Сегодня 09 января 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → материалы
Быстрый переход

Учёные создали управляемые светом наномускулы, способные поднять массу в 1000 раз больше собственной

Учёные из Университета Колорадо в Боулдере сделали шаг к созданию искусственной мускулатуры и приводов, управляемых светом. Они создали наноматериал, в котором свет преобразуется в механическую работу без промежуточных действий. Опытный образец такой «мускулатуры» поднимал груз в 1000 раз большей массы, чем весил сам. В перспективе такие управляемые светом мускулы могут стать основой роботов и беспилотников с беспроводным питанием.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Новый материал создан на базе крошечных органических кристаллов, преобразующих свет в значительные механические усилия, достаточные для поднятия массы в 1000 раз больше собственной. Такой материал кроме совершения непосредственных физических действий может стать источником энергии для дистанционно управляемых систем — роботов или транспортных средств.

В основе всех подобных фотохимических материалов лежат химические и физические преобразования на молекулярном уровне. В целом они представляют интерес по простой причине — они управляются освещением, что сильно упрощает разработку ответственных узлов в робототехнике. Но при этом инженеры и учёные должны найти способ трансформировать молекулярные преобразования в ощутимую механическую работу, а это задачка не из лёгких.

Значительной трудностью на пути к масштабной работе «наномускул» оставалась высокая вероятность растрескивания кристаллических структур. Чтобы предотвратить такую порчу материала, учёные поместили фотохимические нанокристаллы на основе диарилэтена в пористый полимерный материал полиэтилентерефталат. Поры микронного размера ограничивали рост кристаллов и не давали им растрескаться, действуя как фиксирующая оболочка.

Эксперименты с полученным образцом показали его высокие прочностные характеристики. Материал не трескался при изгибах на 180 °. Чередование освещения ультрафиолетовым и обычным светом заставляло материал сгибаться и разгибаться. При собственном весе массива в 0,02 г он с лёгкостью поднимал нейлоновый шарик массой 20 г. Чтобы такой мускул поднял руку робота, ему достаточно попасть под луч света.

 Источник изображения: University of Colorado Boulder

Источник изображения: University of Colorado Boulder

Прежде чем такие роботы выйдут в мир предстоит проделать много научной работы. Новый материал не может похвастаться эффективностью и универсальностью. КПД его работы очень мал, а физические движения ограничены командами «согнуть» и «разогнуть».

«Нам ещё предстоит пройти долгий путь, особенно в плане эффективности, прежде чем эти материалы смогут составить реальную конкуренцию существующим приводам, — сказал ведущий автор работы, опубликованной в Nature Materials. — Но данное исследование является важным шагом в правильном направлении и даёт нам представление о том, как мы сможем достичь этого в ближайшие годы».

Учёные нашли объяснение «странным металлам», которые 40 лет ставили науку в тупик

Свыше 40 лет физики не могли объяснить поведение «странных металлов», которые при сильном охлаждении вели себя не так, как обычные металлы. Если в обычных металлах возникала сверхпроводимость и мгновенно исчезала на какой-то чёткой температурной отметке, то сопротивление странных металлов при изменении температуры менялось линейно. Этому не было внятного объяснения, пока это недавно не сделали физики из США.

 Источник изображения: Lucy Reading-Ikkanda/Simons Foundation

Источник изображения: Lucy Reading-Ikkanda/Simons Foundation

Комплексное обоснование теории поведения странных металлов — металлов, которые не подчиняются теории ферми-жидкости, — сделали руководитель проекта Аавишкар Патель (Aavishkar Patel) из Центра вычислительной квантовой физики (CCQ) Flatiron Institute в Нью-Йорке и физики Хаоя Гуо, Илья Эстерлис и Субир Сачдев из Гарвардского университета. Как минимум, учёные обосновали ряд характерных свойств «странных металлов». Стройная теория может помочь ответить на вопросы о достижении сверхпроводимости при высоких температурах и помочь в разработке квантовых компьютеров. Квантовая механика стала тем инструментом, который помог разобраться в вопросе.

Новая теория опирается на два ключевых свойства странных металлов. Во-первых, электроны в таких металлах могут запутываться друг с другом — переходить в абсолютно идентичные квантовые состояния — и оставаться в таком состоянии даже при удалении на значительные расстояния друг от друга. Во-вторых, странные металлы имеют неоднородное, похожее на лоскутное, расположение атомов.

«Ни одно из этих свойств по отдельности не объясняет странности “странных металлов”, но в совокупности всё становится на свои места», — пояснил глава проекта.

Неравномерность атомной структуры странного металла означает, что запутанность электронов зависит от того, в каком месте материала она произошла. Такое разнообразие вносит хаотичность в импульс электронов при их движении через материал и взаимодействии друг с другом. Вместо того чтобы течь вместе, электроны сталкиваются друг с другом во всех направлениях, что приводит к электрическому сопротивлению. Поскольку электроны сталкиваются тем чаще, чем горячее материал, электрическое сопротивление растёт вместе с температурой, что и наблюдается на практике. Там где у обычных металлов происходит скачок при переходе от сверхпроводимости к резкому увеличению сопротивления, странные металлы продолжают пропускать ток с плавным увеличением сопротивления току.

Ключевым в новой теории стало то, что физики объединили два явления — запутанность и неоднородность, что раньше не рассматривалось для одного материала, а по отдельности это не приводит к странному поведению металлов. Тем самым учёные предлагают механизм по коррекции условий сверхпроводимости в странных металлах. Искусственно созданные неоднородности могут воспроизвести сверхпроводимость в нужном месте с заданными целями, что может найти применение, например, в квантовых вычислителях. Когда вы можете на что-то влиять, это способно привести к желаемому результату.

