Сегодня 23 июня 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → вычисления
Быстрый переход

IBM построит первый в мире модульный квантовый компьютер с 200 логическими кубитами и встроенной коррекцией ошибок

Компания IBM обновила план по созданию первого в мире отказоустойчивого квантового компьютера для решения практических задач. Система получила имя Starling (англ. — скворец). Она будет оперировать 200 логическими кубитами. Ввод в строй намечен на 2029 год. Научного барьера для создания этой системы больше нет, теперь предстоит решать обычные инженерные задачи.

 Художественное представлние квантовой системы IBM «Скворец». Источник изображения: IBM

Художественное представление квантовой системы IBM «Скворец». Источник изображения: IBM

В настоящий момент готовых аппаратных решений для построения системы Starling нет. Компания IBM будет двигаться к ней поэтапно. Система будет развернута в новом квантовом центре обработки данных IBM в Покипси, штат Нью-Йорк. Ожидается, что она будет выполнять в 20 000 раз больше операций, чем современные квантовые компьютеры. Для моделирования квантовых вычислительных состояний IBM Starling потребовалась бы память, превышающая квиндециллион байт (1048), что далеко выходит за пределы возможностей самых мощных суперкомпьютеров в мире.

«IBM прокладывает путь к следующему рубежу в области квантовых вычислений, — заявил Арвинд Кришна (Arvind Krishna), председатель совета директоров и генеральный директор IBM. — Наш опыт в области математики, физики и инженерии открывает путь к созданию крупномасштабного отказоустойчивого квантового компьютера, который решит реальные проблемы и откроет огромные возможности для бизнеса».

Крупномасштабный отказоустойчивый квантовый компьютер с сотнями или тысячами логических кубитов может выполнять от сотен миллионов до миллиардов операций, что ускорит и удешевит процессы в таких областях, как разработка лекарств, поиск материалов, химия и оптимизация. Система «Скворец» сможет выполнять 100 млн квантовых операций с использованием 200 логических кубитов. Это станет основой для следующей системы — «Голубая сойка» (Blue Jay), которая будет способна выполнять 1 млрд квантовых операций с использованием 2000 логических кубитов. «Сойка» появится в 2033 году как развитие «Скворца». Если она станет реальностью, то с традиционным шифрованием, похоже, придётся прощаться навсегда.

Следует напомнить, что для решения проблемы отказоустойчивости на каждый логический кубит, участвующий в вычислениях, должно приходиться 1 млн физических (аппаратных) кубитов. Об этом говорят базовые работы по квантовым вычислениям. За последние несколько лет эти требования были заметно смягчены, но компания IBM пока не готова сообщить, сколько физических кубитов будет задействовано для каждого логического кубита. Тем не менее, это предполагает крайне сложную архитектуру процессоров, чтобы квантовый компьютер в итоге поместился в вычислительный зал, а не занял площадь пары-тройки футбольных полей.

В IBM заявили, что они создали перспективную архитектуру, которая будет способна проводить квантовые расчёты с запутыванием такого огромного числа физических кубитов. В основе архитектуры лежит предложенный компанией код. Без сомнения, успех реализации эффективной отказоустойчивой архитектуры зависит от выбора кода для исправления ошибок, а также от того, как спроектирована и построена система, позволяющая масштабировать этот код.

Само собой, этот код должен быть привязан к архитектуре, что заставит IBM действовать в достаточно жёстких рамках. Основные требования к архитектуре — это устойчивость к сбоям, что позволит подавлять достаточное количество ошибок для успешной работы полезных алгоритмов; способность подготавливать и измерять логические кубиты с помощью вычислений; применимость универсальных инструкций к логическим кубитам; способность декодировать измерения логических кубитов в режиме реального времени и изменять последующие инструкции; модульность для масштабирования до сотен или тысяч логических кубитов для запуска более сложных алгоритмов; а также достаточная эффективность для выполнения значимых алгоритмов с использованием реальных физических ресурсов, таких как энергия и инфраструктура.

В двух новых технических документах компания IBM рассказала, как это будет выглядеть. Во-первых, она представила код qLDPC — квантовые коды с низкой плотностью проверок чётности (по аналогии с классическими LDPC). Этот код значительно сокращает количество физических кубитов, необходимых для исправления ошибок, и уменьшает требуемые накладные расходы примерно на 90 % по сравнению с другими перспективными кодами. Кроме того, в нём описаны ресурсы, необходимые для надёжного запуска крупномасштабных квантовых программ, что доказывает эффективность такой архитектуры по сравнению с другими.

Во второй статье компания рассказала, как эффективно декодировать информацию с физических кубитов, и предложила способ выявления и исправления ошибок в реальном времени с помощью обычных вычислительных ресурсов.

В реальности это будет выглядеть следующим образом. В конце 2025 года IBM представит процессорный модуль Loon (англ. — гагара). Модуль предназначен для тестирования компонентов архитектуры кода qLDPC, включая «C-соединители», которые соединяют кубиты на больших расстояниях внутри одного чипа. Об усложнении архитектуры и связей внутри многослойного чипа даёт представление изображение выше, где сравниваются современный квантовый процессор IBM Heron и Loon.

В 2026 году компания представит первый модульный процессор Kookaburra (кукабара), предназначенный для хранения и обработки закодированной информации. Он объединит квантовую память с логическими операциями и станет базовым строительным блоком для масштабирования отказоустойчивых систем за пределы одного чипа.

В 2027 году IBM выпустит процессорный модуль Cockatoo (какаду). Он объединит два модуля Kookaburra с помощью «L-образных соединений». Эта архитектура позволит связывать квантовые чипы, как узлы в более крупной системе, без необходимости создавать непрактично большие чипы. Система «Скворец» будет построена на объединении модулей «Какаду» в единую платформу. Платформа предполагает криогенное охлаждение базовых компонентов примерно до 4 кельвина (-269,15 °C). Для интеграции с обычными вычислительными средствами связующую электронику также придётся охлаждать до таких температур. Впрочем, система не будет размещаться вся в холодильнике, только вычислительные узлы.

Компания IBM сделала заявку, способную перевернуть мир вычислений. Насколько она сможет воплотить это в жизнь — пока открытый вопрос.

Созданы первые устойчивые к ошибкам фотонные квантовые процессоры — миллионы кубитов уже не за горами

Канадский стартап Xanadu, проявивший себя при создании квантовых симуляторов на чипах Nvidia, сообщил о демонстрации первого в мире устойчивого к ошибкам фотонного кубита на чипе. В основе технологии компании лежит относительно новая теория квантовых состояний Готтесмана–Китаева–Прескилла (GKP), которая позволяет создавать кубиты и оперировать ими при комнатной температуре — это открывает путь к масштабированию квантовых платформ.

 Источник изображений: Nature 2025

Четырёхстоечный квантовый компьютер Aurora. Источник изображений: Nature 2025

Ранее в этом году Xanadu представила четырёхстоечный квантовый компьютер Aurora. В новой работе, опубликованной в журнале Nature, специалисты компании показывают отказоустойчивый потенциал фотонного кубита на основе состояний GKP. В конечном итоге все современные проблемы квантовых платформ сводятся к высокой частоте возникновения ошибок вычислений, которые невозможно решить традиционными методами коррекции ошибок.

