Сегодня 28 марта 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → космический
Быстрый переход

Космический грузовик «Прогресс МС-24» сгорел в атмосфере, а останки затонули в Тихом океане

Грузовой корабль «Прогресс МС-24», отстыковавшийся сегодня утром от модуля «Звезда» российского сегмента Международной космической станции (МКС), сошёл с орбиты и разрушился в плотных слоях атмосферы. Большая часть космического корабля сгорела в атмосфере, а несгоревшие элементы упали в несудоходном районе южной части Тихого океана, сообщил «Роскосмос». Его место на МКС займёт «Прогресс МС-26», запуск которого с Байконура намечен на 15 февраля.

 Источник изображения: «Роскосмос»

Источник изображения: «Роскосмос»

Грузовой корабль «Прогресс МС-24» находился в составе МКС с 25 августа 2023 года. Его доставила на орбиту ракета-носитель «Союз-2.1а», запущенная с Байконура 23 августа. «Прогресс МС-24» доставил на станцию около 2,5 тонны грузов. За время нахождения «Прогресса» в составе МКС с помощью его двигателей было выполнено восемь коррекций орбиты станции, включая одну внеплановую в целях уклонения от возможного столкновения с космическим мусором. В настоящее время в составе станции находится грузовой корабль «Прогресс МС-25», прибывший 3 декабря 2023 года.

В рамках подготовки к предстоящему запуску космический грузовик «Прогресс МС-26» прошёл в декабре 2023 года пневмовакуумные испытания с использованием гелиево-воздушной среды с целью проверки герметичности отсеков и пневмогидромагистралей в наземных условиях. До этого была проверена готовность бортовых систем «Прогресса МС-26» к выведению на орбиту и стыковке с МКС.

Астрономы обнаружили экзопланету в «суперкомфортной» зоне для появления жизни

Группа астрономов в данных телескопа NASA TESS обнаружила потенциально пригодный для обитания мир в 137 световых годах от Земли. Экзопланета TOI-715b размерами в полтора раза больше нашей планеты входит в редкую «консервативную зону обитания», в которой условия среды максимально благоприятствуют возникновению биологической жизни. Будущие наблюдения с помощью телескопа «Уэбб» обещают лучше понять ситуацию с этим любопытным объектом.

 удожественное представление экзопланеты у красного карлика. Источник изображения: NASA/JPL-Caltech

Художественное представление экзопланеты TOI-715b у красного карлика. Источник изображения: NASA/JPL-Caltech

Телескоп TESS запущен в космос в 2018 году. Он охотится за экзопланетами методом определения провалов в яркости звёзд. Частота и сила провалов позволяют вычислить орбиту небесного тела, проходящего по лику звезды-хозяйки системы, и его массу, а также плотность. По этой информации учёные воссоздают образы тех миров, которые кружат вокруг далёких звёзд.

Чем ближе эти миры, тем больше у нас возможностей лучше их изучить. Например, исследование спектра света звёзд, проходящего сквозь атмосферу экзопланет, даёт данные об их атмосферах. А это уже способность точнее определить пригодность экзопланеты для жизни, чем просто факт её нахождения в зоне обитаемости звезды. Инструменты для такого анализа есть в составе космической обсерватории им. Джеймса Уэбба и рано или поздно он, таким образом, изучит также мир TOI-715b.

«Это открытие является захватывающим, поскольку это первая суперземля в данных TESS, обнаруженная в пределах консервативной обитаемой зоны, — сказала доктор Джорджина Дрансфилд (Georgina Dransfield), научный сотрудник факультета физики и астрономии Бирмингемского университета в Соединенном Королевстве. — Кроме того, поскольку она находится относительно близко, система подходит для дальнейших исследований атмосферы».

Астрономы полагают, что TOI-715b у красного карлика существует в узкой и наиболее оптимальной области вокруг звезды, известной как консервативная обитаемая зона, на которую с меньшей вероятностью влияют пределы погрешности измерений. Орбита экзопланеты составляет 19 дней, поэтому она находится в опасной близости к своей звезде с точки зрения угрозы от вспышек и радиации. Но пока звезда-хозяйка ведёт себя спокойно — за год наблюдений было всего две вспышки небольшой интенсивности и есть вероятность, что такое не повредит гипотетической жизни на планете.

В 2026 году планируется запуск нового европейского охотника за экзопланетами — обсерватории PLATO. Он будет определять экзопланеты вокруг красных и оранжевых карликов, подобных нашему Солнцу. Астрономы получат в свои руки более мощный и более точный инструмент, благодаря которому мы сможем находить не только суперземли, но также планеты, больше соответствующие облику и размерам нашей родной Земли.

NASA впервые опробует радиочастотный датчик измерения уровня топлива в баках

14 февраля в космос должен быть отправлен лунный посадочный модуль Nova-C компании Intuitive Machines из Хьюстона. На баках модуля с криогенным горючим инженеры NASA установили экспериментальные датчики уровня топлива. Эта технология ещё не испытывалась во время длительных перелётов с ускорениями и в невесомости. Новинка должна обеспечить более точный учёт оставшегося в баках горючего, что улучшит планирование полётных заданий.

