 %. С начала года ценные бумаги Rigetti и D-Wave Quantum подорожали более чем вдвое и втрое соответственно. Акции Arqit Quantum на этой неделе взлетели более чем на 32 %.

Компания Rigetti сообщила, что получила заказы на покупку двух своих 9-кубитных квантовых вычислительных систем Novera на общую сумму $5,7 млн. Имя клиента источники не раскрывают. Кроме того, фармацевтическая компания Novo Nordisk и правительство Дании инвестировали €300 млн в венчурный фонд развития квантовых технологий. Ранее в этом году о своих новых квантовых чипах рассказали Microsoft и Amazon. Много интересных анонсов сделала и Nvidia — преимущественно о создании гибридных платформ и интерфейсов.

Характерным для этого года событием также стала покупка компанией IonQ из США британского стартапа Oxford Ionics за $1,1 млрд. Около трети миллиарда долларов привлекла финская компания IQM — и таких примеров становится всё больше. Обещанные Джулианом Келли пять лет, отпущенные на достижение прорыва в области квантовых вычислений, не оставляют инвесторам времени на раздумья и подталкивают их вкладывать средства в новую сферу, не вдаваясь в детали критики. Такое поведение тоже имеет право на существование — и нередко приводит к интересным результатам.

В Гарварде создали систему для «вечной» работы квантового компьютера

Учёные из Гарвардского университета (Harvard University) сообщили о прорыве в создании развитых квантовых компьютеров. За последние пять лет они разработали платформу для поддержки непрерывной работы квантового вычислителя. Платформа сама без участия человека поддерживает кубиты в рабочем состоянии, пополняя их атомами взамен случайно покинувших кубиты частиц, что обеспечивает непрерывную работу системы без досадных сегодня перезагрузок.

 Источник изображения: Harvard University

Источник изображения: Harvard University

О прорыве сообщила группа физиков Гарварда под руководством бывшего выпускника МФТИ профессора Михаила Лукина. Они создали первую в мире квантовую вычислительную машину, способную работать непрерывно без перезапусков. О достижении рассказано в последнем выпуске журнала Nature. Созданная в лаборатории система позволила квантовой платформе работать более двух часов, а теоретически — бесконечно.

В отличие от классических компьютеров, использующих биты с состояниями 0 или 1, квантовые машины оперируют кубитами, в том числе на основе субатомных частиц, которые могут существовать в нескольких состояниях одновременно — в суперпозиции. Это позволяет решать сложные задачи за минуты вместо тысячелетий. Сделанное открытие, достигнутое в партнёрстве с учёными из Массачусетского технологического института (MIT), обещает революцию в медицине, финансах и криптографии, где требуются интенсивные вычисления для моделирования молекул и оптимизации.

Основной проблемой квантовых компьютеров на протяжении многих лет оставалась потеря атомов — процесс, при котором субатомные частицы, формирующие кубиты, покидают систему, что ведёт к утрате информации и сбоям. Ранее даже самые передовые устройства работали всего несколько миллисекунд, максимум — около 13 секунд, что делало невозможными длительные расчёты. Это касается не всех квантовых вычислителей, но особенно сильно влияет на кубиты из нейтральных атомов, которыми как раз и занимается в Гарварде группа Лукина.

Проект Лукина, запущенный пять лет назад, был направлен именно на преодоление этого барьера. Новая машина с 3000 кубитами демонстрирует стабильность, вводя до 300 000 атомов в секунду для компенсации потерь.

Ключевым решением стали два инновационных инструмента: «оптическая решётка-конвейер» и «оптические пинцеты», которые перемещают и пополняют атомы без нарушения квантовой информации. По словам учёных, «теперь ничто фундаментально не ограничивает продолжительность работы наших атомных квантовых компьютеров — мы можем заменять потерянные атомы свежими». Эта технология обеспечивает непрерывность, сохраняя целостность системы. Исследователи подчёркивают, что план дальнейшего развития ясен, и машина уже демонстрирует потенциал для масштабирования.

«Это просто область с огромным потенциалом для инноваций, — поясняют исследователи. — Мы устраняем разрыв между тем, что может сделать аппаратное обеспечение, и тем, что обещают алгоритмы. Эта область созрела для открытий».

Президент OpenAI: человечеству потребуется 10 млрд ИИ-ускорителей — по одному на каждого жителя Земли

Сейчас стартап OpenAI использует любую возможность для привлечения не только финансовых ресурсов, но и заключения контрактов с поставщиками тех же ускорителей вычислений, коим является Nvidia. Президент компании Грег Брокман (Greg Brockman) убеждён, что человечеству потребуется до 10 млрд ускорителей вычислений, и каждого жителя планеты буквально будет обслуживать отдельный ИИ-чип.

 Источник изображения: Nvidia

Источник изображения: Nvidia

Своими соображениями президент OpenAI поделился в интервью CNBC, в котором также приняли участие генеральный директор компании Сэм Альтман (Sam Altman), а также глава и основатель Nvidia Дженсен Хуанг (Jensen Huang). По мнению Альтмана, масштабы сотрудничества с Nvidia по своей значимости для человечества окажутся важнее программы доставки до Луны американских астронавтов, которую NASA реализовало в прошлом веке. Альтман видит будущее человечества с неразрывным присутствием «супермозга», созданного искусственным интеллектом и активно влияющего на повседневную жизнь людей.

Брокман же считает, что ИИ будет действовать в качестве «агента, который работает на опережение, пока вы спите». Каждый работающий житель Земли, по его мнению, будет использовать ресурсы как минимум одного ускорителя вычислений при выполнении своих должностных обязанностей. «Вам действительно захочется, чтобы у каждого человека был свой собственный выделенный GPU», — охарактеризовал свой прогноз Брокман.

Сейчас подобное предсказание может казаться нереалистичным, но достаточно вспомнить, что в начале девяностых годов прошлого века один из основателей Microosft Билл Гейтс (Bill Gates) указывал на неизбежность появления компьютера не только в каждом домохозяйстве, но и на каждом рабочем столе. В какой-то мере его предсказание сбылось, пусть даже если вместо компьютеров в их классической форме речь идёт о смартфонах, которые помещаются в карман.