Квантовые состояния Готтесмана–Китаева–Прескилла хороши тем, что опираются на групповое поведение фотонов (в общем случае — бозонов). За счёт множества фотонов в состоянии суперпозиции шум или ошибочное переключение отдельных фотонов не нарушают общего квантового состояния группы, представляющей отдельный кубит. При этом квантовые состояния кодируются модуляцией луча и могут изменяться простой рекомбинацией нескольких лучей от лазерного источника или с помощью лазера накачки. Особая ценность этой технологии заключается в том, что измерения и контроль производятся обычными инструментами при комнатной температуре.

 Прототип квантового чипа

Прототип квантового чипа

Проблема масштабирования подобных систем до сих пор заключалась в том, что взаимодействие лучей происходило в воздухе или в вакууме. Разработчики из Xanadu смогли реализовать такое взаимодействие — фактически кубит — в кремнии. Точнее, на подложке из нитрида кремния. По их словам, это первое в мире решение на чипе с устойчивым к ошибкам фотонным кубитом. Опубликованная в Nature работа подтверждает достоверность этого утверждения.

Созданная схема далека от идеала и испытывает трудности при подсчёте одиночных фотонов — одного из ключевых элементов платформы Xanadu. Однако она доказывает возможность оперирования состояниями GKP не в открытой среде, а в полностью замкнутой системе чип-оптоволокно. Благодаря этому платформа может быть быстро масштабирована до миллиона кубитов, что компания обещает продемонстрировать не позднее 2029 года.

Nvidia выпустит ИИ-ускоритель B30 специально для Китая взамен запрещённого H20

Nvidia разрабатывает специализированный ИИ-ускоритель B30, соответствующий требованиям экспортного контроля США и предназначенный для поставок в Китай. Новый графический ускоритель (GPU) построен на архитектуре Blackwell и, вероятно, получит поддержку NVLink для объединения нескольких GPU в вычислительные кластеры. Эта разработка стала прямым ответом Nvidia на запрет, введённый правительством США на экспорт в КНР чипов линейки H20 на архитектуре Hopper.

 Источник изображений: Nvidia

Источник изображений: Nvidia

Главная особенность будущего B30 — поддержка масштабирования через объединение нескольких GPU. Эта функция, по мнению аналитиков, может быть реализована либо с применением технологии NVLink, либо посредством сетевых адаптеров ConnectX-8 SuperNIC с поддержкой PCIe 6.0. Несмотря на то, что Nvidia официально исключила NVLink из потребительских GPU начиная с предыдущего поколения, существует вероятность, что компания модифицировала кристаллы GB202, используемые в RTX 5090, и повторно активировала NVLink в их серверной конфигурации.

Изначально будущий GPU фигурировал под различными названиями — от RTX Pro 6000D до B40, а теперь B30. Это, вероятно, указывает на наличие нескольких вариантов в рамках новой серии BXX, различающихся по уровню производительности и соответствию требованиям экспортного регулирования. Все модификации предполагается строить на чипах GB20X с использованием памяти GDDR7. Примечательно, что GB20X — это те же кристаллы, которые лежат в основе потребительских видеокарт линейки RTX 50. Таким образом, Nvidia не создаёт принципиально новый чип, а адаптирует уже существующую архитектуру для обхода ограничений.

 Nvidia RTX PRO 6000 Blackwell Workstation Edition

Nvidia RTX PRO 6000 Blackwell Workstation Edition

На выставке Computex в Тайбэе Nvidia представила серверные системы RTX Pro Blackwell, рассчитанные на установку до восьми GPU RTX Pro 6000. Эти ускорители соединяются между собой через сетевые адаптеры ConnectX-8 SuperNIC, оснащённые встроенными PCIe 6.0-коммутаторами, обеспечивающими прямое взаимодействие между GPU. Та же схема коммуникации применяется при объединении двух суперчипов DGX Spark, которые служат основой для корпоративных и облачных ИИ-решений. Вероятнее всего, аналогичная архитектура будет использована и в B30.

Комментируя запрет на экспорт H20, бессменный руководитель Nvidia Дженсен Хуанг (Jensen Huang) подчеркнул, что компания прекращает разработку альтернатив на архитектуре Hopper и сосредотачивается на Blackwell. Правительство США, в свою очередь, заявило, что у H20 — слишком высокая пропускная способность памяти и интерфейсных соединений, что делает чип неприемлемым для свободного экспорта. Эти параметры, по мнению регуляторов, создают риск использования ускорителей в составе китайских суперкомпьютеров, способных обслуживать оборонные и военные программы.

 Nvidia H200 Tensor Core GPU

Nvidia H200 Tensor Core GPU

Ситуация с экспортными ограничениями не ограничивается только Nvidia. Американские регуляторы оказывают серьёзное влияние на весь рынок высокопроизводительных ИИ-решений. Компания AMD, например, оценивает потенциальные убытки от запрета на экспорт ускорителей MI308 в размере до $800 млн. Эта оценка была представлена сразу после вступления в силу новых ограничений. На протяжении последних лет Nvidia ведёт постоянную борьбу с регуляторами, сталкиваясь с чередой запретов и требований, где каждое новое поколение чипов, от A100 до H100 и H20, подвергается новым формам контроля.

Хуанг, критикуя действующую экспортную политику США, назвал её «провалом» и предупредил о рисках стратегического отставания. По его мнению, такие меры лишь подталкивают китайские технологические компании, включая Huawei, к активному развитию собственных ИИ-решений. В результате они могут не только догнать, но и перегнать американских техногигантов, сформировав собственные стандарты, которые в будущем могут стать основой глобальной ИИ-инфраструктуры. Это создаёт угрозу потери влияния США не только в технологической, но и в военно-стратегической сфере.

Исследование Google показало, что современная криптография уязвима перед квантовыми компьютерами

Исследование Google показало, что 2048-битный ключ шифрования RSA — современный стандарт для онлайн-безопасности — может быть взломан за несколько дней квантовым компьютером с менее чем миллионом кубитов. Это открытие резко снизило требования к конфигурации квантового компьютера по сравнению с прежними оценками, которые всего несколько лет назад предполагали необходимость как минимум 20 миллионов кубитов.

 Источник изображения: Quantware

Источник изображения: Quantware

Квантовый компьютер с миллионом кубитов пока представляется скорее фантастикой, нежели реальностью. Однако темпы прогресса в этой области требуют уже сейчас начать переход к мерам безопасности, устойчивым к квантовым технологиям. Исследование, проведённое для Google Крейгом Гидни (Craig Gidney) подробно описывает будущие атаки с применением квантовых компьютеров и призывает мировое ИТ-сообщество уже сейчас готовиться к постквантовому миру.

Выводы Гидни являются результатом достижений как в квантовых алгоритмах, так и в методах исправления ошибок. С тех пор как Питер Шор в 1994 году открыл, что квантовые компьютеры могут факторизовать большие числа гораздо эффективнее классических компьютеров, учёные стремились точно определить, какая конфигурация квантового оборудования потребуется для взлома реального шифрования.