 Источник изображения: Intuitive Machines

Источник изображения: Intuitive Machines

На Земле в условиях нормальной гравитации горючее скапливается в нижней части баков и определить его уровень не составляет труда множеством простых способов от механических (поплавки и другое) до электронных. В условиях невесомости и при движении с ускорением топливо может растекаться по стенкам или скапливаться в одном месте. Обычные способы измерения его уровня ничего кроме путаницы не дадут. Поэтому в NASA создали радиочастотный датчик измерения массы топлива — RFMG (radio frequency mass gauge).

Датчик «просвечивает» радиоволнами объём бака с горючим и определяет резонансные отклики, которые зависят от толщины слоя топлива. Затем полученный результат сравнивается с базой данных, после чего программа вычисляет примерный объём оставшегося горючего. Разработчики утверждают, что погрешность измерений не превышает нескольких процентов. NASA уже испытывало новую систему на самолётах в свободном падении и на МКС. В составе миссии Nova-C испытание пройдёт во всей полноте, от старта на Земле до посадки на Луну.

Без использования подобных датчиков оставшийся объём горючего вычисляется по предполагаемому расходу горючего во время работы двигателей. Но криогенное топливо в баках имеет свойство выкипать в процессе простого хранения, что вносит в традиционный метод подсчёта остатков большую погрешность. Для полётов к Луне это, по большому счёту, не имеет особого значения, хотя японскому модулю ispace HAKUTO-R, похоже, как раз не хватило горючего для посадки на спутник. Но если говорить о полётах вглубь Солнечной системы, то знание точных запасов топлива поможет намного лучше помочь спланировать миссию.

Зонд «Юнона» в последний раз сблизился с самым вулканически активным телом в Солнечной системе

В субботу, 3 февраля, космический аппарат NASA «Юнона» (Juno) в последний раз совершил максимально близкий пролёт рядом со спутником Юпитера Ио. Это самое вулканически активное небесное тело в Солнечной системе. На Ио зарегистрировано около 400 действующих вулканов. Его осмотры «Юноной» позволят понять, что стоит за этой активностью и есть ли на спутнике глобальный океан из магмы.

 Источник изображения: NASA

Источник изображений: NASA

На Ио буквально может быть океан огня. Такой активности этого спутника в основном подозревают гравитацию Юпитера, которая постоянно деформирует его тело и, тем самым, вызывает разогрев недр. По совокупности факторов, включая полное отсутствие льда на поверхности Ио, этот мир кардинально отличается от всех остальных лун Юпитера и тем он ценен для учёных.

Зонд NASA «Юнона» совершил два максимально близких пролёта рядом с Ио. Оба они прошли на высоте около 1500 км над его поверхностью. Предыдущий близкий пролёт состоялся 30 декабря 2023 года, а последний, как сказано выше, 3 февраля 2024 года. В дальнейшем «Юнона» совершит ещё несколько облётов Ио, но на гораздо большей высоте.

В близкие пролёты зонд фиксировал не только активность вулканов, но смог заметить даже потоки лавы из жерл и трещин в коре Ио. Облёты на большой дистанции позволят по-прежнему следить за вулканической активностью спутника и дадут возможность больше узнать о её природе и закономерностях.

Учёные создали термостойкий материал для термоэлектрической энергетики и космоса — он без изменений выдерживает 1000 °C

Исследователи из Корейского института науки и технологий (KIST) создали термостойкий материал, не теряющий своих свойств при нагреве до 1000 °C, а также под воздействием жёсткого ультрафиолетового излучения. Ожидается, что он найдёт применение в сфере получения электрической энергии от тепла, а также в космосе, где поможет охлаждать спутники и корабли.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

На Земле множество источников тепла, и это не считая энергии Солнца. Мы пока не научились эффективно превращать его в электрическую энергию напрямую. Из-за низкой эффективности современных термоэлектрических элементов наиболее выгодно сегодня работать с сильно нагретыми источниками. Чем выше его температура, тем лучше.

С другой стороны, по мере роста нагрева передающего тепло материала он начинает быстрее окисляться и ускоренно терять проводящие свойства. Группа южнокорейских учёных работала в этом направлении — искала материал, который не терял бы свои свойства при достаточно высоком нагреве и мог послужить проводником тепла от источника к приёмнику.

Традиционные тугоплавкие материалы, такие как вольфрам, никель и нитрид титана не подошли. Слишком активно они начинали окисляться при достижении максимальных температур. После поиска нужной формулы учёные остановились на оксиде станната бария, легированном лантаном (LBSO). Предложенный учёными процесс опирался на метод импульсного лазерного осаждения, что позволяло создавать тонкоплёночные покрытия из необычного материала.