«Бывают случаи, когда что-то хочет перейти в сверхпроводящее состояние, но не может этого сделать, поскольку сверхпроводимость блокируется другим конкурирующим состоянием, — говорит Патель. — Тогда можно задаться вопросом, не может ли присутствие этих неоднородностей разрушить эти другие состояния, с которыми конкурирует сверхпроводимость, и оставить дорогу для сверхпроводимости открытой».

Учёные изобрели LionGlass — стекло, которое прочнее обычного в 10 раз

Учёные из Университета штата Пенсильвания разработали стекло LionGlass, которое выдерживает 10-кратные по сравнению с обычным стеклом нагрузки и производится со значительно сниженным уровнем выбросов углекислого газа. Будущее остекление может стать легче и прочнее, а также требовать меньших затрат на производство.

 Источник изображения: Adrienne Berard/Penn State

Источник изображения: Adrienne Berard/Penn State

Стекло сопровождает нашу цивилизацию около 5000 лет. Оно везде, начиная от оконных стёкол и заканчивая посудой. Традиционно стекло производится при плавлении смести из кварцевого песка, кальцинированной соды и известняка. Температура плавления смеси достигает 1500 °C, что сопровождается огромным потреблением энергии и сопутствующим выбросом CO2, а также повышенным износом оборудования — печей и оснастки. Кроме того, в процессе химической реакции образования стекла выделяется очень много углекислого газа. Всё вместе делает выпуск стекла экологически малопривлекательным процессом.

Учёные заменили карбонаты в составе смеси на оксид алюминия и оксиды железа. Это сразу снизило температуру плавления смеси на 300–400 °C и позволило сократить потребление энергии для плавки на 30 %. Отсутствие карбонатов в смеси также сократило образование CO2 в ходе химической реакции, что в совокупности позволяет говорить о сокращении выбросов углекислого газа при производстве стекла LionGlass на 50 % и даже сильнее.

Более того, испытание стекла LionGlass на твёрдость и растрескивание показали, что оно, как минимум, в 10 раз прочнее обычного стекла. Если по методу Виккерса обычное стекло начинает растрескиваться при нагрузке 100 граммов, то стекло LionGlass без повреждения выдержало нагрузку в 1 кг. У команды исследователей не было более тяжёлой нагрузки в составе измерительного комплекса, поэтому они не смогли определить предельную нагрузку для нового стекла.

Но даже этот результат обнадёживает. Для стекла микротрещины — это путь к быстрому разрушению. Десятикратное повышение прочности по этому показателю обещает сделать оконные стёкла и другие изделия из стекла заметно тоньше без ухудшения прочностных характеристик, а это ещё один путь к снижению затрат на производство.

Учёные подали заявку на получение патента на изобретение LionGlass. На следующем этапе они начнут искать партнёров для коммерциализации нового стекла. Параллельно они проводят эксперименты с проверкой LionGlass на устойчивость к различным условиям и химическим средам, что поможет определить сферу его применения.

В MIT придумали рецепт превращения фундамента дома в суперконденсатор — цемент нужно приправить сажей

Исследователи из Массачусетского технологического института превратили бетон в суперконденсатор с помощью одной простой добавки — сажи. Она добавляется в цемент в процессе замешивания бетона. После отвердевания получается углеродный электрод колоссальной площади, из которого можно сделать суперконденсатор. Это позволит накапливать электрическую энергию в фундаменте, стенах и других конструкциях из бетона.

 Источник изображения: MIT

Источник изображения: MIT

Новая разработка может сделать накопитель энергии неотъемлемым элементом архитектуры. Главное, что это довольно просто, хотя вопросы изготовления, эксплуатации и безопасности подобных накопителей — это пока чистый лист. Идея базируется на том, что в процессе замешивания раствора вода распределяет углеродный материал (сажу или что-то подобное) по объёму бетона в виде разветвлённых потоков от более широких к узким.

После застывания смеси в ней формируется токопроводящий электрод большой площади. Для превращения его в суперконденсатор необходимо два таких электрода, разделённых перегородкой или расстоянием. Также всё это изделие необходимо пропитать (погрузить) в обычный электролит, например, в раствор хлорида калия.

По подсчётам учёных, ёмкость такого элемента составит 10 кВт·ч для 43 м3 бетона. Это примерный объём бетона для среднего в США частного дома с подъездными дорожками и гаражами. Запасённой таким образом энергии может хватить на ночь обслуживания электричеством, что в дополнение к солнечной ферме на крыше может сделать получение энергии условно бесплатным мероприятием.

Одно из полезнейших свойств разработки — это её неограниченное масштабирование. В рамках испытаний авторы проекта создали небольшие суперконденсаторы размером с батарейки-таблетки диаметром 1 см и толщиной 1 мм, обеспечив им рабочее напряжение в 1 В. Объединив три таких суперконденсатора, они зажгли светодиод на 3 В. Теперь они постепенно увеличивают размеры элемента, продвигаясь от блока размером со стандартный автомобильный аккумулятор на 12 В к бетонному блоку на 45 м³ — он должен продемонстрировать возможность обеспечить питанием целый дом.

Учёные также обнаружили, что существует обратная зависимость между ёмкостью и прочностью материала: чем больше в нём углерода, тем больше энергии он вмещает, но бетон становится немного слабее. Это может оказаться полезным в тех областях, где бетон не служит элементом конструкции, и где его потенциал прочности не задействуется. Они установили, что для фундамента и структурных элементов ветряной турбины «золотой серединой» оказываются 10 % углеродного компонента в растворе.