Брокман считает, что сейчас отрасль ИИ на три порядка отстаёт от потенциальных потребностей в вычислительных мощностях, и для создания постоянно функционирующей глобальной системы искусственного интеллекта человечеству может потребоваться до 10 млрд ускорителей вычислений. По сути, это даже больше, чем проживает людей на Земле (8,2 млрд человек). Мир, по мнению Брокмана, движется к состоянию, при котором экономику подпитывают вычисления. Вычислительных мощностей сейчас не хватает, как он считает, а наличие достаточно мощных центров обработки данных в будущем станет определять состоятельность экономики целых стран. В какой-то мере они заменят валюту в качестве источника ресурсов для развития экономики.

Клин клином: российские учёные заглушили шумы квантовых вычислений контролируемым шумом

В Национальном исследовательском технологическом университете «МИСиС» (НИТУ МИСИС) разработан перспективный протокол для квантовых вычислений, который превращает неизбежный шум в инструмент оптимизации. Учёные предложили введение контролируемого шума в квантовые схемы, что позволяет повышать эффективность поиска оптимальных решений. Технология обещает значительно увеличить точность и скорость квантовых алгоритмов, делая их применимыми для реальных задач.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

Одной из ключевых проблем квантового машинного обучения является сложность тренировки и оптимизации моделей. Из-за огромного пространства возможных состояний алгоритмы часто «застревают» в локальных минимумах, не достигая глобально оптимальных решений. Новый протокол решает эту задачу путём регулирования оптимизационных ландшафтов с помощью специальных каналов шума, которые вводятся целенаправленно. В отличие от случайных помех, этот контролируемый шум помогает преодолевать барьеры, связанные с мелкомасштабными флуктуациями функции потерь, что делает процесс обучения более устойчивым.

Традиционно шум в квантовых системах — это главный источник ошибок, вызванных взаимодействием с окружающей средой, такими как температурные колебания или электромагнитные поля. Однако учёные МИСИС продемонстрировали, что введение определённого количества шума в выбранные элементы квантовой схемы может сглаживать эти флуктуации и улучшать качество решений. Протокол протестирован на простых оптимизационных задачах и в квантовой свёрточной нейросети: в обоих случаях вероятность нахождения правильного решения выросла в несколько раз по сравнению с классическими методами, о чём исследователи рассказали в журнале Physical Review A (Q1).

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

«Когда мы тренируем модель, будь то классическая нейросеть или квантовый алгоритм, у неё есть функция потерь. Это мера того, насколько её подход к решению задачи неверный: чем выше потери, тем хуже. Параметров модели может быть много, например, вращения, фазы, вес и т. п. Каждая комбинация этих параметров даёт свой результат и функция потерь присваивает этому результату число — “высоту”. Представьте: вы стоите на горе и пытаетесь спуститься к самой низкой точке. Высота указывает, как далеко вы от цели. На пути встречается множество мелких ям и впадин и в них можно легко застрять, так и не добравшись до цели. Обычно так и происходит — мы блуждаем и попадаем в локальные ловушки. Наш метод похож на то, как если бы ямы засыпали песком. Он заполняет мелкие впадины, выравнивая поверхность, и путь становится проще: мы больше не задерживаемся и можем двигаться дальше. Таким образом, добавление шума — регуляризация — сглаживает ландшафт и значительно упрощает поиск оптимального решения», — отметил к.ф.-м.н. Никита Немков, старший научный сотрудник лаборатории квантовых информационных технологий НИТУ МИСИС.

Предложенный протокол легко интегрируется с существующими методами, такими как квантовый оптимизатор естественного градиента, и не требует значительных дополнительных ресурсов. Он применим как в симуляторах на классических компьютерах, так и на реальных квантовых устройствах, открывая путь к более надёжным системам квантового ИИ.

Учёные укротили свет в алмазах для прорыва в квантовых технологиях

Учёные добились значительного прорыва в разработке методики улавливания фотонов от дефектов в алмазах. Представленный метод регистрирует подавляющее большинство фотонов, испускаемых алмазными NV-центрами, причём при комнатной температуре, что открывает путь к новому поколению квантовых датчиков и средствам абсолютно безопасной квантовой связи.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

Разработку представили учёные из Еврейского университета в Иерусалиме (Hebrew University of Jerusalem) в сотрудничестве с Университетом Гумбольдта (Humboldt University) в Берлине. Они работали с так называемыми NV-центрами (центрами «азот–вакансия»). Это дефекты в кристаллической решётке алмаза, которые могут играть роль кубитов или квантовых датчиков. Эти центры легко приводятся в состояние суперпозиции и демонстрируют эффект запутанности под воздействием либо света, либо микроволнового излучения. Тем самым NV-центры могут использоваться как для квантовых вычислений, так и для сверхчувствительных датчиков.

При воздействии на такие дефекты в алмазах обычно значительная часть света рассеивалась, что снижало эффективность систем. Новый подход, описанный в журнале APL Quantum, использует гибридные наноантенны в форме мишени для тира (bullseye), состоящие из слоёв металла и диэлектриков, в которые встраиваются наноалмазы с NV-центрами. Это позволяет направлять до 80 % фотонов в нужном направлении при комнатной температуре, что в разы превосходит предыдущие методы.

Техническая суть инновации заключается в интеграции NV-центров в чипы с одновременным усилением и фокусировкой излучения. Наноантенны действуют как оптические линзы на наноуровне, минимизируя потери света и повышая яркость сигнала. Исследователи протестировали лабораторную систему, подтвердив её работоспособность в простых чипах. Такой дизайн не требует криогенного охлаждения, что упрощает производство и интеграцию с существующими электронными системами, делая квантовые технологии более доступными для массового применения.

Потенциальные области применения новой технологии обширны. В квантовой связи она позволит создавать безопасные каналы передачи данных с использованием запутанных фотонов. Сверхчувствительные сенсоры на основе NV-центров найдут применение в медицине для визуализации на клеточном уровне, в навигации для точного позиционирования без GPS и в материаловедении для анализа свойств веществ. Кроме того, это ускорит развитие квантовых компьютеров, делая их компактнее (буквально на чипах) и быстрее, с возможностью масштабирования.