 Материал слабо реагирует на сильный нагрев и жёсткий ультрафиолет. Источник изображения: Korea Institute of Science and Technology

Материал слабо реагирует на сильный нагрев и жёсткий ультрафиолет. Источник изображения: Korea Institute of Science and Technology

После проверок оказалось, что тонкоплёночный LBSO не коробился и не терял своих теплопроводящих свойств при нагреве до 1000 °C и был стабилен в многослойном исполнении. Также он оказался устойчив к ультрафиолетовому излучению мощностью 9 МВт/см2. Это делает его идеальным для аэрокосмического применения для отвода тепла от космических аппаратов под лучами Солнца.

«LBSO внесет свой вклад в решение проблемы изменения климата и энергетического кризиса путём ускорения коммерциализации производства термоэлектрической энергии», — уверены авторы работы, опубликованной в журнале Advanced Science.

Космический самолёт Dream Chaser полностью собрали для испытаний перед дебютным запуском

Многоразовые космические самолёты «вышли из моды» после завершения американской программы Space Shuttle, но компания Sierra Space находится на пути к возвращению подобных аппаратов на орбиту. На днях разрабатываемый ей многоразовый космический корабль Dream Chaser был впервые состыкован с грузовым модулем Shooting Star на испытательном полигоне NASA в Огайо для прохождения цикла предстартовых тестов. Компания рассчитывает на запуск Dream Chaser в ближайшие месяцы.

 Источник изображений: Sierra Space

Источник изображений: Sierra Space

Сейчас состыкованные Dream Chaser и Shooting Star установлены на крупнейший в мире вибростенд, который имитирует механическое колебания и нагрузки, которое космический аппарат испытывает во время запуска и работы двигателя. Комплекс вибрационных испытаний будет продолжаться ещё несколько дней. При успешном завершении этих тестов Dream Chaser, получивший собственное название Tenacity, отправится в единственную в мире высотную вакуумную камеру, размеры которой позволяют вместить полноценный ракетный двигатель и ракету-носитель. Здесь Tenacity пройдёт испытания на перепады давления и температуры, аналогичные тем, с которыми он столкнётся во время миссии.

Когда испытания будут завершены, Sierra Space отправит Tenacity в Космический центр Кеннеди для запуска при помощи ракеты Vulcan Centaur, разработанной United Launch Alliance (ULA). Это второй старт новой тяжёлой ракеты ULA, первым стал запуск лунного корабля Peregrine, который не смог достичь Луны из-за утечки топлива.

Sierra Space надеется разместить Tenacity на стартовой площадке в первой половине 2024 года. Планируется совершить семь грузовых полётов на Международную космическую станцию в рамках программы Commercial Resupply Services. В случае успеха Dream Chaser станет третьим коммерческим космическим кораблём, доставляющим грузы на МКС, после SpaceX Dragon и Northrop Grumman Cygnus.

Как и SpaceX Dragon, Dream Chaser можно использовать повторно, в отличие от грузового модуля Shooting Star, который спроектирован, чтобы на обратном пути к Земле сгорать в атмосфере вместе с мусором с МКС. Sierra Space планирует использовать именно Tenacity для первых четырёх контрактных миссий по пополнению запасов МКС. Последние три возьмёт на себя его собрат Reverence. По утверждению компании, Dream Chaser рассчитан как минимум на 15 запусков, но может прослужить гораздо дольше.

Прототип ещё одной китайской многоразовой ракеты подпрыгнул, завис в воздухе и мягко приземлился

Успешные испытания многоразовой ракеты провела китайская компания ExPace, также известная как Rocket Technology Company. Ракета проекта «Куайчжоу» 26 января взлетела с площадки испытательного полигона, зависла в воздухе на девять секунд, а затем успешно приземлилась обратно на стартовую площадку. Весь полёт продлился 22 секунды. ExPace входит в состав гигантского китайского государственного оборонного и космического подрядчика CASIC.

 Источник изображения: ExPace

Источник изображения: ExPace

CASIC играет важную роль в государственной космической отрасли Китая, но стремится развивать собственные пусковые услуги отдельно от дочерней корпорации CASC, которая производит ракеты Long March. ExPace известна своими одноразовыми твёрдотопливными ракетами «Куайчжоу», которые в этом году уже провели два успешных орбитальных запуска.

 Источник изображения: news.cn

Источник изображения: news.cn

Теперь компания поставила перед собой амбициозную цель по созданию многоразовых ракет с двигателями на метане и жидком кислороде. «Успех этого испытания заложил прочную основу для разработки серии многоразовых ракет-носителей на жидком кислороде и метане ‘Куайчжоу’», — говорится в заявлении Expace для прессы.

ExPace не предоставила подробностей об испытании. В сообщении компании не указан используемый двигатель, а также отсутствуют планы и сроки следующих испытаний ракеты. Однако известно, что компания проводит огневые испытания различных разрабатываемых ею двигателей на метане. В частности, ExPace завершила 200-секундные огневые испытания многоразового двигателя MingFeng-2 с тягой 70 тонн. Ранее испытанный MingFeng-1 меньше по размеру и обеспечивает тягу 100 кН.