Ещё одной потенциальной возможностью применения новых суперконденсаторов являются бетонные дороги, которые накапливают энергию устанавливаемых вдоль них солнечных панелей и передают её электромобилям при помощи электромагнитной индукции — аналогичным образом работает беспроводная зарядка мобильных телефонов. Подобные дороги разрабатываются в Германии и Нидерландах, но эти проекты предусматривают стандартные аккумуляторы.

На начальных этапах технология углеродно-цементных суперконденсаторов, уверены учёные, пригодится при строительстве изолированных домов, зданий и убежищ вдали от электросети. Решение предлагает большую гибкость: свойства суперконденсатора можно регулировать, изменяя соотношения компонентов в смеси. К примеру, в случаев автодорог потребуются высокие скорости зарядки и разрядки, тогда как в случае жилого дома есть целый день, чтобы достичь необходимого заряда. Наконец, этот многофункциональный материал может служить не только в качестве суперконденсатора — если подать на него электричество, он превратится в систему отопления.

Учёные скептически встретили открытие сверхпроводимости в нормальных условиях — мир ждёт факты, а не слова

Открытие сверхпроводимости при комнатных условиях стало громом среди ясного неба и его подтверждение независимыми группами изменит наш мир. В своей массе учёные пока не готовы с этим согласиться, настолько длительным и трудным был и остаётся научный путь к передаче энергии без потерь. Опрос изданием New Scientist профильных специалистов показал, что большинство исследователей встретило новость со скептицизмом.

 Левитация немагнитного материала в магнеитном поле. Источник изображения: Hyun-Tak Kim

Левитация немагнитного материала LK-99 в магнитном поле. Источник изображения: Hyun-Tak Kim

В своём интервью изданию один из авторов открытия — южнокорейский учёный Хьюн-Так Ким (Hyun-Tak Kim) из Колледжа Уильяма и Мэри в Вирджинии — сказал, что одна из размещённых на сайте arXiv статей (их там две по теме открытия) выложена без его ведома и содержит «много дефектов». Вероятно, речь идёт об этой статье, тогда как учёный участвовал в написании этой статьи. Статья за авторством Хьюн-Так Кима проходит этап рецензирования и движется к печати в одном из ведущих научных журналов мира. Вскоре это произойдёт.

В открытии материала LK-99 (буква K в его названии — это первая буква фамилии учёного, а цифра — год первого открытия материала) сыграли роль как многочисленные эксперименты, так и случайно сделанное наблюдение. Для области сверхпроводящих материалов — это норма, поскольку учёные в этой сфере во многом полагаются на удачу. Поймала ли группа Кима удачу за хвост, или нет, мы узнаем довольно быстро после полноценной публикации статьи об исследовании. Учёный обещает помочь советами любой группе, которая попытается повторить условия его эксперимента.

На самом деле, процесс создания чудо-материала очень простой. Как, возможно, напишут через десять лет в методичках для лабораторных работ по физике для 7-го класса, для получения материала необходимо смешать порошки сульфата и оксида свинца и нагреть эту смесь на воздухе до образования ланаркита. В отдельной посуде смешиваем медь и порошок фосфора и нагреваем в вакууме до образования кристаллов. Затем соединяем измельчённые кристаллы и ланаркит с последующим нагревом в вакууме. В результате получается соединение, которое парит над магнитом при комнатной температуре, что воспроизводит эффект Мейсснера (видео по ссылке).

Скептики отметили, что образец материала толщиной чуть больше миллиметра левитирует как-то однобоко, одним концом касаясь поверхности магнита. На это учёный заметил, что чистота образца оставляет желать лучшего и это можно исправить.

Измерение токовых характеристик LK-99 образца показало, что его удельное сопротивление резко падает почти до нуля при температуре 30 °С. По мере роста к критическому значению температуры 127 °С, после которого эффект сверхпроводимости прекращает своё действие, сопротивление увеличивается до заметного уже к 105 °С. Так что совсем без охлаждения новая сверхпроводимость не обойдётся. По крайней мере, на открытом воздухе для её поддержания потребуется система кондиционирования. С летающими досками как в фильме «Назад в будущее» придётся подождать, но для комнатных применений особых преград нет.

Опрошенные изданием Сюзанна Спеллер (Susannah Speller) и Крис Гровенор (Chris Grovenor) из Оксфордского университета утверждают, что когда материал становится сверхпроводящим, это должно быть чётко выражено в ряде измерений. По словам Спеллер, в опубликованных материалах она не увидела убедительных данных по изменению характеристик материала в магнитном поле и данных по изменению его теплоёмкости. «Поэтому пока рано говорить о том, что нам представлены убедительные доказательства сверхпроводимости в этих образцах», — резюмировала она (но старый свинцовый аккумулятор в утиль пока решила не сдавать, шутка).

Другие эксперты, с которыми консультировался New Scientist, также скептически отнеслись к результатам и полученным данным. Некоторые из них высказали опасение, что часть результатов может быть объяснена ошибками в экспериментальной процедуре в сочетании с несовершенством образца LK-99. Также учёные ставят под сомнение теоретическое обоснование явления, сделанное группой Кима.

«По словам Кима, он знает о скептическом отношении, но считает, что другие исследователи должны попытаться повторить работу его группы, чтобы решить этот вопрос. Как только результаты исследования будут опубликованы в рецензируемом журнале, что, по словам Кима, находится в процессе, он окажет поддержку всем, кто захочет самостоятельно создать и испытать LK-99. Пока же он и его коллеги продолжат работу над совершенствованием своих образцов предполагаемого чудо-сверхпроводника и перейдут к его серийному производству», — завершает статью источник.