Профессор Кармиэль Рапапорт (Carmiel Rapaport) из Еврейского университета подчеркнул: «Это приближает нас к практическим квантовым устройствам». Доктор Йонатан Любецки (Yonatan Lubotzky) добавил, что его впечатляет простота ориентированного на чипы дизайна и работа при комнатной температуре, что облегчает интеграцию в реальные системы. Это открытие не только продвигает фундаментальную науку, но и открывает коммерческие перспективы, потенциально привнося революцию в отрасли, зависящие от квантовых разработок.

Квантовые компьютеры ещё не готовы, но в ПО для них уже инвестируют миллионы

В течение десятилетий усилия разработчиков в сфере квантовых вычислений в основном были направлены на создание аппаратного обеспечения. После того как в этом наметился определённый прогресс, внимание отрасли переключилось на программное обеспечение, которое требуется для функционирования таких систем, пишет ресурс The Financial Times.

 Источник изображения: Mohammad Rahmani/unsplash.com

Источник изображения: Mohammad Rahmani/unsplash.com

Британская компания Phasecraft, занимающаяся квантовыми алгоритмами, сообщила, что привлекла $34 млн от инвесторов, в числе которых инвестиционная компания, связанная с датской фармацевтической компанией Novo Nordisk. Хотя эта сумма и невелика, инвестиции свидетельствуют о том, что специализированные компании, разрабатывающие квантовое программное обеспечение, начали привлекать всё больше внимания инвесторов, отметил The Financial Times.

«В какой-то момент людям интересны только приложения, — говорит Боб Сьютор (Bob Sutor), бывший ведущий эксперт IBM по квантовым технологиям. — В истории вычислительной техники программное обеспечение всегда становится более доминирующим и приоритетным».

Как отметил ресурс, растущий интерес к алгоритмам отражает стремление компаний использовать квантовые компьютеры для более широкого круга задач, а также повысить их эффективность.

По словам Стива Брирли (Steve Brierley), гендиректора британской компании Riverlane в сфере квантовых вычислений, усовершенствование квантовых алгоритмов за последние десять лет привело к «экспоненциальному снижению» объёма вычислительной мощности, необходимой для их запуска.

Квантовое оборудование пока не достигло уровня для их использования, но, как заявил Питер Барретт (Peter Barrett), партнёр венчурной компании Playground Global, «мы находимся на пороге этого».

В связи с успехами в разработке ПО, появились заявления о том, что отрасль близка к достижению квантового преимущества — точки, когда квантовые машины смогут выполнять полезные задачи, которые практически невозможно выполнить на традиционных, или «классических», компьютерах.

Эшли Монтанаро (Ashley Montanaro), гендиректор Phasecraft, утверждает, что разработанные его компанией алгоритмы смогут выполнять «научно важные» вычисления «к весне следующего года», а некоторые коммерчески полезные приложения могут быть разработаны «в течение ближайших нескольких лет». Вместе с тем он предупредил, что краткосрочные результаты будут относительно незначительными, отметив, что отрасль уже пережила «своего рода пик квантовой спекуляции».

В США разработали квантовую память на звуковых волнах — она в 30 раз превосходит электронную

Больное место квантовых платформ — это запоминание квантовых состояний. Без памяти невозможно передавать данные на большие расстояния, а также выполнять сложные расчёты. А всё потому, что квантовые состояния — это математические функции с множеством переменных. Поэтому запоминать приходится не значения, а уравнения в динамике. Но и к этому можно найти подход.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

По большому счёту, для математики не имеет значения, на какую основу «натягивать» уравнения. Классические сверхпроводящие кубиты оперируют квантовыми состояниями электронов и, следовательно, электромагнитными полями и соответствующими колебаниями (частотами). Но там настолько высокие частоты, что они удерживают состояния лишь очень короткий промежуток времени. А если взять звуковые колебания? Их частоты ведь намного ниже. Это означает, что квантовые состояния смогут продержаться дольше, если их представить в звуковых волнах. Чем не память — пусть время удержания квантовой информации будет куда короче, чем у той же DRAM. Но для квантовых вычислений или квантового интернета это уже колоссальное достижение.

Команда Калифорнийского технологического института (Caltech) разработала гибридный подход, использующий звук для хранения квантовой информации. В проведённом эксперименте сверхпроводящий кубит был интегрирован с механическим генератором — миниатюрным устройством, напоминающим камертон, которое преобразует электрические сигналы в акустические волны с частотой в гигагерцовом диапазоне. Выяснилось, что эти волны, или фононы, позволяют сохранять квантовые состояния в 30 раз дольше, чем лучшие сверхпроводящие кубиты.

 Квантовое запоминающее устрйоство под микроскопом. Источник изображения: Caltech

Квантовое запоминающее устройство под микроскопом. Источник изображения: Caltech

Механический генератор состоит из гибких пластин, которые вибрируют под воздействием звуковых волн и при этом взаимодействуют с электрическими сигналами, несущими квантовую информацию от расположенных рядом кубитов. Это позволяет записывать квантовые состояния в устройство и извлекать их обратно, что аналогично работе квантовой памяти. Преимущество подхода заключается в относительно медленном распространении акустических волн по сравнению с электромагнитными, что делает устройства компактными и минимизирует потери энергии. Кроме того, механические колебания не распространяются в свободном пространстве, что снижает нежелательное взаимодействие между соседними устройствами и увеличивает время хранения информации.

Несмотря на успех, команда отмечает, что для полноценного применения разработки в квантовых вычислениях необходимо увеличить скорость взаимодействия между кубитами и генератором в 3–10 раз. Исследователи уже работают над улучшением системы, чтобы повысить её эффективность. Этот подход открывает перспективы для создания масштабируемых квантовых запоминающих устройств с интеграцией множества механических генераторов на одном чипе, что может стать важным шагом в развитии квантовых технологий.