 Источник изображений: IBM

Источник изображений: IBM

Последняя работа Гидни основана на недавних алгоритмических прорывах, таких как использование приближенного модульного возведения в степень, которое значительно сокращает количество требуемых логических кубитов. Исследование также включает более плотную модель для хранения кубитов с исправленными ошибками, используя такие методы, как «коды с ярмовой поверхностью» (yoked surface codes) и «выращивание магического состояния» (magic state cultivation) для сокращения требуемых ресурсов.

Гипотетическая машина, располагающая миллионом кубитов, для взлома 2048-битных ключей шифрования RSA должна будет работать непрерывно в течение пяти дней, поддерживать чрезвычайно низкий уровень ошибок и координировать миллиарды логических операций без перерыва. Современные квантовые компьютеры работают только с сотнями или тысячами кубитов, что намного меньше отметки в миллион кубитов. Например, IBM Condor и Google Sycamore с 1121 и 53 кубитами соответственно иллюстрируют текущие возможности квантовых вычислений.

 Источник изображений: IBM

Компания D-Wave недавно представила самый мощный в мире квантовый компьютер — систему Advantage2 с более чем 4400 кубитами. Как и все предыдущие системы D-Wave (за исключением компьютеров первых поколений), Advantage2 будет доступна только через облако. Поставки физических систем клиентам начнутся позже — с платформ, насчитывающих не менее 7000 кубитов, время которых ещё не пришло.

 Источник изображения: Dwave

Источник изображения: Dwave

20 мая компания NVIDIA объявила об открытии Глобального центра исследований и разработок для бизнеса в области искусственного интеллекта на базе квантовых технологий (Global Research and Development Center for Business by Quantum-AI Technology, G-QuAT). На этой площадке размещена система ABCI-Q — крупнейший в мире исследовательский суперкомпьютер, предназначенный для квантовых исследований. Система интегрирована с тремя квантовыми компьютерами.

Крупные компании, разрабатывающие квантовое оборудование, планируют масштабировать свои компьютеры до уровня миллиона кубитов в течение следующего десятилетия. IBM в партнёрстве с Токийским и Чикагским университетами собираются построить квантовый компьютер на 100 000 кубитов к 2033 году. Компания Quantinuum заявила о цели по созданию полностью отказоустойчивого универсального квантового компьютера Apollo к концу 2020-х годов.

Последствия появления следующего поколения квантовых компьютеров для информационной безопасности крайне болезненны. RSA и аналогичные криптографические системы лежат в основе большей части защищённых коммуникаций в мире, от банковского дела до цифровых подписей. Результаты исследования Гидни подтверждают срочность перехода на постквантовую криптографию (PQC) — новые стандарты, разработанные для противостояния атакам квантовых компьютеров. В прошлом году Национальный институт стандартов и технологий США опубликовал алгоритмы PQC и рекомендовал поэтапно отказаться от уязвимых систем после 2030 года.

Новые стандарты должны стать важным элементом криптографической защиты данных. Предыдущие стандарты криптографии NIST, разработанные в 1970-х годах, используются практически во всех устройствах, включая интернет-маршрутизаторы, телефоны и ноутбуки. Руководитель группы криптографии NIST Лили Чен (Lily Chen) уверена в необходимости массовой миграции с RSA на новые методы шифрования: «Сегодня криптография с открытым ключом используется везде и во всех устройствах, наша задача — заменить протокол в каждом устройстве, что нелегко».

Поэтому эксперты по безопасности в различных отраслях призывают серьёзно относиться к угрозе, исходящей от квантовых компьютеров. Новые схемы шифрования основаны на понимании сильных и слабых сторон квантовых вычислений, так как квантовые компьютеры превосходят классические лишь в достаточно узком спектре задач. К квантово-устойчивым криптографическим методам относятся:

  • Решётчатая криптография основана на геометрической задаче о кратчайшем векторе, которая требует найти точку, ближайшую к началу координат, что невероятно сложно сделать при большом количестве измерений.
  • Изогональная криптография использует для шифрования эллиптические кривые, что обещает высокую устойчивость к дешифровке.
  • Криптография на основе кода с возможностью исправления ошибок опирается на сложность восстановления структуры кода из сообщений, содержащих случайные ошибки.
  • Криптография с открытым ключом на основе хеш-дерева позиционируется как развитие идей RSA.
 Источник изображения: unsplash.com

Источник изображения: unsplash.com

Исследование Гидни подчёркивает важность упреждающего планирования. Оно также напоминает о вечном соревновании «снаряда и брони» — по мере развития технологий развиваются и методы их взлома. Улучшения алгоритмов и лучшая интеграция оборудования и программного обеспечения продолжают снижать барьеры для потенциальных злоумышленников.

Представлен самый мощный в мире квантовый компьютер — D-Wave Advantage2 с более чем 4400 кубитами

Компания D-Wave представила самый мощный в мире квантовый компьютер — систему Advantage2 с более чем 4400 кубитами. Как и все предыдущие системы D-Wave (за исключением компьютеров первых поколений), Advantage2 будет доступна только через облако. Поставки физических систем клиентам начнутся позже — с платформ, насчитывающих не менее 7000 кубитов, время которых ещё не пришло.

 Источник изображений: D-Wave

Источник изображений: D-Wave

Новинка позволяет вплотную познакомиться с возможностями передовых квантовых компьютеров канадско-американской компании D-Wave Quantum Inc. К сожалению, это не универсальные квантовые вычислители. Системы D-Wave используют так называемый квантовый отжиг, предназначенный для решения задач оптимизации — в логистике, разработке магнитных материалов, определённых лекарств и других специфических областях.

Именно на примере исследования магнитных материалов компания D-Wave ранее в этом году доказала, что её младшая система Advantage2 с 1200 кубитами заслуживает называться «Святым Граалем квантовых вычислений», продемонстрировав квантовое превосходство над классическими суперкомпьютерами. Новая платформа с 4400 кубитами обещает быть ещё мощнее, сохраняя за системами Advantage2 статус «самых мощных в мире». По крайней мере, эти компьютеры уже сегодня способны оказывать практическую помощь в сложных расчётах.

Квантовые процессоры Advantage2 основаны на более совершенной архитектуре по сравнению с предыдущими поколениями. Если раньше каждый кубит был связан максимум с 15 другими, то теперь число связей увеличено до 20. Это делает расчёты более эффективными и позволяет решать значительно более сложные задачи в более короткие сроки. Кроме того, почти вдвое увеличено время когерентности — период, в течение которого кубиты сохраняют своё квантовое состояние и устойчивость к ошибкам.

 Квантовый процессор Advantage2

Квантовый процессор Advantage2

Примечательно, что новая платформа потребляет те же 12 кВт энергии, что и все предыдущие компьютеры компании. Это означает, что энергоэффективность систем последовательно растёт — и это можно только приветствовать.