Инъекция протонов превратит ферроэлектрик в основу для кремниевого «мозга»

Группа учёных во главе со специалистами из Научно-технологического университета имени короля Абдаллы (KAUST) открыла способ радикального улучшения ферроэлектрических материалов. Принудительный ввод протонов в ферроэлектрические плёнки кратно увеличил разнообразие фаз поляризации в материале. На этой основе можно создать высокоплотную компьютерную память и нейроморфные процессоры.

 Насыщение ферроэлектрика протонами в представлении художника. Источник изображений: KAUST; Fei Xue

Насыщение ферроэлектрика протонами в представлении художника. Источник изображений: KAUST; Fei Xue

Для своих экспериментов учёные взяли селенид индия, который, как и все ферроэлектрики, имеет естественную поляризацию и может менять её под воздействием магнитного поля. Эта особенность делает такие материалы привлекательными для разработки компьютерной памяти и коммутаторов (транзисторов). Но есть и ограничения — ячейки такой памяти довольно большие по объёму материала и площади, что делает такую память менее плотной.

Одно из ограничений для наращивания плотности записи ферроэлектрической памяти заключается в ограничении образования поляризационных фаз, а также со сложностью их регистрации (считывания). Учёные KAUST обошли это препятствие с помощью протонирования селенида индия или благодаря насыщению его протонами.

Для эксперимента плёнка из селенида индия была помещена на слой пористого кремния. Кремний, в свою очередь, покоился на изолирующем слое из оксида алюминия, а алюминий был нанесён на слой платины, которая играла роль одного из электродов. В этой схеме кремний работал как электролит, который доставлял протоны в плёнку селенида индия после подачи напряжения на электроды. В зависимости от полярности протоны либо мигрировали в плёнку ферроэлетктрика, либо выводились из неё.

Исследователи постепенно вводили и выводили протоны из ферроэлектрической пленки, изменяя приложенное напряжение. В результате было получено несколько ферроэлектрических фаз с различной степенью протонирования, что очень важно для реализации многоуровневых устройств памяти с большой ёмкостью. Повышение положительного напряжения усиливало протонирование, а повышение отрицательного напряжения значительно снижало его уровень.

 Экспериментальная установка

Экспериментальная установка

Также уровень насыщения протонами ферроэлектрика изменялся в зависимости от близости слоя плёнки к кремнию. Он достигал максимальных значений в нижнем слое, контактирующем с кремнием, и затем поэтапно снижался, достигая минимальных значений в верхнем слое. Сюрпризом стало то, что снятие напряжение вывело все протоны из материала и он вернулся в исходное состояние. Для энергонезависимых приборов это минус. Но в целом открытие обещает оказаться интересным — учёные смогли изменять электрические состояния материала при напряжении менее 0,4 В. Для малопотребляющей электроники — это крайне важно.

«Мы намерены разработать ферроэлектрические нейроморфные вычислительные чипы, которые будут потреблять меньше энергии и работать быстрее», — заявили учёные в статье, которую опубликовал журнал Science Advances.

Учёные случайно открыли эффект самозаживления трещин в металле

Наблюдение за пластинкой платины в вакууме с помощью электронного микроскопа, который сканировал объект 200 раз в секунду, показало, как возникающие после деформации трещины в металле зарастают сами собой без каких-либо внешних воздействий на металл. Открытие ошеломило учёных, поскольку такого ещё никто не видел. Если заживление трещин воспроизведут на воздухе, это изменит наш мир, в котором усталость металла — это аварии и бесконечные ремонты.

 Красным показано направление деформции, а зелёным — зажившая трещина. Источник изображения: Dan Thompson/Sandia National Laboratories

Красным показано направление деформации, а зелёным — зажившая трещина. Источник изображения: Sandia National Laboratories

Открытие сделала группа учёных из Национальных лабораторий Сандия и Техасского университета A&M. Они проверяли устойчивость металла к деформирующим нагрузкам на растяжение — одной из распространённых причин усталости металла, когда он идёт трещинами и в итоге разрушается. При этом кусочек подвешенной в вакууме платины толщиной 40 нм был под постоянным наблюдением просвечивающего электронного микроскопа с частотой сканирования 200 раз в секунду.

Как же удивились учёные, когда примерно через 40 минут наблюдений трещина в платине начала срастаться и затягиваться, а затем снова пошла в другом направлении.

«Это было совершенно потрясающе наблюдать воочию, — сказал один из авторов исследования, которое теперь опубликовано в Nature. — Мы, конечно, этого не ожидали. Мы подтвердили, что металлы обладают собственной естественной способностью к самовосстановлению, по крайней мере, в случае усталостного повреждения на наноуровне».

В принципе, мы давно применяем так называемую холодную сварку, но она требует давления, трения или удара. В данном случае материал трещины сошёлся на уровне кристаллической решётки сам без давления или плавления. Возможно, этому способствовало нахождение образца в вакууме, где ничто не могло загрязнить края трещины и препятствовать сближению атомов металла до начала слипания. Учёные намерены повторить эксперимент на воздухе и оценить масштабы, на которых процесс «заживления» продолжает работать. Возможно, учёные смогут найти условия, при которых металлы смогут заживлять трещины самостоятельно или при минимальном воздействии на них со стороны. По крайней мере, на это теперь есть надежда.