Тест многоразовой ракеты ExPace стал последним в череде «прыжков», проводимых рядом компаний в Китае. Правительство страны открыло космический сектор для частного капитала в 2014 году, что привело к появлению в отрасли десятков новых компаний. Некоторые из них в настоящее время запускают или близки к запуску многоразовых ракет с жидкостными двигателями.

В конце прошлого года пекинская компания iSpace провела пару более продолжительных испытаний на большой высоте, во время последнего испытания её аппарат стартовал и переместился на отдельную посадочную площадку.

 Источник изображения: iSpace

Источник изображения: iSpace

В январе стартап Landspace испытал прототип ракеты на метане в Цзюцюане, достигнув высоты 350 метров. Landspace планирует запустить полноценную ракету Zhuque-3, первая ступень которой будет многоразовой, как и у SpaceX Falcon 9, в 2025 году.

 Источник изображения: Landspace

Источник изображения: Landspace

Ещё одна дочерняя государственная компания CAS Space планирует запустить свою многоразовую ракету Kinetica-2 в 2025 году и использовала прототип с реактивным двигателем для тестирования систем наведения, навигации и управления, необходимых для приземления ракеты.

 Источник изображения: CAS Space

Источник изображения: CAS Space

Коммерческая фирма Galactic Energy провела аналогичный тест прошлым летом. Компания намерена осуществить первый пуск керосин-жидко-кислородной ракеты Pallas-1 в конце этого года. Хотя это будет одноразовый полет, Galactic Energy намерена в будущем приземлять и повторно использовать первую ступень.

 Источник изображения: Galactic Energy

Источник изображения: Galactic Energy

Сверхмассивная чёрная дыра средней активности неожиданно начала испускать сверхбыстрый ветер

В показаниях космического рентгеновского телескопа ESA XMM-Newton учёные обнаружили странные данные, которые не соответствовали всем предыдущим наблюдениям. Сверхмассивная чёрная дыра (СЧД) в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко.

 Художетсвенное представление чёрной дыры в центре галактики, испускающей ветер из заряженных частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Источник изображения: ESA / CC BY-SA 3.0 IGO

В редких случаях чрезвычайной активности сверхмассивная чёрная дыра в центре галактики испускает настолько сильный ветер — выброшенные электромагнитными полями частицы вещества из аккреционного диска, что он буквально выдувает межзвёздные газ и пыль за пределы галактики. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина.

Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода.

Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Однако регистрируемое рентгеновским телескопом ESA XMM-Newton излучение от Mrk 817 было более чем умеренным. Контрольная проверка с помощью другой рентгеновской установки — NuSTAR NASA — подтвердило верность полученных данных. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным.

Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга.

«Очень редко можно наблюдать сверхбыстрые ветры, и еще реже обнаруживать ветры, энергии которых достаточно, чтобы изменить характер галактики-хозяина. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters.

Европа запустит зонд для изучения Венеры от ядра до атмосферы — он полетит в 2031 году

Комитет научных программ Европейского космического агентства официально одобрил миссию по изучению Венеры от ядра до атмосферы. Главный подрядчик миссии EnVision будет выбран до конца 2024 года, после чего начнётся разработка и производство космической станции и научных приборов. Запуск аппарата ожидается в 2031 году на тяжёлой европейской ракете Arian 6.

 Источник изображения: ESA

Источник изображения: ESA

Венеру иногда называют злым близнецом Земли. Обе планеты близки по своему строению и массогабаритным характеристикам. Но в нашем случае геология и эволюция привели к возникновению биологической жизни и к появлению человека, а на Венере условия сложились адские. Температура на поверхности этой планеты в среднем составляет 464 °C, а давление воздуха в 92 раза больше, чем мы испытываем на поверхности Земли. Учёных давно мучает вопрос: что и когда там пошло не так?

Орбитальный венерианский зонд EnVision впервые будет изучать строение этой планеты от ядра до поверхности и всю её атмосферу. Этим будут заниматься радары и спектрометры. Точность распознавания структур на поверхности Венеры составит около 10 м, что примерно в 10 раз выше, чем до этого. Изучая геологию Венеры, её тектоническую активность, химический состав атмосферы и поверхности, а также следы от метеоритной и астероидной активности в прошлом учёные рассчитывают понять её историю. И это не чисто академический интерес. Чем больше мы знаем об эволюции планет, тем лучше мы будем понимать эволюцию Земли — прошлую и будущую. По большому счёту — это вопрос выживания человечества.

«Особенностью EnVision является подход миссии к изучению всей планеты как системы. Она будет исследовать поверхность, внутреннюю структуру и атмосферу Венеры с беспрецедентной точностью, что позволит нам понять, как они работают и взаимодействуют друг с другом. Например, EnVision будет использовать несколько методов измерений для поиска признаков активного вулканизма на поверхности и в атмосфере», — пояснила Энн Грете Страуме-Линднер, научный сотрудник миссии.