ИИ помог китайцам создать крупнейшие массивы атомов для квантовых компьютеров будущего

Китайские ученые сообщили о значительном прорыве в области квантовых вычислений, создав крупнейшие в мире массивы из 2024 атомов рубидия. О работе, опубликованной в журнале Physical Review Letters, рецензенты уже заявили, что это важный шаг в развитии квантовой физики, связанной с атомами. Новая платформа использует искусственный интеллект и оптические пинцеты, благодаря чему способна формировать массивы атомов в 10 раз больше предыдущих.

 Нарисованная с помощью атомов рубидия иллюстрсция с мысленным экспериментом с кошкой Шрёдингера. Источник изображения: University of Science and Technology of China

Кошка Шрёдингера, нарисованная с помощью 550 атомов рубидия. Источник изображения: University of Science and Technology of China

Каждый атом в таком массиве играет роль кубита — базовой единицы квантовых вычислений. Исследование стало продолжением работы группы физиков из Университета науки и технологий Китая (University of Science and Technology of China).

В отличие от других подходов к созданию квантовых компьютеров, таких как использование сверхпроводящих цепей или ионов, нейтральные ультрахолодные атомы при масштабировании обладают большей стабильностью и управляемостью. Однако до сих пор системы на основе атомов были ограничены массивами из нескольких сотен элементов из-за медленного процесса их позиционирования, когда каждый атом индивидуально перемещается оптическим пинцетом в виде лазера.

Университетская команда совместно с учёными Шанхайской лаборатории искусственного интеллекта разработала систему на базе ИИ, которая с помощью высокоскоростного пространственного модулятора света одновременно перемещает атомы в нужное место. Это позволило создать идеальный массив из 2024 атомов всего за 60 мс, причём время перестановки не зависело от размера массива, что открывает путь к дальнейшему масштабированию числа кубитов.

В условиях лаборатории система продемонстрировала впечатляющую точность: операции с одним кубитом выполнялись с точностью 99,97 %, а с двумя кубитами — 99,5 %. Точность определения состояния кубитов достигла 99,92 %, что сопоставимо с результатами, полученными в ведущих мировых институтах. Однако текущая версия системы имеет ограничения: в 3D-моделях атомы можно перемещать только в пределах одного слоя, а размер массива ограничен мощностью и точностью используемых лазеров. Тем самым полученные результаты подчёркивают потенциал технологии, но требуют дальнейших улучшений для создания масштабируемых квантовых компьютеров.

Для дальнейшего прогресса учёные планируют разработать более мощные лазеры и высокоточные модуляторы света. Способность идеально упорядочивать десятки тысяч атомов в предсказуемые матрицы может стать основой для создания надёжных квантовых компьютеров в будущем. Этот прорыв подтверждает лидерство Китая в области квантовых технологий и открывает новые горизонты для исследований, направленных на преодоление текущих ограничений и достижение практической реализации квантовых вычислений.

Nvidia представила крошечные видеокарты RTX Pro 4000 SFF и RTX Pro 2000 для профессионалов

Nvidia расширила ассортимент профессиональных видеокарт поколения Blackwell, представив модели RTX Pro 4000 SFF и RTX Pro 2000 на конференции SIGGRAPH 2025. Эти видеокарты дополняют линейку решений Nvidia для рабочих станций. Помимо повышенной производительности по сравнению с моделями предыдущего поколения, новинки также оптимизированы для ускорения задач ИИ, что делает их актуальными для различных рабочих процессов в самых разных отраслях.

 Источник изображений: Nvidia

Источник изображений: Nvidia

Модель RTX Pro 4000 Blackwell SFF — это уменьшенная версия уже доступной видеокарты RTX 4000 Blackwell. Компания утверждает, что новинка обеспечивает более чем двукратный прирост производительности в задачах ИИ по сравнению с RTX A4000 SFF предыдущего поколения, предлагая при этом улучшенные возможности трассировки лучей и на 50 % увеличенную пропускную способность. При этом уровень энергопотребления остался на прежнем уровне — 70 Вт.

Благодаря 24 Гбайт памяти ECC GDDR7 и заявленной производительности 770 TOPS в задачах ИИ, эта видеокарта может стать отличным выбором для профессионалов, которым требуется высокая вычислительная мощность в составе компактной рабочей станции.

Новая модель RTX Pro 2000 оснащена 16 Гбайт памяти ECC GDDR7 и предлагает производительность до 545 TOPS в задачах ИИ при том же уровне энергопотребления — 70 Вт. По заявлению Nvidia, карта разработана для массового дизайна и рабочих процессов с применением искусственного интеллекта. Новинка примерно в 1,5 раза быстрее модели Nvidia RTX A2000 в задачах 3D-моделирования, автоматизированного проектирования и рендеринга. Кроме того, она обеспечивает более высокую эффективность при генерации изображений и текста с помощью ИИ.

Точные характеристики и стоимость моделей RTX Pro 4000 SFF и RTX Pro 2000 в рамках презентации Nvidia не раскрыла. Ожидается, что видеокарты поступят в продажу в конце текущего года. RTX Pro 2000 будет доступна у компаний PNY и TD Synnex как отдельное решение, а также появится у системных интеграторов Boxx, Dell, HP и Lenovo в составе готовых рабочих станций. RTX Pro 4000 SFF будет предлагаться в системах от партнёров Nvidia, включая Dell, HP и Lenovo.

В России утвердили пятилетний план по квантовым компьютерам

Сообщается, что президиум правительственной комиссии по цифровому развитию, использованию информационных технологий для улучшения качества жизни и условий ведения предпринимательской деятельности утвердил дорожную карту развития высокотехнологичной области «Квантовые вычисления» на период до 2030 года, что подтвердили в компании «Росатом квантовые технологии».

 Ионная ловушка — сердце 50-кубитного квантового процессора. Источник изображения: ФИАН

Ионная ловушка — сердце 50-кубитного квантового процессора. Источник изображения: ФИАН

«Соответствующий протокол подписан председателем комиссии, заместителем председателя правительства РФ Дмитрием Григоренко на прошедшей неделе. Согласно документу, госкорпорация "Росатом" определена организацией, ответственной за реализацию дорожной карты», — говорится в сообщении.