В России создали новый класс наноматериалов для электроники будущего — в них магнетизм соседствует со сверхпроводимостью и не только

В Курчатовском институте создали новый класс материалов на базе кремния и германия, который может стать базой для создания устройств наноэлектроники и спинтроники. Это слоистые структуры из атомарно тонких плёнок наподобие графена, только из кремния и германия. Причём производство из этих материалов можно наладить с использованием существующей промышленной инфраструктуры и установок.

 Источник изображения: Курчатовский институт

Источник изображения: Курчатовский институт

Свойства новых материалов зависят от количества монослоёв. Производство слоистых структур стало возможным благодаря разработке оригинального метода синтеза с использованием прекурсоров на основе силицена и германена (это кремниевые и германиевые плёнки толщиной в один атом кремния и германия соответственно). Материалы показали широкий спектр свойств от магнетизма с высокой подвижностью носителей заряда до сверхпроводимости.

Традиционный кремний, очевидно, подходит к своему технологическому пределу в микроэлектронике. Вместо управления токами в игру вступают квантовые эффекты, например, туннелирование электронов, что делает работу измельчавших транзисторов непредсказуемой. Для дальнейшего развития отрасли нужны новые материалы и крайне хотелось бы сохранить при этом производственную базу как можно в большем объёме. Использование в основе новых материалов привычных кремния и германия обещает как первое, так и второе.

Интеграция слоистых структур с полупроводниковой платформой обеспечивается при использовании в качестве реагентов кремниевых и германиевых подложек, а в качестве прекурсора в первом случае применяется силицен, а во втором — германен.

«Наш подход позволил создать целые классы новых материалов, обладающих различными функциональными свойствами», — сообщил руководитель проекта, ведущий научный сотрудник лаборатории новых элементов наноэлектроники Курчатовского комплекса НБИКС-природоподобных технологий Андрей Токмачёв.

В частности, тонкоплёночный материал SrAlSi на кремниевой подложке демонстрирует сверхпроводящие свойства даже при толщине в несколько монослоёв. Транспортные и магнитные измерения позволили обнаружить переход от трёхмерной сверхпроводимости к двумерной. Материалы EuAl2Ge2 и SrAl2Ge2 интересны в первую очередь высокой подвижностью носителей заряда. Подчеркнём, что до недавнего времени высокая подвижность носителей и магнетизм считались взаимоисключающими свойствами, но слоистая структура EuAl2Ge2 обеспечила возможность для их совмещения в одном материале.

«На наш взгляд, сверхпроводимость и магнетизм этих материалов позволяют существенно расширить возможности при создании устройств наноэлектроники», — прокомментировал это открытие Андрей Токмачёв.

Добавим, статьи по результатам работы учёных удостоились публикаций в высокорейтинговых научных журналах Small и Journal of Materials Science & Technology.

Санкции лишили Россию необходимых объёмов импортного литиевого сырья — власти пообещали полное импортозамещение к 2025 году

В интервью «Интерфаксу» вице-премьер, министр промышленности и торговли РФ Денис Мантуров сказал, что ожидает полного импортозамещения по литию в России к 2025 году. Эксперты считают более вероятным, что заместить импортное литиевое сырьё получится ближе к 2030 году, хотя в условиях санкций процессы действительно могут ускориться. В любом случае через несколько лет Россия будет иметь полный цикл избыточного производства лития от добычи до очистки.

 Пример продукции «РЭНЕРА». Источник изображения: «Росатом»

Пример продукции «РЭНЕРА». Источник изображения: «Росатом»

С прошлого года перерабатывающие предприятия в России получают лишь около 30 % от необходимого объёма литиевого сырья. Основными поставщиками литиевого сырья (карбоната лития) были Чили (50 %), Аргентина (35 %) и Китай (12 %). Первые две страны отменили поставки из-за введённых в 2022 году санкций против России. Китай продолжает поставки, но сам испытывает дефицит этого сырья и, как минимум, не может увеличить объёмы отгрузки. Кроме Китая литиевое сырьё в Россию поставляет Боливия и сегодня, по-видимому, это основной поставщик этого материала.

Литий нужен для производства аккумуляторов для электромобилей и для выпуска электроники. Но в основном он расходуется на батареи для электромобилей, парк которых растёт не по дням, а по часам. На данный момент в России необходимые месторождения не разрабатываются, и это упущение власти надеются ликвидировать со всей возможной скоростью.

По словам Мантурова, в текущем году может начаться опытно-промышленная отработка техногенных отвалов Завитинского литиевого месторождения в Забайкальском крае. Другие проекты ожидают своей реализации на Талангуйской перспективной площади в Забайкалье и на Ярактинском нефтегазоконденсатном месторождении. Нынешнее заявление о полном импортозамещении литиевого сырья российским к 2025 году отличается от предыдущих высказываний представителей властей.

Так, в апреле директор департамента металлургии Минпромторга Владислав Васильев говорил журналистам, что закрыть потребности России в литии за счёт организации его производства внутри страны планируется к 2030 г. Как пояснили «Ведомости», он уточнял, что к 2026 г. планируется запустить первый проект по производству литиевого сырья, но к этому времени «еще импортонезависимости не будет» — она будет достигнута через три года после этого.

Стратегия развития металлургической промышленности РФ до 2030 года предполагает, что потребности России в литии должны быть обеспечены за счет добычи в 2023–2030 годах на Колмозерском («Полярный литий» — СП «Норникеля» и «Росатома»), Полмостундровском (разработчики — «ТД Халмек» и Химико-металлургический завод), Ковыктинском («Газпром»), Ярактинском (Иркутская нефтяная компания) и Завитинском месторождениях.

