Сегодня 19 марта 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → наука
Быстрый переход

Китай усилит поддержку науки и привлечёт иностранные инвестиции для достижения технологического суверенитета

В условиях ужесточаемых санкций США и их союзников китайским компаниям не так просто добиваться успехов в сфере высоких технологий, поэтому власти КНР решили не только увеличить субсидирование национальной науки, но смягчить условия привлечения иностранных инвестиций в приоритетные отрасли экономики Китая. Главная задача всех этих мер — обеспечить технологический суверенитет страны.

 Источник изображения: SMIC

Источник изображения: SMIC

Власти КНР призвали к общей мобилизации ресурсов для достижения поставленной цели. В свою очередь, правительство готово увеличить субсидирование национальной науки, в текущем году бюджет на поддержку исследовательских проектов в сфере высоких технологий будет увеличен на 10 % до $51,5 млрд. Компаниям, которые демонстрируют хорошие результаты в стратегически важных отраслях китайской экономики, будет предоставляться финансовая поддержка. На поддержку фундаментальных научных исследований в прошлом году в целом власти Китая потратили $458 млрд, что соответствует 2,6 % ВВП страны.

Выступая перед китайскими парламентариями, премьер-министр КНР Ли Цян (Li Qiang) заявил, что нужно мобилизовать не только научные ресурсы, но и привлечь к этому процессу негосударственные источники, чтобы добиться прорыва в ключевых технологических сферах. Одновременно предлагается упростить доступ иностранных инвесторов на китайский рынок, чтобы обеспечить приток капитала в сферу естественных наук и производства высокотехнологичной продукции. Квантовые вычисления, искусственный интеллект, медицина и биотехнологии, аэрокосмическая сфера — вот те области китайской экономики, в которые власти страны желают упростить доступ иностранного капитала. Попутно планируется разработать меры поддержки молодых учёных в приоритетных отраслях и привлечения в них новых кадров.

Новая статья: От плавников к кольцам и далее к КМОП: перипетии транзисторной эволюции

Данные берутся из публикации От плавников к кольцам и далее к КМОП: перипетии транзисторной эволюции

Учёные открыли новый тип сверхпроводимости в экзотическом материале, похожем на кристалл-сэндвич

Группа физиков из Университета Вашингтона и Министерства энергетики США (DOE), похоже, открыла новую, контролируемую разновидность сверхпроводимости в экзотическом материале, похожем на кристалл. Его сверхпроводимость можно менять в зависимости от приложенной к нему деформации, вплоть до полного отключения. Одновременно с этим, по всей видимости, был побит рекорд по тому, насколько «горячим» может быть сверхпроводник с полевым эффектом, прежде чем он потеряет способность проводить электричество, не встречая никакого сопротивления.

 Источник изображения: Henry Mühlpfordt, Wikipedia

Источник изображения: Henry Mühlpfordt, Wikipedia

В научной статье, опубликованной в журнале Science Advances, описывается синтетический кристаллоподобный сэндвич из ферромагнитного (европий) и сверхпроводящего материалов (арсенид железа), который демонстрирует возникающую сверхпроводимость при помещении вблизи достаточно сильного магнитного поля. Легированный кристалл EuFe2As2, а именно так называется материал из-за добавления молекул кобальта в процессе синтеза, использует преимущества сильного ферромагнетизма европия (Eu), чередующегося со сверхпроводящими слоями FeAs (арсенида железа) в конфигурации, напоминающей сэндвич.

В результате получается так называемый настраиваемый магнитным полем сверхпроводник — его сверхпроводимость можно активировать с помощью внешних магнитных полей. В случае легированного кристалла EuFe2As2 (с использованием специализированного оборудования и комбинации рентгеновских методов) исследовательская группа показала, как правильно выровненное внешнее магнитное поле уравновешивает магнитные поля, исходящие от ферромагнитных европиевых слоёв. Это позволяет переориентировать их — и как только первоначально хаотичные магнитные поля становятся параллельными сверхпроводящим, возникает состояние материи с нулевым сопротивлением.

Но у легированного кристалла EuFe2As2 есть ещё одно интересное свойство: его сверхпроводящие способности можно отключить даже в достаточно сильном магнитном поле. Всё, что для этого нужно, — деформировать материал с помощью криогенного тензорезистора — приложить давление с одной стороны (одноосное) с помощью специального промышленного поршня, сертифицированного для научных измерений. При этом изменяется степень сопротивления электронов при прохождении через него. При определённых уровнях деформации сверхпроводимость синтетического материала может быть повышена настолько, что для перехода в сверхпроводящее состояние не требуется внешнее магнитное поле. Но после определённого момента даже избыточное давление уже не позволяет запустить процесс.