В облаке новая система D-Wave коммерчески доступна в 42 странах мира. Первые три месяца компания предоставляет возможность использовать её бесплатно, позволяя клиентам на практике оценить прогрессивность квантовых вычислений и их применимость для решения прикладных задач.

Intel намерена пристроить телекоммуникационный и сетевой бизнес в хорошие руки

В последние годы руководство Intel занималось исправлением ошибок своих предшественников в сфере освоения новых сегментов рынка. Подразделения Altera и Mobileye, некогда являвшиеся самостоятельными компаниями, стали снова отдаляться от неё в структурном и финансовом выражении. На очереди и подразделение Intel по выпуску сетевых и телекоммуникационных решений, как отмечают источники.

 Источник изображения: Intel

Источник изображения: Intel

На комментарии осведомлённых о планах Intel источников ссылается агентство Reuters. При новом генеральном директоре Лип-Бу Тане (Lip-Bu Tan), как можно понять с его собственных слов, упор в стратегическом развитии Intel будет делаться на сегмент центральных процессоров и прочих средств вычислений. Бизнес по разработке телекоммуникационных и сетевых решений, который хоть и давно является неотъемлемой частью Intel, к приоритетным направлениям более не относится. Ему могут подыскать новых владельцев или пойти на стратегическое сотрудничество с заинтересованными партнёрами.

До прошлого квартала профильное подразделение Intel носило обозначение NEX и являлось самостоятельной единицей в структуре финансовой отчётности компании. Однако, с этого года оно было объединено с серверным подразделением процессорного гиганта. В прошлом году выручка Intel на профильном направлении достигла $5,8 млрд. Поиск потенциальных инвесторов для данного бизнеса или даже консультантов для самой подготовки сделки толком ещё не начался, но соответствующие идеи уже обсуждаются руководством Intel внутри компании, как признаются источники. Якобы даже начаты переговоры с возможными покупателями этих активов. Часть акций подразделения Intel может сохранить за собой, хотя конкретная конфигурация сделки будет зависеть от намерений всех заинтересованных её сторон.

Производство компонентов для телекоммуникационной сферы типа процессоров для базовых станций сетей связи, по мнению нынешнего руководства Intel, не является приоритетным направлением развития. В сегменте сетевого оборудования у компании полно более крупных конкурентов типа той же Broadcom, поэтому распылять дефицитные ресурсы на такой бизнес не совсем целесообразно.

В апреле Intel продала крупный пакет акций дочерней компании Altera инвестиционному фонду Silver Lake за $4,46 млрд. До этого рассматривался вариант с её полным отделением или выходом на IPO. В отношении дочерней Mobileye последний сценарий был реализован осенью 2022 года. В не самой простой ситуации, в которой сейчас оказалась компания Intel, она старается сосредоточиться на своих классических продуктах и компетенциях.

Биология опередила технологии на миллиарды лет: у живых клеток нашлась способность к квантовым вычислениям

Согласно новому исследованию Филипа Куриана (Philip Kurian), физика-теоретика и директора-основателя Лаборатории квантовой биологии (QBL) в Университете Говарда в Вашингтоне, округ Колумбия, опубликованному в научном журнале Science Advances, живые клетки могут обрабатывать информацию с помощью квантовых механизмов гораздо быстрее, чем классическая биохимическая сигнализация.

 Источник изображения: The Quantum Insider

Источник изображения: The Quantum Insider

Как известно, квантовые вычислительные системы чувствительны к возмущениям и посторонним шумам, и чтобы их минимизировать, квантовые компьютеры должны функционировать при сверхнизких температурах. Принято считать, что только небольшие объекты, такие как атомы и другие частицы, обычно проявляют квантовые свойства. Биологические системы, наоборот, представляют собой враждебную среду для реализации квантовых вычислений: они имеют сравнительно высокую температуру и хаотичны. К тому же их основные компоненты, такие как клетки, являются громадными по сравнению с атомами.

Исследование Куриана ломает сложившиеся стереотипы. В прошлом году группа под руководством Куриана обнаружила «отчётливо квантовый эффект в белковых полимерах в водном растворе». Как отметил профессор Марко Петтини (Marco Pettini) из Университета Экс-Марсель и Центра теоретической физики CNRS (Франция), «экспериментальное подтверждение однофотонного сверхизлучения в повсеместной биологической архитектуре при тепловом равновесии открывает много новых направлений исследований в квантовой оптике, квантовой теории информации, физике конденсированных сред, космологии и биофизике».

Согласно исследованию, ключевой молекулой, обеспечивающей способность клетки к квантовой обработке информации, является триптофан. Это аминокислота, содержащаяся во многих белках, которая поглощает ультрафиолетовый свет и повторно излучает его на более длинной волне.

Крупные сети триптофана образуются в микротрубочках, амилоидных фибриллах, трансмембранных рецепторах, вирусных капсидах, ресничках, центриолях, нейронах и других клеточных комплексах. Подтверждение QBL квантового сверхизлучения в филаментах (внутриклеточное нитевидное образование) цитоскелета (клеточный каркас) имеет важное последствие: все эукариотические организмы (клетки которых содержат оформленное ядро) могут использовать эти квантовые сигналы для обработки информации.

Для расщепления пищи клетки, подвергающиеся аэробному дыханию, используют кислород и генерируют свободные радикалы, которые могут испускать разрушительные частицы ультрафиолетового излучения с высокой энергией. Триптофан может поглощать ультрафиолетовое излучение и повторно излучать его с меньшей энергией. И, как показало исследование QBL, очень крупные триптофановые сети делают этот процесс ещё более эффективным и надёжным благодаря мощным квантовым эффектам.

Сверхизлучение в филаментах цитоскелета происходит примерно за пикосекунду — миллиардную долю микросекунды. Эти триптофановые сети могут функционировать как квантовая волоконная оптика, которая позволяет эукариотическим клеткам обрабатывать информацию в миллиарды раз быстрее, чем при использовании только химических процессов.

Как отметили исследователи, аневральные организмы, включая бактерии, грибы и растения, которые составляют основную часть биомассы Земли, выполняют сложные вычисления. И поскольку они появились на планете гораздо раньше животных, именно они выполняют подавляющее большинство вычислений на основе углерода на Земле.

Работа Куриана привлекла внимание разработчиков квантовых вычислений, поскольку реализация квантовых эффектов в «шумной» среде позволяет сделать квантовую информационную технологию более устойчивой.

Также результаты исследования прокомментировал квантовый физик Сет Ллойд (Seth Lloyd), профессор машиностроения в Массачусетском технологическом институте. «Это служит напоминанием, что вычисления, выполняемые живыми системами, намного мощнее, чем вычисления, выполняемые искусственными», — отметил он.

Квантовым процессорам из кремния быть — австралийский стартап впервые запутал квантовые «транзисторы»

Австралийский стартап Diraq опубликовал в журнале Nature Communications статью, в которой впервые обосновал возможность выпуска квантовых процессоров из кремния на основе электронных спиновых кубитов. Исследователи Diraq доказали соответствие созданных ими спиновых кубитов квантовой теории. Доказательство получено с помощью нарушения неравенства Белла, что подтверждает подлинную квантовую природу запутанной пары электронов — её нелокальность.