Месторождение Колмозерское в Мурманской области может считаться крупнейшим в России по запасам лития — до 75 млн т. Осваивать его будет «Полярный литий», который заплатил за это 1,7 млрд руб. Объект ежегодно будет выдавать 45 тыс. т карбоната и гидроксида лития, но выход на проектную мощность ожидается не ранее 2030 года. На Полмостундровском месторождении тоже в Мурманской области опытно-промышленная эксплуатация начнётся в этом году с добычи 1000 т карбоната лития в год. К 2026 году объёмы будут увеличены до 20 тыс. т в год. Всего потребности России в литии к 2030 году оцениваются в 85 тыс. т в год.

Переработкой литиевого сырья в чистый металл занимаются такие предприятия, как Химико-металлургический завод в Красноярске, Новосибирский завод химических концентратов (входит в «Росатом») и «Халмек» в Тульской области. Продукция в основном производилась на экспорт. Для потребления лития внутри России в Калининградской области структура «Росатома» «Рэнера» (входит в АО ТВЭЛ) собирается строить завод для производства литиевых аккумуляторных ячеек по южнокорейским технологиям. Завод будет потреблять около 3000–4000 т сырья в год в пересчёте на карбонат лития. До санкций Россия ежегодно завозила до 7500 т карбоната лития. Возможно, к 2025 году потребности калининградского завода действительно закроют отечественным сырьём.

С учётом планов реализации электромобилей потребность России в литии к 2030 году может достичь 30–50 тыс. т в год. Ещё 10 % спроса добавит производство электроники. Во всём мире спрос на литий будет просто огромный, что оставит пространство для продажи излишков за рубеж — в основном в Китай и страны Юго-Восточной Азии.

В США получили Q-кремний — новый магнитный материал для квантовых компьютеров и чипов на спинтронике

Основа микроэлектроники — кремний — может продолжить жизнь в эпоху квантовых компьютеров, заявили учёные из США. Для этого они получили новый материал из аморфного кремния, который назвали Q-кремний. Необычной особенностью Q-кремний стала намагниченность при комнатной температуре, что открывает путь к использованию в электронике спинов электронов вместо зарядов.

 Источник изображения: Pixabay

Источник изображения: Pixabay

Открытие сделали учёные из Университета штата Северная Каролина (NCSU). Они облучали обычный аморфный кремний короткими (наносекундными), но мощными лазерными импульсами. Кремний плавился и быстро подвергался охлаждению. После такой процедуры «закаливания» получался материал с нетипичными для кремния свойствами — он начинал магнититься без приложения внешнего магнитного поля. Иначе говоря, кремний превращался в ферромагнетик при комнатной температуре.

Подобное свойство может помочь объединить в одном кремниевом чипе обычные электронные цепи и цепи, построенные на работе с магнитным моментом электрона. Это молодой раздел электроники, и он называется спинтроника. К преимуществам спинтроники можно отнести высочайшую энергоэффективность, поскольку цепи оперируют не токами с их высокими потерями мощности, которая рассеивается теплом, а спинами электронов. Также спинтроника обещает лечь в основу квантовых компьютеров, которые используют магнитный момент электрона как кубит.

О своей работе учёные сообщили в журнале Material Research Letters. Принесёт ли Q-кремний практическую ценность или нет, это современной науке неизвестно. Будем надеяться, что открытие окажется полезным.

Австралийцы создали полностью прозрачный для инфракрасных лучей пластик — из него можно делать IR-линзы и недорогие объективы

Исследователи из Университета Флиндерса (Австралия) создали новый недорогой полимер, который позволяет изготавливать линзы и объективы для приборов ночного видения. Открытие способно многое изменить в индустрии тепловизоров, а они нужны как для военного, так и гражданского применения.

 Источник изображений: Advanced Optical Materials

Источник изображений: Advanced Optical Materials

Сегодня линзы и объективы для IR-камер изготавливают фрезеровкой из таких материалов, как германий и халькогенидные стёкла. Это длительная процедура и затратные материалы. Стоимость линз из германия может достигать тысячи долларов США. К тому же, халькогенидные стёкла обычно содержат такие токсичные вещества, как мышьяк или селен. Предложенный австралийцами полимер синтезируется из обычной серы и циклопентадиена — материалов, которые получаются при рядовой переработке и очистке нефти.

Как утверждают учёные, созданный ими пластик обладает самой большой прозрачностью для инфракрасных волн длинноволнового участка из обнаруженных сегодня материалов. Он позволяет не только защищать объективы инфракрасных камер, камуфлируя их и просто закрывая от пыли, но также способен преломлять лучи инфракрасного диапазона. Иначе говоря, из него простой штамповкой или литьём можно изготавливать линзы и, в конечном итоге, собирать их в объективы.

 Разные варианты линз из нового полимера: увеличительная, уменьшающая и линза Френеля

Разные варианты линз из нового полимера: увеличительная, уменьшающая и линза Френеля

Один грамм нового пластика стоит один цент. Цена на объективы из него будет копеечная, что позволит широко использовать IR-объективы в гражданских целях от машинного зрения до камер наблюдения и смартфонов, о чём авторы сообщили в статье в журнале Advanced Optical Materials.

Впервые получено рентгеновское изображение одиночного атома

Учёные впервые получили рентгеновское изображение одиночного атома, выделив его среди сотен тысяч других рядом с ним. Подобно обычным рентгеновским снимкам из поликлиники, индивидуальная рентгеновская картинка атома может многое рассказать о нём, а это выведет анализ материалов и веществ на невероятный уровень и способно самым сильным образом повлиять на нашу с вами жизнь.