Это будет вторая европейская миссия на Венеру. Программа «Венера Экспресс» (2005-2014) ЕКА была сосредоточена на атмосфере планеты, но также были сделаны впечатляющие открытия, которые указали на возможные вулканические очаги на поверхности планеты. Изучение атмосферы продолжилось с помощью миссии JAXA «Акацуки», которая по-прежнему активно отслеживает движение атмосферы и погоду на Венере.

В своё время венерианские миссии NASA «Маринер» и «Пионер» (1960-е и 1970-е годы), миссии Советского Союза «Венера» и «Вега» (1960-е - 1980-е годы) и миссия радиолокационного картографирования NASA «Магеллан» (1990-1994) помогли создать достаточно ясную картину мира без воды с ландшафтами, сформированными вулканами и интенсивной геологической активностью. Они обнаружили окаймлённые высокогорьями обширные равнины и потоки лавы. Инструмент EnVision VenSAR, который, как ожидается, в рамках партнёрства будет предоставлен NASA, нанесёт на карту поверхность Венеры с гораздо более высоким разрешением, чем Magellan.

Европейский зонд полетит к Венере не один. Примерно в то же время NASA рассчитывает запустить к Утренней звезде автоматические исследовательские зонды DAVINCI и VERITAS. Также к Венере собираются Индия и Россия.

Virgin Galactic выполнила первую суборбитальную миссию в этом году

Компания Virgin Galactic провела свою первую суборбитальную миссию в 2024 году. В ходе рейса Galactic 06 космоплана VSS Unity в космосе побывали четыре коммерческих пассажира в сопровождении двух пилотов, управлявших полётом.

 Источник изображения: Spaceport America

Источник изображения: Spaceport America

26 января в 12:00 по восточному времени (20:00 мск) самолёт-носитель VMS Eve с VSS Unity под крылом вылетел с космопорта «Америка» в Нью-Мексико. Примерно через 45 минут VSS Unity отделился от самолёта-носителя VMS Eve и, используя собственный гибридный ракетный двигатель, поднялся к границе космоса на высоту 88,8 км, после чего вернулся в космопорт, приземлившись в 12:56 по восточному времени (20:56 мск).

По сложившейся традиции Virgin Galactic раскрыла личности четырёх частных астронавтов лишь после завершения полёта. В качестве пассажиров на борту VSS Unity были американцы Нил Корнсвит (Neil Kornswiet) и Роби Вон (Robie Vaughn), американка украинского происхождения Лина Бороздина (Lina Borozdina) и австриец Франц Хайдер (Franz Haider). Управляли космопланом VSS Unity командир Си Джей Стёркоу (C.J. Sturckow) и пилот Никола Печиле (Nicola Pecile).

Всего космоплан выполнил 11 рейсов, включая четыре на коммерческой основе. Компания сообщила, что следующий рейс Galactic 07 состоится во втором квартале. Ранее Virgin Galactic заявила, что после миссии Galactic 07, которая состоится в середине 2024 года, она планирует отказаться от VSS Unity и направить ресурсы на разработку космопланов класса Delta. Их испытания начнутся в следующем году, а коммерческое обслуживание — в 2026 году.

Европа разрешила создание в космосе гигантского детектора гравитационных волн

В четверг Комитет научных программ Европейского космического агентства дал добро на подготовку к производству оборудования по созданию космической лазерно-интерферометрической гравитационно-волновой обсерватории проекта LISA. Изготовление трёх детекторов начнётся примерно через год. В космос установка будет выведена гораздо позже, но это будет невероятный рывок в изучении Вселенной.

 Источник изображения: ESA

Источник изображения: ESA

До недавнего времени люди могли изучать космос в целом спектре электромагнитных излучений от радиодиапазона до оптического и заканчивая гамма-лучами. После запуска в работу в 2015 году лазерно-интерферометрической гравитационно-волновой обсерватории LIGO в США у людей появилась возможность улавливать гравитационные волны. Благодаря этому Вселенная предстала для учёных в новом свете, что невозможно переоценить.

Например, вместе с LIGO мы получили возможность напрямую уловить сигналы от чёрных дыр — невидимых и поэтому пока гипотетических объектов. Проект LISA в космосе позволит улавливать подобные сигналы в намного большем диапазоне явлений вплоть до ожидания детектирования «реликтовых» гравитационных волн.

Гравитационно-волновые обсерватории на Земле — два детектора LIGO в США, один Virgo в Италии и один KAGRA в Японии — ограничены протяжённостью и воздействием разного рода помех. Каждое из плеч земных интерферометров имеет длину около 3 км. По каждому из них благодаря зеркалам многократно курсирует лазерный луч. Если через детектор проходит гравитационная волна, то один из коридоров растягивается или сжимается в процессе искажения геометрии пространства-времени. Тогда луч в этом коридоре проходит с задержкой или опережением луча в соседнем коридоре (коридоры соединены буквой «Г»). В детекторе происходит наложение одного луча на другой и разница в сдвиге фаз расскажет о масштабе события.