 Источник изображения: ИИ-генерация Grok 3/3DNews

Источник изображения: ИИ-генерация Grok 3/3DNews

В статье Эйнштейна, Подольского и Розена 1935 года авторы сообщили об обнаружении «жуткого» состояния запутанности, которому не смогли дать объяснение. Они предположили, что созданная к тому времени квантовая теория может быть неполной, а частицы могут обладать скрытыми параметрами. Это и называется локальным реализмом. Между тем ЭПР-пары запутанных частиц демонстрировали ту самую «жуть», о которой говорил Эйнштейн: они мгновенно реагировали на измерения состояния одной из них, независимо от расстояния. Для создателя теории относительности с её постулатом о предельной скорости света такое казалось немыслимым.

В 1964 году физик Джон Белл разработал способ проверки ЭПР-пар на наличие скрытых параметров. Он предложил уравнения, при нарушении которых система демонстрировала квантовые свойства — описывалась волновой функцией и проявляла нелокальность. В противном случае система считалась классической и подчинялась законам обычной физики, включая общую теорию относительности. Поскольку вычисления и эксперименты в квантовой механике дают совпадение результатов с точностью до 12-го знака после запятой, квантовой математике принято доверять абсолютно. В квантовом мире поведение частиц соответствует проведённым расчётам.

Для пар фотонов, обладающих как спином, так и поляризацией (это также квантовые свойства), первые эксперименты по нарушению неравенства Белла были проведены в конце 70-х — начале 80-х годов XX века. Для электронов, согласно статье австралийцев, в предложенной конфигурации на кремнии подобные опыты ещё не проводились. Иначе говоря, квантовая природа кремниевых кубитов формально до сих пор не была доказана.

Следует отметить, что стартап Diraq, основанный в 2022 году, вырос из крепкой академической среды — Университета Нового Южного Уэльса (UNSW) в Сиднее. Многие научные группы этого университета занимаются квантовыми платформами на основе спиновых кубитов. У Diraq за плечами значительный опыт, багаж знаний и портфель патентов.

Стартап развивает модифицированный кремниевый полевой транзистор, способный управлять одним-единственным электроном, точнее — его спином. Технологию производства таких транзисторов и процессоров назвали SiMOS (кремний–металл–оксид–полупроводник) по аналогии с КМОП. Техпроцесс SiMOS реализуем на том же промышленном оборудовании, которое используется для производства обычных транзисторов и процессоров. По замыслу разработчиков, каждый такой транзистор может быть кубитом. Очевидно, что подобная платформа идеально масштабируется до миллионов и миллионов кубитов.

В своей работе Diraq продемонстрировала нарушение неравенства Белла с результатом S = 2,731. Это значение превышает классический предел (S ≤ 2), что подтверждает наличие квантовой запутанности и нелокальных корреляций между кубитами. Также система показала точность состояния Белла (Bell state fidelity) выше 97 % без коррекции ошибок считывания. Это означает, что кубиты в запутанном состоянии сохраняют свою квантовую природу с очень высокой точностью, что критически важно для квантовых вычислений. При этом система функционировала при относительно высокой температуре — 1,1 К, что примерно в 20 раз выше, чем у обычных сверхпроводящих кубитов.

Эндрю Дзурак (Andrew Dzurak), генеральный директор Diraq, прокомментировал результаты исследования: «Запутанность, возможно, является самым глубоким свойством квантовой механики и фундаментальной основой для работы квантовых компьютеров и получения квантовых преимуществ. С помощью современных инструментов для манипулирования электронными спиновыми кубитами в квантовых точках SiMOS и повышения их производительности наша команда в Diraq нарушила неравенство Белла, продемонстрировав подлинную квантовую природу запутанных состояний. Мы считаем, что это — первое в мире создание электронных спиновых кубитов в квантовых точках, и этот успех демонстрирует зрелость квантовой обработки данных на основе спина в кремнии».

IBM развернула один из мощнейших в мире квантовых компьютеров — у него 156 кубитов

Глава немецкого подразделения IBM сообщил, что компания развернула в Германии один из своих мощнейших квантовых компьютеров. Система получила название Aachen. Она построена на втором поколении квантового процессора Heron.

 Источник изображения: IBM

Источник изображения: IBM

В своём посте в LinkedIn Дэвид Фаллер (David Faller) сообщил, что система доступна клиентам компании через сервис IBM Quantum Cloud Platform, а физически она размещена в европейском центре обработки данных IBM Quantum, расположенном к югу от Штутгарта в Германии.

Процессоры Heron были представлены в декабре 2023 года.

На момент анонса сообщалось о 133 кубитах и пятикратном снижении числа вычислительных ошибок по сравнению с предыдущим 127-кубитным процессором Eagle. Снижение ошибок стало одним из важнейших достижений в архитектуре процессоров, поскольку без этого масштабирование квантовых вычислительных платформ крайне затруднено.

В основу новой квантовой системы Aachen лёг обновлённый вариант процессора Heron — 156-кубитный Heron r2.

«Aachen дополняет наши квантовые системы в Страсбурге и Брюсселе, которые доступны с конца июня 2024 года и построены на 127-кубитных процессорах Eagle. Это также одна из самых быстрых квантовых систем в нашем парке на сегодняшний день», — сообщил Фаллер.

По состоянию на начало 2025 года у IBM насчитывалось 13 квантовых компьютеров промышленного уровня, каждый из которых содержал более 100 кубитов. Они работали в Покипси (штат Нью-Йорк), в немецком центре обработки данных и у клиентов по всему миру. По словам компании, с 2016 года она внедрила в общей сложности чуть менее 80 квантовых систем — больше, чем все остальные участники отрасли вместе взятые. Однако ощутимых результатов от этого внедрения пока не видно — по крайней мере, эта тема широко не освещается.

В то же время сама IBM, как минимум, получает материальную отдачу от внедрения квантовых платформ. Так, в феврале 2025 года стало известно, что за период с первого квартала 2017 года, когда было создано подразделение IBM Quantum, по четвёртый квартал 2024 года компания подписала контракты почти на $1 млрд. Вряд ли это покрывает все расходы на развитие квантовых вычислителей, но это — дополнительный стимул продолжать движение в выбранном направлении.

Учёные создали платформу из «говорящих атомов» — прототип аналогового акустического квантового компьютера

Учёные из Федеральной политехнической школы Лозанны (EPFL) создали прототип аналогового акустического квантового компьютера, который намерены развить до полноценного вычислителя на совершенно иных принципах работы. Кубиты в предложенной системе смогут буквально разговаривать друг с другом, находясь в стабильной акустической суперпозиции. В квантовом мире измерение разрушает такие состояния, но звуковые волны нечувствительны к такому воздействию.

 Источник изображения: EPFL

Источник изображения: EPFL

В своей работе исследователи использовали тот факт, что чистых звуковых волн, как правило, не бывает. В акустическом сигнале почти всегда присутствуют гармоники. Это можно сравнить с состоянием суперпозиции в квантовом мире — множеством вероятностей в одном акустическом сигнале. Это свойство можно использовать для создания акустических кубитов и, соответственно, аналогового акустического квантового компьютера, что учёные с успехом реализовали.