Поскольку за предыдущие этапы развития квантовых вычислений в России также отвечал «Росатом», новые планы стали органичным развитием достигнутых результатов. В частности, согласно планам 2020–2024 годов, созданы четыре действующих российских квантовых вычислителя: 50-кубитный на ионах, 50-кубитный на атомах, 35-кубитный на фотонах и 16-кубитный на сверхпроводниках.

До 2030 года специалисты «Росатома» вместе с учёными должны создать квантовый вычислитель объёмом 300 кубитов, а также разработать и реализовать 54 новых квантовых алгоритма в дополнение к 34 квантовым алгоритмам, созданным на первом этапе квантового проекта. Разработанное программное обеспечение будет применяться для квантовой оптимизации, квантовой химии, квантового моделирования и обработки больших данных. Для доступа к квантовым вычислителям широкого круга исследователей будет организован облачный сервис с задачей привлечь не менее 10 тыс. пользователей.

Ознакомление с вычислительными квантовыми технологиями как можно большего круга исследователей должно вылиться в разработку алгоритмов, имеющих прикладную ценность. В частности, план предусматривает проверку к 2030 году не менее 100 научных гипотез по использованию квантовых вычислений в народном хозяйстве с формулированием конкретных требований к техническому решению.

Важнейшей задачей новой программы станет подготовка кадров для этой новой области прикладной науки. Планируется, что к 2030 году число специалистов, закончивших бакалавриат, специалитет или базовое высшее образование в области квантовых технологий, достигнет 8,3 тыс., число специалистов, закончивших магистратуру или получивших специализированное высшее образование в области квантовых технологий — 2,6 тыс. человек, а число специалистов, закончивших аспирантуру в области квантовых технологий — 800.

Финансирование дорожной карты «Квантовые вычисления» будет осуществляться за счёт бюджетных и внебюджетных источников, включая внебюджетные средства «Росатома», чей совокупный объём превысит 29 млрд рублей.

Квантовые вычисления позволяют в ряде задач производить расчёты экспоненциально быстрее классических компьютеров. Это достигается за счёт явления суперпозиции, когда вычислительные квантовые биты одновременно имеют множество состояний в пространстве от 0 до 1, а не всего два — 0 и 1, как в обычных компьютерах, что делает возможным решение невообразимых сегодня задач.

AMD по примеру Nvidia возобновит поставки своих ИИ-ускорителей Instinct в Китай

Представитель AMD в разговоре с порталом Tom’s Hardware подтвердил, что компания возобновит поставки ИИ-ускорителей MI308 в Китай. Это специализированная модификация ускорителей серии Instinct MI300, разработанная специально для соответствия экспортным правилам, установленным Министерством торговли США.

 Источник изображения: AMD

Источник изображения: AMD

Ранее сегодня глава Nvidia Дженсен Хуанг (Jensen Huang) публично подтвердил, что компания немедленно приступает к подготовке возобновления продаж своих ИИ-ускорителей Hopper H20 в Китае. Nvidia рассчитывает получить разрешение на продажу этих специализированных GPU, изготовленных по индивидуальному заказу, после того как в апреле они были запрещены к продаже в Китае обновлёнными экспортными правилами США.

AMD и Nvidia ясно дали понять, что китайский рынок критически важен для их бизнеса, поскольку они разрабатывают специализированные GPU для центров обработки данных с учётом ограничений правительства США. Однако проектирование и выпуск таких вариантов графических чипов — процесс небыстрый: их разработка, производство, сборка и настройка занимают месяцы. После завершения разработки и установки необходимой прошивки устройства фактически становятся программно заблокированными в соответствии с экспортными ограничениями, что часто затрудняет их продажу за пределами рынков, для которых эти ограничения были введены.

«Мы планируем возобновить поставки, как только получим одобрение по лицензии. Министерство торговли недавно сообщило нам, что заявки на получение лицензий на экспорт продукции MI308 в Китай будут переданы на рассмотрение», — заявил представитель AMD в разговоре с Tom’s Hardware.

Обе компании оказались под давлением в связи с масштабным экспортным контролем на поставки технологий, связанных с ИИ, введённым ещё предыдущей администрацией президента США Джо Байдена и продолженным нынешней администрацией президента Дональда Трампа. Последняя, хоть и сузила ограничения, всё же включила в список запрещённых к поставке чипов такие модели, как H20 и MI308.

Согласно оценке AMD, экспортные ограничения могут обойтись ей примерно в $800 млн в виде нераспроданных запасов, невыполненных обязательств по заказам и оставшихся резервов. Хотя это значительно меньше, чем масштабное списание Nvidia в размере $5,5 млрд, потери всё же заметно ударят по чистой прибыли AMD. После сегодняшнего объявления акции AMD подскочили на 5,7 % вслед за аналогичным ростом акций Nvidia.

Один сбитый бит — и всё пропало: атака GPUHammer на ускорители Nvidia ломает ИИ с минимальными усилиями

Команда исследователей из Университета Торонто обнаружила новую атаку под названием GPUHammer, которая может инвертировать биты в памяти графических процессоров Nvidia, незаметно повреждая модели ИИ и нанося серьёзный ущерб, не затрагивая при этом сам код или входные данные. К счастью, Nvidia уже опередила потенциальных злоумышленников, которые могли бы воспользоваться этой уязвимостью, и выпустила рекомендации по снижению риска, связанного с этой проблемой.

 Источник изображения: Nvidia

Источник изображения: Nvidia

Исследователи продемонстрировали, как GPUHammer может снизить точность модели ИИ с 80 % до менее 1 % — всего лишь инвертируя один бит в памяти. Они протестировали уязвимость на реальной профессиональной видеокарте Nvidia RTX A6000, используя технику многократного инжектирования ячеек памяти до тех пор, пока одна из соседних ячеек не инвертируется, что нарушает целостность хранящихся в ней данных.

GPUHammer — это версия известной аппаратной уязвимости Rowhammer, ориентированная на графические процессоры. Это явление уже давно существует в мире процессоров и оперативной памяти. Современные микросхемы памяти настолько плотно упакованы, что многократное чтение или запись одной строки может вызвать электрические помехи, которые переворачивают (инвертируют) биты в соседних строках. Этим перевернутым битом может быть что угодно — число, команда или часть веса нейронной сети.