 Легированный кобальтом EuFe2As2 состоит из слоев ферромагнитных атомов (синий) и сверхпроводящих атомов (золотой). (B) Приложение небольшого магнитного поля вызывает сверхпроводимость, а (C) приложение деформации может вызывать или подавлять сверхпроводимость. Источник изображения: Argonne National Lab / University of Washington

Легированный кобальтом EuFe2As2 состоит из слоев ферромагнитных атомов (синий) и сверхпроводящих атомов (золотой). (B) Приложение небольшого магнитного поля вызывает сверхпроводимость, а (C) приложение деформации может вызывать или подавлять сверхпроводимость. Источник изображения: Argonne National Lab / University of Washington

Исследователи отметили трудности в процессе синтеза. Так, группа не смогла определить, что помешало получить в результате синтеза стабильные образцы EuFe2As2, легированного кобальтом; вместо этого они сообщили о «значительной вариативности образцов», где под вариативностью понимается наличие или отсутствие сверхпроводимости, вызванной полем. Исследователи также указали, что трудности, скорее всего, возникли на этапе легирования кобальтом, что подтверждает, насколько сложно контролировать квантовые процессы (например, химические реакции) на уровне точности, которого требуют некоторые из этих синтетических материалов, являющихся носителями сверхпроводимости.

Тонкие, субатомные изменения и взаимодействия элементов — это действительно всё, что требуется для превращения материала из полупроводника в сверхпроводник. Но за этой простотой скрывается сложное взаимодействие элементов, частиц и субатомных частиц, спинов, магнитных полей и многих других параметров, которые должны быть строго такими, как нужно — или, в случае с образцами в исследовании, находится при температуре между 4 и 10 Кельвинами.

Такой уровень разрешения и контроля за моментом «выключения» сверхпроводимости (что то же самое, что и момент «включения», но в особом, квантовом смысле) должен дать бесценные сведения о квантовой физике сверхпроводимости. По крайней мере, вновь открытый сверхпроводник может стать испытательным стендом для лучшего понимания самой сверхпроводимости. Исследование подводит к возможности увидеть молекулярный переход от обычной материи к её сверхпроводящей фазе и должна повысить нашу способность контролировать этот эффект и извлекать из него дальнейшую пользу. К примеру, это открытие может найти применение в сверхпроводящих цепях для промышленной электроники следующего поколения.

Власти США создадут 31 «наукоград» для развития перспективных технологий

Так называемый «Закон о чипах» США подразумевает выделение государственных субсидий не только на строительство предприятий по выпуску полупроводниковой продукции, но и на стимулирование разработок в различных отраслях. Сейчас американские чиновники уже выделили 31 «точку роста» на карте США, которая получит целевые субсидии.

 Источник изображения: Intel

Источник изображения: Intel

Как подчеркнула в ходе общения с прессой министр торговли США Джина Раймондо (Gina Raimondo), по информации Reuters, перед властями страны стоит задача диверсифицировать центры работы над инновациями по географическому признаку, хотя сейчас они сконцентрированы преимущественно в Калифорнии, Сиэтле и Бостоне. «(Существующие инновационные хабы) не отображают полного потенциала нашей страны. Они не позволяют захватить рынок за счёт великолепных идей», — пояснила Джина Раймондо.

Новые технопарки будут сосредоточены на широком спектре технологических областей, включая квантовые вычисления, искусственный интеллект, чистую энергетику, медицину и биотехнологии. Финансируя более мелкие хабы в регионах страны, власти США рассчитывают привлечь деньги частного сектора в развитие отраслей, связанных с выпуском тяговых батарей для электромобилей, полупроводниковых компонентов и источников «чистой» энергии. Из 370 претендентов был отобран 31 региональный хаб, который сможет получать субсидии со следующего года в размере до $75 млн в год. В общей сложности правительство США хочет в следующем году выделить на поддержку региональных инноваций $500 млн, охватив субсидиями от 5 до 10 штук из 31 хаба.

Некоторые из этих технопарков находятся в Монтане, Висконсине, Нью-Йорке, Вермонте, Неваде, Иллинойсе и даже Пуэрто-Рико. Помимо полупроводникового направления, будут финансироваться альтернативная энергетика, добыча и переработка минералов, биотехнологии, искусственный интеллект и квантовые вычисления. Многие из хабов будут расположены в небольших городах. По словам министра торговли США, это позволит людям не менять место жительства ради получения хорошей работы.