«По сути, мы создали игровую площадку, вдохновлённую квантовой механикой, которую можно настраивать для изучения различных систем. Наш метаматериал состоит из легко настраиваемых активных элементов, что позволяет нам синтезировать явления, выходящие за рамки природы, — говорят исследователи. — Потенциальные области применения включают управление волнами и передачу энергии для телекоммуникаций, а однажды эта установка может помочь в извлечении энергии из волн».

Предложенная учёными установка состоит из атомов-«кубиков». Каждый «кубик» снабжён динамиком и микрофоном. Микрофоны измеряют силу (амплитуду) сигнала и его частоту. В некотором роде это похоже на соединение атомов в кристаллической решётке, где колебания передаются от одного атома к другому.

Прототип акустической квантовой системы далёк от настоящего квантового уровня. Акустические волны лишь приближённо имитируют квантовые явления, но эта имитация достаточно точна для экспериментов. В определённом смысле учёные воплотили в жизнь мысленный эксперимент Шрёдингера о живой и одновременно мёртвой кошке в закрытой коробке. Кошка тоже никак не отражала квантовый уровень, но давала представление об отсутствии привычной логики в применении к квантовым явлениям.

Помимо возможности воспроизвести квантовую систему в макромасштабе предложенная установка может помочь в решении чисто утилитарной задачи. Люди часто страдают от шума в ушах, и природа этого явления нередко остаётся неизвестной. Акустический квантовый компьютер может стать симулятором подобных процессов, что поможет множеству пациентов с таким расстройством.

Учёные впервые запустили модель Вселенной на уровне теории квантового поля — вышло примитивно, но похоже

При изучении мироздания современная наука дошла до квантовой теории поля. Все известные учёным элементарные частицы — это проявления квантовых полей, присущих каждой из них. При этом между этими проявлениями в виде частиц и античастиц происходят взаимодействия посредством множества сил, которые также представляют собой поля (электромагнитные, ядерные, гравитационные и другие). Смоделировать всё это — почти неподъёмная задача. Но учёные поняли, как её решать.

 Источник изображения: Harald Ritsch

Художественное представление «танца» элементарных частиц в двух измрениях. Источник изображения: Harald Ritsch

Двоичное представление данных, лежащее в основе алгоритмов классических и квантовых компьютеров, не позволяет создать модель Вселенной в полном объёме на её фундаментальном уровне. Слишком много факторов приходится учитывать, и вычисления быстро превышают любые аппаратные возможности. С квантовыми компьютерами задача может оказаться чуть проще, ведь они, по сути, симулируют квантовые явления и способны упростить моделирование квантовой теории поля по сравнению с классическими суперкомпьютерами. Однако даже им не хватает разрядности.

Решение заключается в том, что кубиты тоже могут быть многоуровневыми. Каждый кубит может быть представлен кутритом (в трёх состояниях), куквартом (в четырёх), куквинтом (в пяти) и так далее. В общем случае такие кубиты называются кудитами (qudit). В России, например, квантовые системы на кудитах разрабатываются почти с самого начала работы над квантовыми вычислительными платформами. Кудиты позволяют кодировать гораздо более сложное и многогранное поведение квантовых полей и их взаимодействий, чем обычные двоичные кубиты. Именно этим решили воспользоваться учёные из Австрии и Канады. В своей работе они использовали куквинты — кубиты с пятью отдельными состояниями.

Ещё в 2016 году в Университете Инсбрука было продемонстрировано моделирование пар частица-античастица. «В этой демонстрации мы упростили задачу, ограничив движение частиц одной прямой. Снятие этого ограничения — важный шаг на пути к использованию квантовых компьютеров для понимания фундаментальных взаимодействий частиц», — поясняют учёные. В новой работе была представлена первая квантовая симуляция в двух пространственных измерениях. Физически квантовая система для работы с кудитами была создана в Инсбруке, а алгоритм для моделирования разработали в Канаде.

«Помимо поведения частиц, теперь мы также видим магнитные поля между ними, которые могут существовать только в том случае, если частицы не ограничены в движении одной осью. Это приближает нас на важный шаг к изучению природы», — говорят исследователи. Однако это только первый шаг, ведь впереди — третье пространственное измерение и целый спектр других взаимодействий между частицами, помимо электромагнитного. Всё это также предстоит учесть в модели, чтобы точно воспроизвести нашу Вселенную на уровне квантовых полей.

Новая работа по квантовой электродинамике — это лишь начало. С добавлением всего нескольких дополнительных кубитов (кудитов) можно будет распространить текущие результаты не только на трёхмерные модели, но и на сильное ядерное взаимодействие, которое удерживает атомы вместе и содержит в себе многие из оставшихся загадок физики. «Мы воодушевлены потенциалом квантовых компьютеров в изучении этих увлекательных вопросов», — резюмируют учёные.

Глава Nvidia извинился за то, что обвалил акции производителей квантовых компьютеров в начале года

Необходимость открыть исследовательский центр, специализирующийся на проблемах создания квантовых компьютеров, вынудила руководство Nvidia не только созвать представителей отрасли на отдельном мероприятии, но и извиниться перед ними за излишний пессимизм, транслировавшийся в январе этого года.

 Источник изображения: Nvidia

Источник изображения: Nvidia

Тогда генеральный директор Nvidia Дженсен Хуанг (Jensen Huang) заявил, что сомневается в способности пригодных к практическому использованию квантовых компьютеров появиться на рынке в перспективе ближайших 15 лет. Тогда он даже был убеждён, что лучше настраиваться на срок не менее 20 лет. Подобные прогнозы глава Nvidia делал, опираясь на опыт его собственной компании, у которой серьёзный бизнес в сфере аппаратного и программного обеспечения развивался на протяжении 20 лет.

Собрав представителей отрасли квантовых вычислений на мероприятии Quantum Day на этой неделе, Дженсен Хуанг был вынужден признать, что был не прав в своих прогнозах. Он также заявил, что был удивлён реакцией фондового рынка на свои январские заявления. По сути, сам по себе факт существования публичных компаний, которые занимаются проблемами создания квантовых компьютеров, удивил основателя Nvidia. На мероприятии в четверг руководство Nvidia выступало с серией докладов плечом к плечу с представителями 12 компаний, работающих в сфере квантовых вычислений. Некоторые из участников мероприятия выступили с критикой январских заявлений Хуанга. Последний даже пошутил на эту тему: «Это мероприятие является первым в истории, на которое генеральный директор компании пригласил гостей, чтобы объяснить, почему он был не прав».

К данному мероприятию было приурочено и открытие исследовательского центра Nvidia в Бостоне, который будет специализироваться на расчётах, связанных с разработкой квантовых компьютеров. Учёные из Гарварда и МТИ будут сотрудничать с представителями Nvidia и нескольких компаний, занимающихся созданием квантовых компьютеров: Quantinuum, Quantum Machines и QuEra Computing. К работе новый исследовательский центр приступит в этом году, местные вычислительные мощности будут основаны на новейших ускорителях Blackwell.