До сих пор эта уязвимость в основном касалась системной памяти DDR4, но GPUHammer продемонстрировала свою эффективность с видеопамятью GDDR6, которая используется во многих современных видеокартах Nvidia. Это серьёзная причина для беспокойства, по крайней мере, в определённых ситуациях. Исследователи показали, что даже при наличии некоторых мер защиты они могут вызывать множественные перевороты битов в нескольких банках памяти. В одном случае это полностью сломало обученную модель ИИ, сделав её практически бесполезной. Примечательно, что для этого даже не требуется доступ к данным. Злоумышленнику достаточно просто использовать тот же графический процессор в облачной среде или на сервере, и он потенциально может вмешиваться в вашу рабочую нагрузку по своему усмотрению.

Исследователи протестировали метод атаки на карте RTX A6000, но риску подвержен широкий спектр графических процессоров Ampere, Ada, Hopper и Turing, особенно тех, что используются в рабочих станциях и серверах. Nvidia опубликовала полный список уязвимых моделей ускорителей и рекомендует использовать функцию коррекции ошибок ECC для решения большинства из них. При этом новые графические процессоры, такие как RTX 5090 и серверные H100, имеют встроенную ECC непосредственно на GPU, и она работает автоматически — настройка пользователем не требуется.

Данная уязвимость не затрагивает обычных пользователей домашних ПК. Она актуальна для общих сред графических процессоров, таких как облачные игровые серверы, кластеры обучения ИИ или конфигурации VDI, где несколько пользователей запускают рабочие нагрузки на одном оборудовании. Тем не менее угроза реальна и должна быть серьезно воспринята всей индустрией, особенно с учётом того, что всё больше игр, приложений и сервисов начинают в той или иной мере использовать ИИ.

Рекомендация Nvidia сводится к использованию функции ECC. Её можно включить с помощью командной строки Nvidia, введя команду nvidia-smi -e 1. Проверить активность функции ECC можно с помощью команды nvidia-smi -q | grep ECC. Следует помнить, что включение ECC имеет небольшой недостаток — снижение производительности примерно на 10 % при выполнении задач машинного обучения и сокращение объёма используемой видеопамяти примерно на 6–6,5 %. Но для серьёзной работы с ИИ это разумный компромисс.

Атаки, подобные GPUHammer, не просто приводят к сбоям в работе систем или вызывают сбои. Они нарушают целостность самого ИИ, влияя на поведение моделей или принятие решений. И поскольку всё это происходит на аппаратном уровне, эти изменения практически незаметны, особенно если не знать, что именно и где искать. В регулируемых отраслях, таких как здравоохранение, финансы или автономный транспорт, это может привести к серьёзным проблемам — неверным решениям, нарушениям безопасности и даже юридическим последствиям.

Отечественный квантовый процессор с наибольшим числом кубитов прошёл испытания и готов к масштабированию

Учёные из Физического института имени П. Н. Лебедева РАН опубликовали в журнале «Успехи физических наук» статью о всесторонних испытаниях созданного в России 50-кубитного квантового компьютера на холодных ионах. Это передовая разработка не только в России, но и в мире. Ряд применённых в системе технических решений не имеет аналогов и позволяет запускать квантовые алгоритмы на куквартах — кубитах с четырьмя состояниями.

 Ионная ловушка — сердце 50-кубитного квантового процессора. Источник изображения: ФИАН

Ионная ловушка — сердце 50-кубитного квантового процессора. Источник изображения: ФИАН

Российская разработка сравнима с переходом от памяти, записывающей два бита в ячейку, к памяти, записывающей четыре бита. Это не только увеличивает плотность размещения кудитов (кубитов с большим числом поддерживаемых состояний), но и требует более серьёзного подхода к снижению шумов — например, в лазерных импульсах, управляющих кубитами-холодными ионами.

Исследователи изначально поставили перед собой более сложную задачу — добиться возможности запуска на квантовой платформе более сложных алгоритмов без увеличения числа физических кубитов — и успешно её решили. Фактически платформа была создана в октябре 2024 года в рамках реализации дорожной карты «Квантовые вычисления», стартовавшей в 2020 году под эгидой Госкорпорации «Росатом». Спустя пять лет задача была выполнена, что зафиксировано в опубликованной научной работе.

«На уровне до полусотни кубитов ионные вычислители — наиболее совершенные среди квантовых устройств. При их создании одна из самых сложных задач — научиться делать запутывающие операции, для чего нужно заставить кубиты взаимодействовать друг с другом контролируемым образом. Еще один вызов — увеличение числа кубитов без потери качества и скорости операций. Так, в ходе тестирования были исследованы ключевые характеристики компьютера — достоверность однокубитных и двухкубитных операций, а также время когерентности — согласованной работы кудитов до того, как их квантовое состояние будет разрушено», — рассказал научный сотрудник ФИАН Илья Заливако.

Как пояснили специалисты, в российском вычислителе для выполнения квантовых операций используется цепочка из 25 ионов иттербия (¹⁷¹Yb⁺), которые удерживаются лазерами и охлаждаются почти до абсолютного нуля. В таком состоянии кубитами управляют с помощью лазерных импульсов. Квантовые алгоритмы представляют собой последовательности таких воздействий.

В ФИАН отметили, что архитектура кудитов выгодна для ряда квантовых алгоритмов, и для её реализации учёные предложили ряд оригинальных научных и технических решений. В частности, был разработан новый способ защиты кудитов от декогеренции. Из-за большей сложности кудиты сильнее подвержены разрушению квантовых состояний, поэтому методы их защиты требуют более сложных подходов. Также были внедрены новые методы охлаждения ионов, фильтрации лазерных шумов и множество других оригинальных решений.

Для всестороннего испытания разработки были использованы задачи, которые в будущем позволят выполнять реальные квантовые расчёты. В частности, были реализованы алгоритмы Гровера, предполагающие поиск по неупорядоченной базе данных, произведены расчёты структур нескольких молекул, а также выполнены симуляции ряда динамических систем.