Сравнительно небольшая длина коридоров позволяет фиксировать гравитационные волны только большой частоты. Во-первых, это ограничивает нас по массе объектов — LIGO и другие датчики фиксируют волны только от слияний компактных объектов, таких как нейтронные звёзды и небольшие чёрные дыры. Во-вторых, частота гравитационных волн повышается только перед слиянием таких объектов, когда гравитация заставляет их бешено вращаться вокруг общего центра масс.

Чтобы улавливать низкочастотные гравитационные волны, датчики должны быть разнесены далеко-далеко друг от друга, тогда появится возможность следить за гравитацией парных объектов за год до слияния, а также улавливать слияние сверхмассивных чёрных дыр, которые никуда не торопятся и поэтому излучают гравитационные волны в длинноволновом диапазоне.

Согласно проекту LISA, в космос будет выведено три космических аппарата. Каждый из них будет представлять собой лазерный интерферометр, построенный на основе детекторов, уже опробованных на проекте LIGO. Космические детекторы расположат треугольником, в составе которого каждый из них будет направлять луч в сторону двух других. Длина каждого плеча составит 2,5 млн км. Это будет невероятный по своим возможностям инструмент, которого буквально ещё не было в руках учёных. Мы сможем увидеть Вселенную в гравитационном спектре, если так можно сказать. Выше на видео, например, NASA показало, как это может быть на примере Млечного Пути, где каждый источник гравитационных волн привязан к тому или иному событию или объекту. Это почти как заглянуть в суть вещей.

А ведь это не всё! Группа европейских учёных предложила лёгким движением руки превратить проект LISA в LISAmax. Технически нам ничего не мешает разместить в космосе детекторы на другом расстоянии, чтобы повысить их чувствительность к гравитационным явлениям. Поэтому учёные обосновали возможность разнести детекторы на 295 млн километров! Не исключено, что к 2034 году, когда начнётся вывод детекторов LISA в космос, у нас появится возможность сделать этот проект ещё более революционным.

США уступили Китаю в гонке космических чипов: на орбитальной станции «Тяньгун» тестируется более 100 процессоров одновременно

В китайском научном журнале Spacecraft Environment Engineering вышла статья, в которой сообщается о создании на борту орбитальной станции «Тяньгун» рекордного по масштабам стенда по тестированию чипов. На платформе одновременно проходят испытания свыше 100 процессоров космического назначения. Основная цель экспериментов — создать современную элементную базу чипов, устойчивых к космическому излучению.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Создание собственной орбитальной станции позволило Китаю ничем не ограничивать себя при разработке космических чипов гражданского и военного назначения. Проведение подобных работ на Международной космической станции, например, ограничено запретом на тестирование чипов военного назначения, а также сопряжено с фактическим досмотром грузов. Каждая из стран обязана максимально полно рассказать о том, что она отправляет на борт МКС. В таких условиях обеспечить секретность и разработку проектов с ограниченным допуском достаточно проблематично. По крайней мере, это нельзя провернуть в большом объёме.

Тестовый стенд для испытания полупроводников на станции «Тяньгун» располагает возможностью одновременно проверять в работе свыше 100 чипов. Именно в работе в процессе запуска и работы приложений, что невозможно переоценить. Чипы подвергаются воздействию жёсткой космической среды — холоду и вакууму, но главным испытанием для них становится воздействие высокоэнергетических космических частиц.

На Земле нетрудно воспроизвести вакуум, холод и радиацию. Всё это есть, и чипы военного назначения проходят испытания на таких стендах. Другое дело — частицы высоких энергий, которые невозможно воспроизвести ни на каком земном ускорителе. Они могут приходить один раз в несколько месяцев, и нужно особое терпение, чтобы оценить их воздействие на работающие микросхемы. Обширный стенд на китайской космической станции как раз позволяет рассчитывать на такой случай.

Наличие тестового стенда на станции позволяет Китаю создать реестр сертифицированной для работы в космосе элементной базы. Вместо того, чтобы отбирать производителей и тестировать уникальные разработки, была выбрана стратегия создания массовой пригодной для космоса полупроводниковой продукции, из которой потом можно будет выбирать нужное. Китай ожидает, что в космос будут запускаться всё больше и больше спутников и кораблей, и претендует на звание мирового производителя космической электроники. Если когда-то будет снят ремейк фильма «Армагеддон», российский космонавт Лев Андропов вместо фразы об электронике на борту, что «всё сделано на Тайване», теперь должен будет сказать «всё сделано в Китае».

Но есть ещё один аспект гонки за космическими чипами. США и NASA сильно отстали в техпроцессах и архитектурах. Космическим телескопом «Джеймс Уэбб», например, управляет процессор, произведённый с нормами 250 нм. Китайцы же испытывают в космосе чипы с нормами от 28 до 16 нм. Более 20 микросхем уже прошли испытания, если верить китайским источникам. Китай уже впереди государственного космоса США. Остаётся угроза со стороны частных компаний, в частности, массово современную электронику на орбиту запускает космическая компания Илона Маска. Есть подозрение, что она не рассчитана на длительную работу в космосе, но процесс идёт, и результат со временем будет улучшен.