Глава Nvidia разделяет мнение некоторых представителей отрасли квантовых вычислений, которые считают, что после появления квантовых компьютеров место для традиционных вычислительных центров на основе полупроводниковых компонентов тоже останется. Они будут работать бок о бок. По крайней мере, для разработки квантовых компьютеров будут использоваться традиционные. Хуанг добавил, что в своё время ошибся в своих предсказаниях по поводу экспансии вычислительных систем, основанных на GPU. Много лет назад он был уверен, что они вытеснят с рынка все прочие, но теперь признаёт, что был не прав.

Nvidia представила видеокарты с 96 Гбайт GDDR7 — профессиональные RTX Pro Blackwell для серверов, ПК и ноутбуков

Компания Nvidia представила новые профессиональные настольные и мобильные видеокарты серии Nvidia RTX Pro на архитектуре Blackwell для рабочих станций и серверов. Эти решения предназначены для различных задач, включая работу с агентными ИИ, моделированием, дополненной реальностью, 3D-дизайном, сложными визуальными эффектами, а также разработку ИИ для робототехники и транспортных средств.

 Источник изображений: Nvidia

Источник изображений: Nvidia

Для дата-центров компания подготовила ускоритель Nvidia RTX Pro 6000 Blackwell Server Edition, построенный на чипе GB202 в полной конфигурации с 24 064 ядрами CUDA, который дополняют 96 Гбайт памяти GDDR7.

 Nvidia RTX Pro 6000 Blackwell Server Edition

Nvidia RTX Pro 6000 Blackwell Server Edition

Для настольных систем представлены модели Nvidia RTX Pro 6000 Blackwell Workstation Edition, Nvidia RTX Pro 6000 Blackwell Max-Q Workstation Edition, Nvidia RTX Pro 5000 Blackwell, Nvidia RTX Pro 4500 Blackwell и Nvidia RTX Pro 4000 Blackwell. Видеокарты RTX Pro 6000 предлагают те же характеристики, что и серверная версия, а версия Max-Q отличается от обычной вдвое меньшим энергопотреблением. Остальные карты предлагают более скромные характеристики, от 8960 CUDA и 24 Гбайт памяти до 14 080 CUDA и 48 Гбайт памяти.

 Nvidia RTX Pro 6000 Blackwell Workstation Edition

Nvidia RTX Pro 6000 Blackwell Workstation Edition

 Nvidia RTX Pro 4000 Blackwell

Nvidia RTX Pro 4000 Blackwell

 Nvidia RTX Pro 6000 Blackwell Max-Q Workstation Edition

Nvidia RTX Pro 6000 Blackwell Max-Q Workstation Edition

Для мобильных рабочих станций анонсированы видеокарты Nvidia RTX Pro 5000 Blackwell, Nvidia RTX Pro 4000 Blackwell, Nvidia RTX Pro 3000 Blackwell, Nvidia RTX Pro 2000 Blackwell, Nvidia RTX Pro 1000 Blackwell и Nvidia RTX Pro 500 Blackwell. Они предлагают от 6 до 24 Гбайт памяти GDDR7 и графические процессоры поколения Blackwell, которые насчитывают от 1792 до 10 496 ядеро CUDA.

Новые ускорители Nvidia RTX Pro Blackwell обладают рядом преимуществ. Потоковые мультипроцессоры Nvidia обеспечивают до 1,5 раза более высокую пропускную способность и включают новые нейронные шейдеры. Четвёртое поколение RT-ядер обеспечивает двукратный прирост производительности при рендеринге фотореалистичных сцен и сложных 3D-проектов, оптимизированных под Nvidia RTX Mega Geometry. Четвёртое поколение тензорных ядер выполняет до 4000 триллионов ИИ-операций в секунду, поддерживает вычисления FP4 и работу технологии Nvidia DLSS 4 Multi Frame Generation. Ускорители оснащены аппаратным многопоточным кодировщиком Nvidia NVENC девятого поколения с поддержкой кодирования 4:2:2, а также кодировщиком шестого поколения для декодирования 4:2:2 H.264 и HEVC.

 Nvidia RTX Pro 6000 Blackwell Server Edition

Все модели поддерживают интерфейс PCIe 5.0, DisplayPort 2.1 с разрешением до 4K@180 Гц или 8K@165 Гц, а также технологию Multi-Instance GPU (MIG), позволяющую разделять один GPU на четыре независимых виртуальных графических процессора, что вдвое больше по сравнению с предыдущими моделями.

Первые тестирования показали высокую эффективность новинок. Компания Foster + Partners отметила пятикратный рост производительности в среде проектирования Cyclops по сравнению с Nvidia RTX A6000. GE HealthCare зафиксировала двукратный прирост эффективности в обработке алгоритмов реконструкции. SoftServe заявила, что 96 Гбайт памяти у Nvidia RTX Pro Workstation Edition увеличивают продуктивность при работе с Llama 3.3-70B, Mistral 8x7b и платформой Nvidia Omniverse в три раза.

Профессиональные ускорители Nvidia RTX Pro 6000 Blackwell Workstation Edition и Nvidia RTX Pro 6000 Blackwell Max-Q Workstation Edition поступят в продажу через глобальных партнёров-дистрибьюторов, таких как PNY и TD SYNNEX, в апреле. В мае они появятся у BOXX, Dell, HP Inc., Lambda и Lenovo. Модели Nvidia RTX Pro 5000, RTX Pro 4500 и RTX Pro 4000 Blackwell поступят в продажу летом в магазинах BOXX, Dell, HP и Lenovo, а также через глобальных партнеров-дистрибьюторов. Профессиональные ускорители Nvidia RTX Pro для ноутбуков ожидаются в ассортименте компаний Dell, HP, Lenovo и Razer позже в этом году.

Nvidia создаст исследовательский центр для ускорения пришествия квантовых вычислений

Nvidia объявила, что в этом году в Бостоне откроется новый исследовательский центр, который ускорит развитие квантовых компьютеров и прикладных квантовых алгоритмов. Центр объединит усилия ведущих специалистов в области архитектуры и алгоритмов, которые с помощью суперускорителей Nvidia ускорят приближение будущего, в котором практичные и устойчивые к ошибкам квантовые вычисления станут привычным явлением.

 Источник изображения: NVIDIA

Источник изображения: Nvidia

Центр NVAQC (Nvidia Accelerated Quantum Research Center) соединит передовое квантовое вычислительное оборудование с суперкомпьютерами и моделями искусственного интеллекта. NVAQC поможет решить самые сложные задачи квантовых вычислений — от устранения шума кубитов до преобразования экспериментальных квантовых процессоров в практические устройства.

Ведущие разработчики квантовых вычислений, включая Quantinuum, Quantum Machines и QuEra Computing, будут использовать возможности NVAQC для продвижения исследований, сотрудничая с ведущими университетами — Гарвардом (HQI), Массачусетским технологическим институтом (MIT) и другими.