Кроме того, специалисты ФИАН одними из первых в мире применили ионный процессор для решения практически полезных задач. Так, в ходе эксперимента была обучена нейросеть, способная распознавать написанные от руки изображения цифр. В будущем такая технология может применяться, например, для быстрого поиска новых эффективных молекул, распознавания лиц, анализа ДНК и множества других задач.

«Разработанный в нашем Институте квантовый компьютер — это не просто экспериментальный прототип — это полноценная платформа для проведения исследований и решения задач. Следующий этап развития системы связан с повышением точности операций и времени когерентности. Помимо этого, мы продолжаем изучать новые подходы к использованию кудитов, где являемся одними из лидеров в мире. Также осваиваем подходы к масштабированию устройств и их серийному производству», — отметил директор ФИАН, академик РАН Николай Колачевский.

На следующем этапе реализации дорожной карты планируется создание коммерческих квантовых компьютеров. Разработка таких систем потребует компактных решений и высокой степени автоматизации. Серийные квантовые вычислители должны быть более надёжными и не требовать постоянного обслуживания.

IBM построит первый в мире модульный квантовый компьютер с 200 логическими кубитами и встроенной коррекцией ошибок

Компания IBM обновила план по созданию первого в мире отказоустойчивого квантового компьютера для решения практических задач. Система получила имя Starling (англ. — скворец). Она будет оперировать 200 логическими кубитами. Ввод в строй намечен на 2029 год. Научного барьера для создания этой системы больше нет, теперь предстоит решать обычные инженерные задачи.

 Художественное представлние квантовой системы IBM «Скворец». Источник изображения: IBM

Художественное представление квантовой системы IBM «Скворец». Источник изображения: IBM

В настоящий момент готовых аппаратных решений для построения системы Starling нет. Компания IBM будет двигаться к ней поэтапно. Система будет развернута в новом квантовом центре обработки данных IBM в Покипси, штат Нью-Йорк. Ожидается, что она будет выполнять в 20 000 раз больше операций, чем современные квантовые компьютеры. Для моделирования квантовых вычислительных состояний IBM Starling потребовалась бы память, превышающая квиндециллион байт (1048), что далеко выходит за пределы возможностей самых мощных суперкомпьютеров в мире.

«IBM прокладывает путь к следующему рубежу в области квантовых вычислений, — заявил Арвинд Кришна (Arvind Krishna), председатель совета директоров и генеральный директор IBM. — Наш опыт в области математики, физики и инженерии открывает путь к созданию крупномасштабного отказоустойчивого квантового компьютера, который решит реальные проблемы и откроет огромные возможности для бизнеса».

Крупномасштабный отказоустойчивый квантовый компьютер с сотнями или тысячами логических кубитов может выполнять от сотен миллионов до миллиардов операций, что ускорит и удешевит процессы в таких областях, как разработка лекарств, поиск материалов, химия и оптимизация. Система «Скворец» сможет выполнять 100 млн квантовых операций с использованием 200 логических кубитов. Это станет основой для следующей системы — «Голубая сойка» (Blue Jay), которая будет способна выполнять 1 млрд квантовых операций с использованием 2000 логических кубитов. «Сойка» появится в 2033 году как развитие «Скворца». Если она станет реальностью, то с традиционным шифрованием, похоже, придётся прощаться навсегда.

Следует напомнить, что для решения проблемы отказоустойчивости на каждый логический кубит, участвующий в вычислениях, должно приходиться 1 млн физических (аппаратных) кубитов. Об этом говорят базовые работы по квантовым вычислениям. За последние несколько лет эти требования были заметно смягчены, но компания IBM пока не готова сообщить, сколько физических кубитов будет задействовано для каждого логического кубита. Тем не менее, это предполагает крайне сложную архитектуру процессоров, чтобы квантовый компьютер в итоге поместился в вычислительный зал, а не занял площадь пары-тройки футбольных полей.

В IBM заявили, что они создали перспективную архитектуру, которая будет способна проводить квантовые расчёты с запутыванием такого огромного числа физических кубитов. В основе архитектуры лежит предложенный компанией код. Без сомнения, успех реализации эффективной отказоустойчивой архитектуры зависит от выбора кода для исправления ошибок, а также от того, как спроектирована и построена система, позволяющая масштабировать этот код.

Само собой, этот код должен быть привязан к архитектуре, что заставит IBM действовать в достаточно жёстких рамках. Основные требования к архитектуре — это устойчивость к сбоям, что позволит подавлять достаточное количество ошибок для успешной работы полезных алгоритмов; способность подготавливать и измерять логические кубиты с помощью вычислений; применимость универсальных инструкций к логическим кубитам; способность декодировать измерения логических кубитов в режиме реального времени и изменять последующие инструкции; модульность для масштабирования до сотен или тысяч логических кубитов для запуска более сложных алгоритмов; а также достаточная эффективность для выполнения значимых алгоритмов с использованием реальных физических ресурсов, таких как энергия и инфраструктура.

В двух новых технических документах компания IBM рассказала, как это будет выглядеть. Во-первых, она представила код qLDPC — квантовые коды с низкой плотностью проверок чётности (по аналогии с классическими LDPC). Этот код значительно сокращает количество физических кубитов, необходимых для исправления ошибок, и уменьшает требуемые накладные расходы примерно на 90 % по сравнению с другими перспективными кодами. Кроме того, в нём описаны ресурсы, необходимые для надёжного запуска крупномасштабных квантовых программ, что доказывает эффективность такой архитектуры по сравнению с другими.

Во второй статье компания рассказала, как эффективно декодировать информацию с физических кубитов, и предложила способ выявления и исправления ошибок в реальном времени с помощью обычных вычислительных ресурсов.

В реальности это будет выглядеть следующим образом. В конце 2025 года IBM представит процессорный модуль Loon (англ. — гагара). Модуль предназначен для тестирования компонентов архитектуры кода qLDPC, включая «C-соединители», которые соединяют кубиты на больших расстояниях внутри одного чипа. Об усложнении архитектуры и связей внутри многослойного чипа даёт представление изображение выше, где сравниваются современный квантовый процессор IBM Heron и Loon.