В NASA тоже понимают, что необходимо развивать новое поколение космической электроники. Летом 2022 года агентство выбрало разработчика новой архитектуры процессоров для космоса. Им стала компания Microchip Technology из Аризоны. Позже пришло подтверждение, что за основу выбрана архитектура RISC-V и конкретно ядра компании SiFive. Это позволит в 100 раз увеличить производительность космических процессоров по сравнению с предыдущим поколением.

Sierra Space успешно испытала космический модуль LIFE, осуществив его контролируемый взрыв

Компания Sierra Space, одна из лидеров в области космических технологий, недавно провела испытание своего инновационного проекта — надувного космического модуля LIFE. Цель испытания состояла в проверке способности модуля выдерживать экстремальные условия космического пространства, в том числе высокое давление.

 Источник изображения: Sierra Space

Источник изображения: Sierra Space

Сам модуль LIFE (Large Integrated Flexible Environment), что переводится как «Большая Интегрированная Гибкая Среда», представляет собой конструкцию из специальных тканей, называемых «softgoods». Эти материалы, включая в себя волокна Vectran — того же материала, что использовался для марсоходов, — обладают уникальной способностью становиться крепче стали при надувании в космической среде.

В ходе эксперимента с помощью компрессора в модуль был закачан воздух, превышающий рекомендуемый уровень давления в 1109 кПа (60,8 фунтов на кв. дюйм). Это привело к контролируемому взрыву LIFE, что является ключевым моментом в определении предельной прочности конструкции. Захватывающие моменты испытания были сняты на видео, продемонстрировав не только инженерное мастерство, но и важность таких испытаний для будущих космических миссий.

Эти тесты, проводимые при поддержке NASA, являются частью более широкой программы, направленной на оценку долговечности модуля LIFE в условиях космического пространства. Если модуль успешно пройдёт все испытания, он сможет стать частью будущих космических миссий. Особенностью LIFE является его способность быть компактно упакованным в ракету, а затем развёрнутым до размеров трёхэтажного здания. Таким образом, модуль позволяет создать просторный комплекс, предназначенный как для жизни, так и для работы астронавтов, превосходя по своим размерам даже Международную космическую станцию (МКС).

Испытание надувного космического модуля LIFE открывает новые перспективы в области космической инженерии и долгосрочного пребывания человека в космосе. Этот эксперимент не только подтверждает возможности применения инновационных материалов и технологий в космической отрасли, но и знаменует собой новую эру в исследовании и освоении космического пространства, предоставляя невиданные до сих пор возможности для будущих поколений исследователей космоса.

Представлен мощный космический буксир Impulse Helios — доставка на высокие орбиты станет намного дешевле

В последние годы было представлено несколько миниатюрных космических «буксиров», которые обеспечивают так называемую услугу доставки «последней мили». Эти средства космической логистики, предлагаемые компаниями D-Orbit, Momentus, Launcher и рядом других, обычно рассчитаны на спутники массой от десятков до нескольких сотен килограммов. Новый космический корабль Helios от Impulse Space способен доставлять значительно более крупные спутники на высокие орбиты.

 Источник изображения: arstechnica.com

Источник изображения: arstechnica.com

Космический «буксир» Helios имеет диаметр менее 5 метров и по размеру умещается в обтекателе ракеты Falcon 9. Helios спроектирован универсальным и предназначен для использования с любой средней или тяжёлой ракетой. Он сможет вывести до 4 тонн груза при использовании Falcon 9 или 5 тонн при помощи космического корабля Terran R компании Relativity непосредственно на геостационарную орбиту.

В настоящее время для средних и крупных спутников существует два способа выхода на геостационарную орбиту. Клиент может купить запуск на ракете Falcon Heavy у компании SpaceX или Vulcan у United Launch Alliance, что примерно в два раза дороже, чем один запуск Falcon 9. Или же спутник может быть выведен кораблём средней грузоподъёмности на переходную орбиту с последующим самостоятельным переходом в геостационарное пространство. Такой переход займёт 6-8 месяцев, потребует надёжной бортовой двигательной установки и до $5 млн на топливо.

«Добраться туда за день по гораздо более низкой цене, чем любой из этих вариантов» предлагает основатель и исполнительный директор Impulse Space Том Мюллер (Tom Mueller). Его основная идея заключается в том, чтобы при помощи недорогой ракеты запускать большие спутники непосредственно на геостационарные орбиты. «По сути, мы добавляем третью ступень к ракете-носителю среднего размера, — считает Мюллер. — Она сделает большую часть того, что может сделать Falcon Heavy, но за гораздо меньшие деньги».