 Источник изображения: Saw-Wai Hla

Источник изображения: Saw-Wai Hla

Учёные достаточно давно научились получать изображения отдельных атомов с помощью электронно-силовой микроскопии, но распознать в них отдельные химические элементы и тем более узнавать об их химической активности — это оставалось далеко за пределами мечтаний. Новый метод позволяет не только узнать атом какого элемента мы обнаружили, но также даёт информацию о его взаимодействии с другими элементами и то, насколько оно сильное.

Чувствительность аналитических приборов к одиночным атомам невозможно переоценить. Это может перевернуть мир, считают разработчики метода. Исследователи в области материаловедения и биохимии смогут узнать об образцах абсолютно всё, что поможет в поиске лекарств и в создании материалов с массой удивительных свойств.

 Изображение кольцеобразной супрамолекулы, в которой во всем кольце присутствует только один атом Fe.

Изображение молекулы с единственным атомом железа

Работу по исследованию свойств одиночных атомов представили химики из Китая, США и Франции. Статья вышла в издании Nature. Для эксперимента использовался синхротрон APS в Аргоннской национальной лаборатории. С его помощью проводился рентгеноструктурный анализ образцов и, собственно, отдельных атомов.

Современная наука дошла до того, что рентгеноструктурный анализ определяет химические свойства веществ при исследовании как минимум 10 000 атомов в образце. Новая методика улучшает детектирование на четыре порядка, что кажется просто невероятным. Тем не менее, в образцах с ионами железа и катионами тербия учёные смогли уверенно детектировать сигналы от отдельных атомов железа и тербия. Более того, они получили из сигнала информацию о степени химической активности каждого из атомов и то, насколько сильно они взаимодействовали с окружающими их атомами других веществ.

 Слева изображение молекулы с единчтвенным атомом железа, а справа кривая тока через детектор, обнаруживающая железо и его химическую активность

Слева изображение молекулы с единственным атомом железа, а справа кривая тока через детектор, обнаруживающая железо и его химическую активность

Процесс анализа выглядел следующим образом. К образцу подводили кончик тончайшего зонда детектора и вели им над материалом в такой близости, чтобы электроны могли туннелировать с атомов на детектор (это расстояние в пределах нанометра). Сами электроны или, точнее — фотоэлектроны, выбивались рентгеновским излучением из атомов в образце. Поскольку электроны выбивались из так называемых остовных или нижних уровней, то по пути к детектору они проходили сквозь верхние орбитали и фактически собирали информацию о химической активности конкретного атома и о самом атоме. Атомы железа и тербия были надёжно детектированы этим методом, но для практического внедрения, вероятно, дело дойдёт ещё не скоро.

В США открыт неизвестный ранее путь для преобразования тепла в электричество

Сегодня выработка электроэнергии сопровождается выбросом огромного количества тепла в окружающее пространство. Заманчиво обернуть эти потери себе на пользу, но современные технологии предлагают решения с очень низкой эффективностью — всего лишь единицы процентов. В США учёные создали метаматериал, который сулит значительное повышение эффективности такого преобразования.

 Наностолбцы на кремнии под электронным микроскопом. Источник изображения: Advanced Materials

Наностолбцы на кремнии под электронным микроскопом. Источник изображения: Advanced Materials

Термоэлектрический эффект — появление разности потенциалов на концах двух последовательно соединённых разнородных проводников при условии наличия разницы в температуре между обоими — двести лет назад открыл физик Томас Зеебек (Thomas Seebeck). Эффект назван его именем. Для эффективного преобразования тепла в электричество требуется, чтобы материал хорошо проводил электроны и плохо проводил тепло. Тогда на его концах будет большая разница температур и, как результат, высокий КПД. К сожалению, в природе такие материалы не встречаются. Если материал хорошо проводит ток, то он ровно так же хорошо будет проводить тепло, и наоборот.

Исследователи из Национального института стандартов и технологий (NIST) создали метаматериал, который хорошо проводит электроны и плохо проводит тепло. Следует сказать, что тепло в телах с твёрдой кристаллической решёткой передают квазичастицы фононы. И пусть они не настоящие частицы, но они точно так же подчинены корпускулярно-волновой теории — одновременно являются и частицами, и волной. Новый метаматериал использует волновые свойства фононов, чтобы повлиять на скорость их распространения в материале.

Структурно новый метаматериал представляет собой лист кремния, на котором выращивают нанокристаллы из нитрида галлия. Затем кремниевую подложку истончают до требуемой толщины. Получается следующее. Когда тепло передаётся от одного края листа до другого, оно передаётся также посредством наностолбцов. В столбиках возникают стоячие волны с периодом, значение которого диктует их форма — узкий столбец. Эти волны намного-намного короче волны фононов, которая свободно распространяется в кремнии. Оказалось, что стоячие волны в наностолбцах резонируют с волнами фононов в кремнии, заставляя фононы в кремнии подстраивать свою длину волны под «запертую».

 Источник изображения: NIST

Источник изображения: NIST

В результате эксперимента, о котором рассказано в журнале Advanced Materials, учёные смогли уменьшить теплопроводность кремния на 21 % без ухудшения его электропроводности. Физики надеются, что вскоре смогут представить решение с высокой скоростью преобразования тепла в электричество, что откроет путь к новым термоэлектрическим приборам или позволит создать более эффективные радиаторы для электроники.

«Во всём виноват катод»: учёные определили, откуда у твердотельных литиевых аккумуляторов растут дендриты

Учёные из Института им. Макса Планка (MPI-P) исследовали микроструктуру твердотельных литиевых аккумуляторов, вдохновившись наблюдением за ростом сталактитов и сталагмитов в пещерах. Первые растут сверху, а вторые — снизу. Похожим образом в твердотельных батареях растут дендриты из металлического лития. Но прежде никто не изучал вопросы, на каком электроде начинается рост дендритов и что его к этому подталкивает и, главное, как этого избежать.