«Квантовые вычисления дополнят возможности суперкомпьютеров с искусственным интеллектом при решении одних из самых важных проблем в мире — от создания лекарств до разработки новых материалов, — сказал Дженсен Хуан (Jen-Hsun Huang), основатель и генеральный директор Nvidia. — Работая с широким сообществом квантовых исследователей над развитием гибридных CUDA-квантовых вычислений, Центр квантовых исследований NVAQC станет местом, где будут достигнуты прорывные результаты в создании крупномасштабных, полезных и ускоренных квантовых суперкомпьютеров».

В рамках NVAQC коммерческие и академические партнёры получат от Nvidia доступ к самым современным стоечным системам Nvidia GB200 NVL72 — это самое мощное аппаратное обеспечение, когда-либо использовавшееся в области квантовых вычислений. Оно позволит проводить сложное моделирование квантовых систем и использовать алгоритмы управления квантовым оборудованием с низкой задержкой, необходимой для коррекции квантовых ошибок. Системы Nvidia GB200 NVL72 также ускорят внедрение алгоритмов искусственного интеллекта в исследования квантовых вычислений.

Платформа Nvidia CUDA-Q обеспечит интеграцию графических ускорителей компании с различными квантовыми вычислительными архитектурами, что позволит исследовательским группам разрабатывать новые гибридные квантовые алгоритмы и приложения. В конечном итоге это поможет создать прорывные квантовые вычислительные платформы в кратчайшие сроки.

В Израиле разработали квантовый компьютер на миллион кубитов и скоро построят маленький прототип

Израильский стартап QuamCore представил концепцию устойчивого к ошибкам и имеющего практическую ценность квантового компьютера с миллионом кубитов. Основная ценность разработки заключается в уникальной «сжатой» архитектуре криогенного вычислительного блока. Для достижения компактности и возможности дальнейшего масштабирования схемы управления квантовыми цепями удалось разместить ближе к кубитам, внутри криогенной камеры.

 Источник изображения: QuamCore

Источник изображения: QuamCore

Презентация состоялась после того, как QuamCore получила начальное финансирование в размере $9 млн от Viola Ventures при участии Earth & Beyond, которая инвестировала в компанию на ранних этапах, а также Surround Ventures, стратегических международных инвесторов и Израильского управления инноваций.

«Мы основали компанию с одной-единственной целью – решить проблему масштабирования, которая мешает квантовым компьютерам быть практичными и полезными», — сказал генеральный директор и соучредитель QuamCore Алон Коэн (Alon Cohen) в интервью изданию Ynet.

«Мы с самого начала поняли, что реальная ценность заключается в достижении миллиона кубитов. Мы нашли способ преодолеть основное препятствие, которое до сих пор мешало этому, — сказал он. — У нас есть подробный план создания квантового компьютера на миллион кубитов со встроенной коррекцией ошибок, что значительно приближает нас к практическим квантовым системам, способным решать реальные задачи».

Использующие сверхпроводящую технологию квантовые процессоры должны работать при температуре, близкой к абсолютному нулю. Для этого они помещаются в системы криогенного охлаждения. Сотни золотых проводов, соединяющих чип, создают характерный для квантовых компьютеров вид «люстры». Подобный подход, считают в QuamCore, имеет предел масштабирования примерно на уровне 5000 кубитов. Для дальнейшего расширения платформы и увеличения числа кубитов таким способом потребуется масштабная криогенная инфраструктура, что неимоверно сложно и дорого.

 Классический квантовый компьютер на сверхпроводящих кубитах. Источник изображения: IBM

Классический квантовый компьютер на сверхпроводящих кубитах. Источник изображения: IBM

Разработка QuamCore устранила давнее ограничение: необходимость размещать систему управления вне охлаждающей камеры, что делалось для предотвращения нагрева рабочего объёма с кубитами. В компании создали компактный вычислительный блок, легко поддающийся масштабированию, чем сразу решили множество будущих проблем, связанных с созданием кластерных структур.

Коэн заявил, что этот прорыв снижает затраты на вычисления и энергопотребление в 1000 раз, сокращает время сборки систем до нескольких дней и позволяет объединять квантовые компьютеры в сеть для дальнейшего увеличения количества кубитов. У предложенной системы пока только один недостаток — она существует лишь на бумаге.

Привлечение инвестиций даёт надежду вскоре увидеть прототип интересной квантовой вычислительной архитектуры. В компании QuamCore работает группа специалистов в области квантовой физики. Глава QuamCore ранее участвовал в основании компании Mobileye, занимавшейся созданием платформ визуализации, которую успешно продали Intel. Не исключено, что QuamCore с её невероятными перспективами по созданию компьютера с миллионом кубитов тоже со временем попадёт в хорошие руки.


window-new
Soft
Hard
Тренды 🔥
Broadcom представила VMware Cloud Foundation 9 — основу основ для современного частного облака 2 ч.
На вершине успеха: кооперативная игра Peak от авторов Content Warning и Another Crab's Treasure покорила Steam и стала хитом продаж 5 ч.
Team Vitality стала чемпионом Blast.tv Austin Major 2025 — это уже седьмая подряд победа команды на крупных турнирах по Counter-Strike 2 в 2025 году 6 ч.
Huawei выпустила «безандроидную» бета-версию HarmonyOS 6 — пока только для разработчиков 6 ч.
Как избежать оборотных штрафов по 152-ФЗ и не сломать маркетинг: объясняют эксперты рынка, регуляторы и юристы 6 ч.
Утечка: в открытый доступ попал первый час прохождения Death Stranding 2: On the Beach 7 ч.
Китай ужесточит контроль над интернетом с помощью новой цифровой идентификации 22-06 06:22
Новая статья: Deltarune — сила в добре. Рецензия 22-06 00:02
20 минут геймплея The Blood of Dawnwalker — амбициозной вампирской RPG от ведущих разработчиков The Witcher 3 и Cyberpunk 2077 21-06 23:48
Новая статья: Gamesblender № 731: процессор AMD в следующей Xbox, анонс ремейка Silent Hill и худшая игра года 21-06 23:33
Экс-глава Intel вложился в стартап, создающий сверхпроводниковые чипы для суперкомпьютеров 2 ч.
xAI воспользуется облаком Oracle для обучения и инференса Grok 3 ч.
Бум ИИ-технологий заставляет Wistron оперативно масштабировать производство серверов 3 ч.
Подземный суперкомпьютер Olivia стал самым мощным в Норвегии 4 ч.
Предприятие OpenAI и Джони Айва столкнулось с первым иском, даже не успев ничего выпустить 5 ч.
Wildberries начнёт продавать SIM-карты под собственным брендом 5 ч.
NTT поглотит за $16 млрд дочернюю структуру NTT Data с целью усиления позиций в области ИИ 6 ч.
Microsoft и Tarana Wireless подключат африканские деревни к быстрому беспроводному интернету посредством ngFWA 7 ч.
Huawei выйдет в космос: китайские спутники заработают на операционной системе OpenHarmony 7 ч.
Половинка суперчипа: Arm-процессор NVIDIA Grace C1 набирает популярность в телеком-оборудовании, СХД и на периферии 7 ч.