Амбициозность Мюллера вполне объяснима — он был одним из основателей SpaceX и ведущим разработчиком двигателей Merlin, которые используются в ракетах Falcon. Компания Impulse Space была основана им в 2020 году, а в 2023 уже запустила своей первый космический корабль Mira, который хорошо показал себя в дебютной миссии LEO Express 1, выведя на орбиту несколько небольших спутников. В рамках той же миссии были проведены всесторонние испытания двигательной системы Mira. Успех этого запуска вселил в Impulse уверенность в своих планах относительно намного более крупного космического корабля Helios. В штате компании сейчас трудится 90 человек.

 Источник изображения: Impulse Space

Источник изображения: Impulse Space

Helios будет оснащён «одним из самых надёжных» космических двигателей под названием Deneb. Он работает на жидком кислороде и жидком метане и обеспечивает тягу 67 кН. Выбор топлива намекает на многоразовое будущее космических полётов, которое Impulse Space надеется реализовать. «SpaceX нужно 1000 тонн [топлива] для заправки Starship, — говорит Мюллер. — Нам достаточно глотка [по сравнению с ним]. Мы возьмём наши 14 тонн и будем рады за них заплатить. И мы сможем продолжать использовать их повторно».

Impulse Space сейчас производит компоненты двигателя Deneb, испытания которых должны начаться в марте. Затем компания планирует начать тестирование полной сборки двигателя. Дебют космического корабля Helios должен состояться в 2026 году. Возможно, к тому моменту он окажется не единственным подобным аппаратом — Blue Origin объявила о планах создания космического корабля Blue Ring с полезной нагрузкой до 3 тонн.

Axiom Space и SpaceX впервые отправят на МКС полностью европейский экипаж космической миссии Ax-3

Axiom Space совместно с SpaceX готовится к третьему частному космическому полёту – миссии Axiom Mission 3 (Ax-3). Её особенность заключается в том, что впервые в истории все члены экипажа – европейцы. Они проведут около двух недель на Международной космической станции (МКС), занимаясь научными исследованиями. Запуск этой исторической космической миссии запланирован на вечер 17 января с не менее исторического космодрома в Космическом центре имени Кеннеди (KSC) во Флориде.

 Источник изображения: Axiom Space

Источник изображения: Axiom Space

Команда Ax-3 состоит из четырёх человек: командир миссии, бывший астронавт NASA Майкл «ЭлЭй» Лопес-Алегрия (Michael «LA» López-Alegría), специалист миссии Уолтер Вилладей (Walter Villadei), который также был командиром миссии VIRTUTE 1 на суборбитальном полёте Galactic 01 компании Virgin Galactic прошлым летом, Алпер Гезеравчы (Alper Gezeravcı) из Турции, который скоро станет первым турецким космонавтом, и запасной астронавт Европейского космического агентства (ESA) Маркус Вандт (Marcus Wandt).

Запуск экипажа Ax-3 планируется осуществить на борту ракеты Falcon 9 компании SpaceX. Пуск состоится вечером 17 января с космодрома в Космическом центре имени Кеннеди (KSC). После приблизительно 36 часов полёта на борту космического корабля Crew Dragon компании SpaceX экипаж должен будет пристыковаться к МКС ранним утром пятницы, 19 января, при условии, что всё пройдёт по графику.

На борту МКС европейский экипаж миссии Ax-3 проведёт две недели, в течение которых будут проводиться научные эксперименты и исследования. По окончании миссии предполагается, что возвращение на Землю осуществится с помощью капсулы Crew Dragon, которая совершит водную посадку у берегов Флориды.

Миссия Ax-3 станет важным шагом в развитии европейской космонавтики и укреплении международного космического сотрудничества. Она демонстрирует возможности частных космических компаний и открывает новые горизонты для европейских исследователей космоса. Несмотря на изменчивость погоды, которая смогла повлиять на возвращение предыдущих миссий, таких как Ax-1, ожидания от новой миссии остаются высокими, и она обещает принести новые знания и опыт для всего человечества.


window-new
Soft
Hard
Тренды 🔥
Экс-глава EA Russia Тони Уоткинс сделает Astrum Entertainment «компанией №1» на российском рынке видеоигр 3 ч.
Магазин чат-ботов ChatGPT провалился, но им пользуются ученики школ и университетов 3 ч.
Diablo IV добавили в Game Pass, но для игры на ПК всё равно нужен Battle.net 3 ч.
Canonical увеличила срок поддержки LTS-релизов Ubuntu до 12 лет 4 ч.
Claude 3 Opus сбросила GPT-4 с первого места в рейтинге языковых моделей 4 ч.
Intel Gaudi2 остаётся единственным конкурентом NVIDIA H100 в бенчмарке MLPerf Inference 4 ч.
Яндекс представил третье поколение нейросетей YandexGPT 4 ч.
«Мы нанимаем сценаристов, а не заставляем ChatGPT писать диалоги за них»: глава Larian высказался о потенциале ИИ в разработке игр 5 ч.
Аппаратные требования больших языковых моделей ИИ сокращаются вдвое каждые восемь месяцев 6 ч.
Sega подтвердила массовые увольнения и продажу Relic Entertainment — разработчики Company of Heroes и Warhammer 40,000: Dawn of War вновь станут независимыми 6 ч.