 Поиски корней дендритов в электродах батарей. Источник изображения: Xue Zhang / MPI-P

Поиски корней дендритов в электродах батарей. Источник изображения: Xue Zhang / MPI-P

Команда исследователей MPI-P из департамента Ганса-Юргена Бутта (Hans-Jürgen Butt) в деталях изучила атомное строение твердотельных электролитов и электродов от физического строения до карты распределения электронов в кристаллической решётке. В качестве основного инструмента использовался метод зондовой силовой микроскопии Кельвина (KPFM). Подход позволяет создать карту распределения зёрен кристаллов в поликристаллических материалах и отобразить межзёренные границы. Также KPFM даёт возможность измерить потенциалы на поверхности материала (оценить величину заряда).

Выяснилось, что на межзёренных границах отрицательного электрода (на катоде) в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны. При прохождении через такие скопления ионов лития (что происходит в момент зарядки и разрядки аккумуляторов) они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались.

Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания. Своими выводами учёные поделились в статье в журнале Nature Communications, которая свободна доступна по этой ссылке.

Следствием проделанной работы может стать появление намного более безопасных и долговечных батарей с твёрдым электролитом, которые будут невоспламеняемые и более энергоёмкие, чем привычные литиевые аккумуляторы с жидким электролитом.

В России раскрыли загадку удивительных оптических свойств перовскитов и объяснили, как этим пользоваться для оптоэлектроники

Совместная работа учёных МФТИ, МИСИС и ИТМО позволила в деталях объяснить появление уникальных оптических свойств у кристаллов перовскита. Это один из самых перспективных материалов для оптоэлектроники будущего, понимание основ работы с которым даёт базу для создания компонентов и решений с заданными свойствами. Работа исследователей опубликована в журнале Nano Letters и доступна по ссылке.

 Источник изображения: НИТУ МИСИС

Источник изображения: НИТУ МИСИС

Ранее научные коллективы во всём мире сталкивались с тем, что оптические свойства перовскитов проявляли себя не всегда или с разным значением. Речь идёт о зависимости оптических свойств кристаллов перовскитов от выбранного направления, что называется анизотропией. Это необходимо учитывать для создания волноводов, поляризаторов, нанолазеров и других оптических приборов. В одних случаях на выращенных кристаллах анизотропия проявлялась, а в других отсутствовала. Российские учёные выяснили, в чём кроется проблема.

«Форма кристаллов перовскитов определяет степень анизотропии. Если они в плоскости выросли квадратными, то они не будут проявлять анизотропных свойств, а если они стали прямоугольными, то перовскит будут анизотропным. Это удобно — просто взглянул на форму перовскита и понял, какие у него будут оптические свойства», — пояснил научный сотрудник Центра фотоники и двумерных материалов МФТИ Георгий Ермолаев.

Иначе говоря, российские исследователи на примере перовскита из свинца, цезия и бора (CsPbBr3) нашли и описали взаимосвязь зависимости анизотропии выращенных кристаллов от условий выращивания и конечной формы кристаллов. Это позволит не бродить в темноте, наугад создавая тот или иной образец перовскитов для экспериментов, а целенаправленно выращивать кристаллы с заданными оптическими свойствами, что, кстати, является одним из основных критериев для массового производства.

Кроме того, учёные обнаружили, что при определённых условиях перовскиты обладают рекордно высоким уровнем оптической анизотропии для всех известных трёхмерных материалов. Это позволяет использовать перовскиты для создания высокоэффективных волноводов и других устройств, позволяющих управлять движением света, что крайне важно для создания оптических аналогов электроники.

«Мы уверены, что перовскиты станут основой посткремниевой электроники. В Лаборатории солнечной энергетики НИТУ МИСИС реализован процесс роста монокристаллов CsPbBr3 и устройств на их основе. Мы работаем над новыми разновидностями перовскитных кристаллов для оптоэлектронного применения и благодарны коллегам из ИТМО и МФТИ за сотрудничество в сложном и интересном исследовательском проекте», — отметил ведущий инженер Лаборатории перспективной солнечной энергетики Университета МИСИС Артур Иштеев.


window-new
Soft
Hard
Тренды 🔥
Apple заявила, что никогда не продавала данные из диалогов с Siri рекламодателям 53 мин.
Спустя 15 лет после анонса экранизация Shadow of the Colossus от режиссёра «Оно» подала признаки жизни 2 ч.
Hitman: World of Assassination и другие игры IO Interactive сняли с продажи в российском Steam и Epic Games Store 13 ч.
Выходцы из Annapurna Interactive завладели портфолио Private Division, включая Kerbal Space Program 2 и загадочную игру от авторов «Покемонов» 14 ч.
Gravelord ворвётся в ранний доступ Steam уже совсем скоро — дата выхода и новый трейлер олдскульного шутера о гробовщике в духе Quake и Duke Nukem 16 ч.
Суд оштрафовал Еврокомиссию за нарушение собственного закона 16 ч.
Game Pass «съел» до 80 % чистых продаж Indiana Jones and the Great Circle и Starfield на Xbox 17 ч.
Мечта мертва: создатель Minecraft передумал делать свою Minecraft 2 18 ч.
Microsoft намерена объединить «лучшее из Xbox и Windows» для портативных консолей 19 ч.
Дракула и Доктор Дум против Фантастической четвёрки: первый сезон Marvel Rivals погрузит Нью-Йорк в вечную ночь 21 ч.