В 2026 году компания представит первый модульный процессор Kookaburra (кукабара), предназначенный для хранения и обработки закодированной информации. Он объединит квантовую память с логическими операциями и станет базовым строительным блоком для масштабирования отказоустойчивых систем за пределы одного чипа.

В 2027 году IBM выпустит процессорный модуль Cockatoo (какаду). Он объединит два модуля Kookaburra с помощью «L-образных соединений». Эта архитектура позволит связывать квантовые чипы, как узлы в более крупной системе, без необходимости создавать непрактично большие чипы. Система «Скворец» будет построена на объединении модулей «Какаду» в единую платформу. Платформа предполагает криогенное охлаждение базовых компонентов примерно до 4 кельвина (-269,15 °C). Для интеграции с обычными вычислительными средствами связующую электронику также придётся охлаждать до таких температур. Впрочем, система не будет размещаться вся в холодильнике, только вычислительные узлы.

Компания IBM сделала заявку, способную перевернуть мир вычислений. Насколько она сможет воплотить это в жизнь — пока открытый вопрос.

Созданы первые устойчивые к ошибкам фотонные квантовые процессоры — миллионы кубитов уже не за горами

Канадский стартап Xanadu, проявивший себя при создании квантовых симуляторов на чипах Nvidia, сообщил о демонстрации первого в мире устойчивого к ошибкам фотонного кубита на чипе. В основе технологии компании лежит относительно новая теория квантовых состояний Готтесмана–Китаева–Прескилла (GKP), которая позволяет создавать кубиты и оперировать ими при комнатной температуре — это открывает путь к масштабированию квантовых платформ.

 Источник изображений: Nature 2025

Четырёхстоечный квантовый компьютер Aurora. Источник изображений: Nature 2025

Ранее в этом году Xanadu представила четырёхстоечный квантовый компьютер Aurora. В новой работе, опубликованной в журнале Nature, специалисты компании показывают отказоустойчивый потенциал фотонного кубита на основе состояний GKP. В конечном итоге все современные проблемы квантовых платформ сводятся к высокой частоте возникновения ошибок вычислений, которые невозможно решить традиционными методами коррекции ошибок.

Квантовые состояния Готтесмана–Китаева–Прескилла хороши тем, что опираются на групповое поведение фотонов (в общем случае — бозонов). За счёт множества фотонов в состоянии суперпозиции шум или ошибочное переключение отдельных фотонов не нарушают общего квантового состояния группы, представляющей отдельный кубит. При этом квантовые состояния кодируются модуляцией луча и могут изменяться простой рекомбинацией нескольких лучей от лазерного источника или с помощью лазера накачки. Особая ценность этой технологии заключается в том, что измерения и контроль производятся обычными инструментами при комнатной температуре.

 Прототип квантового чипа

Прототип квантового чипа

Проблема масштабирования подобных систем до сих пор заключалась в том, что взаимодействие лучей происходило в воздухе или в вакууме. Разработчики из Xanadu смогли реализовать такое взаимодействие — фактически кубит — в кремнии. Точнее, на подложке из нитрида кремния. По их словам, это первое в мире решение на чипе с устойчивым к ошибкам фотонным кубитом. Опубликованная в Nature работа подтверждает достоверность этого утверждения.

Созданная схема далека от идеала и испытывает трудности при подсчёте одиночных фотонов — одного из ключевых элементов платформы Xanadu. Однако она доказывает возможность оперирования состояниями GKP не в открытой среде, а в полностью замкнутой системе чип-оптоволокно. Благодаря этому платформа может быть быстро масштабирована до миллиона кубитов, что компания обещает продемонстрировать не позднее 2029 года.


window-new
Soft
Hard
Тренды 🔥
В Steam открылось тестирование Valor Mortis от разработчиков Ghostrunner — ролевого боевика от первого лица в духе Dark Souls и BioShock 2 ч.
Самое большое дополнение в истории Crusader Kings 3 не заставит себя долго ждать — дата выхода и новый трейлер All Under Heaven 4 ч.
Изгнанные Маском без выходного пособия топ-менеджеры Twitter добились «справедливости» через суд 4 ч.
Ninja Gaiden 4, Baldur’s Gate, новая игра от создателей Psychonauts и многое другое: Microsoft раскрыла первые новинки Game Pass после подорожания 5 ч.
«Билайн Big Data & AI» и IVA Technologies займутся совместной разработкой ИИ-продуктов 5 ч.
«Интернет — не свалка для негатива»: в китайских соцсетях массово банят пессимистов 5 ч.
Еврокомиссия выделит €1 млрд на внедрение ИИ в десяти отраслях 6 ч.
Демоны, титаны и невообразимые ужасы: новый геймплейный трейлер Painkiller показал, почему в чистилище веселее с друзьями 6 ч.
Российский рынок IaaS и PaaS отметился 30-проценным ростом с начала года 8 ч.
Beeline Cloud представил комплексное решение для работы с «1С» в защищённом облаке 9 ч.
Спутниковая группировка Starlink теряет по спутнику в день — они сгорают в атмосфере или падают на Землю 31 мин.
AST SpaceMobile перехватила клиента у Starlink — компания обеспечит видеозвонки через спутник для Verizon 46 мин.
В России стартовали продажи роботов-пылесосов Dreame MatriX10 Ultra и Dreame Aqua10 Ultra Roller Complete 2 ч.
Нобелевскую премию по химии за 2025 года присудили за открытие «домика для молекул» 4 ч.
Sennheiser представила наушники HDB 630 — «первый беспроводной продукт для аудиофилов» 5 ч.
AOC представила 27- и 32-дюймовые игровые мониторы на Fast IPS с разрешением до 4K и частотой до 320 Гц 6 ч.
Дженсен Хуанг «удивился» условиям сделки между AMD и OpenAI, но назвал её «хитрым ходом» 6 ч.
Сатья Наделла, Дженсен Хуанг и Майкл Делл спасли нового главу Intel от быстрой отставки 6 ч.
Google намерена построить до шести ЦОД рядом с остановленной АЭС DAEC в Айове, которую хотят перезапустить 6 ч.
Струйно-перовскитные технологии Ricoh снимут Японию с иглы зависимости от китайских солнечных панелей 6 ч.