Хабы в Вашингтоне и Айдахо будут концентрироваться на создании новых конструкционных материалов для производства более экономичных авиалайнеров, хаб в Оклахоме займётся созданием систем автопилота для сельского и коммунального хозяйства, а в Висконсине будет создаваться программа индивидуальной медицинской помощи. При этом не факт, что все из 31 хаба по итогу получат государственное финансирование. Если парламентарии одобрят выделение дополнительного бюджета на субсидирование инновационных хабов в США, то они получат ещё $4 млрд в дополнение к уже выделенным $500 млн.

Новая статья: Программируемая материя и 4D-печать: приближение к «умной пыли»

Данные берутся из публикации Программируемая материя и 4D-печать: приближение к «умной пыли»

Новая статья: Цифровые биосенсоры: органы киберчувств

Данные берутся из публикации Цифровые биосенсоры: органы киберчувств

Новая статья: «Википедия», подвинься! Подборка научных электронных журналов различной тематики и направленности

Данные берутся из публикации «Википедия», подвинься! Подборка научных электронных журналов различной тематики и направленности

Российская автоматическая лунная станция «Луна-25» прошла наземные испытания — её запуск состоится в августе

Завершены наземные испытания нового российского космического аппарата — автоматической станции «Луна-25», которая предназначена для первого в истории современной России полёта на Луну с посадкой на поверхность небесного тела. Запуск «Луны-25» запланирован на август 2023 года.

Испытания

Испытания «Луны-25». Источник изображения: Институт космических исследований РАН

Как сообщают в пресс-службе НПО имени С. А. Лавочкина, изготовившего станцию, завершены не только наземные испытания самого аппарата — наземный комплекс управления также готов к миссии. Вероятность успеха «Луны-25» оценивается в не менее чем 80 %.

Как сообщает ТАСС, в ходе миссии «Луна-25» автоматическую зонд-станцию отправят для исследований в районе южного полюса спутника Земли. Учёные рассчитывают организовать посадку вблизи кратера Богуславского. Ранее в ГК «Роскосмос» сообщали, что старт миссии пришлось перенести с июля на август 2023 года. Утверждается, что такие меры приняты для достижения необходимой надёжности реализации проекта. В частности, речь шла об обеспечении «устойчивой работы наземных средств управления» в ходе коррекций с Земли и на этапе посадки модуля на поверхность Луны.

Как сообщает сайт Института космических исследований РАН, основными целями миссии «Луна-25» являются непосредственно полёт до Луны, мягкая посадка в её Южной приполярной области, проверка работы аппарата на поверхности и его выживания лунной ночью для обеспечения работы бортовой и научной аппаратуры в течение года, а также исследование состава и строения реголита и экзосферы спутника Земли дистанционными и контактными методами.

В Техасе стартовала миссия CHAPEA, организованная NASA — она имитирует выживание на марсианской базе в течение года

Четыре «аналоговых астронавта», как их называют в NASA, проведут следующие 12 месяцев на закрытой имитации марсианской базы в рамках миссии Crew Health and Performance Exploration Analog (CHAPEA). В течение года за их состоянием и другими показателями будут дистанционно наблюдать учёные — это очень поможет в создании реальной базы на Марсе, когда придёт соответствующее время.

 Брокуэлл, Хастон и Джонс. Источник изображения: NASA

Брокуэлл, Хастон и Джонс. Источник изображения: NASA

Первый эксперимент Mission 1 уже начался 26 июня (в 02:30 по московскому времени, 19:30 EDT 25 июня). Расположенная в Техасе база площадью 158 м2 представляет собой отпечатанную на 3D-принтере конструкцию, которую «аналоговые астронавты» не будут покидать приблизительно в течение года, за исключением случаев, когда им понадобится выполнять «прогулки по Марсу» в закрытой «песочнице» площадью 111 м2 — до 7 июля 2024 года. Всего люди проведут в изоляции 378 дней. Проводятся и другие эксперименты подобного рода, в ходе которых собираются ценные данные.

 Источник изображения: NASA

Источник изображения: NASA

К потенциальным участникам команды при отборе предъявлялись серьёзные требования — они должны были иметь научную степень в одной из различных дисциплин, а также профессиональный опыт, соответствующий образованию, опыт пилотирования или военную подготовку. Кроме того, участникам предстояло пройти ряд физических и психологических тестов. Руководителем миссии является Келли Хастон (Kelly Haston), занимающаяся изучением заболеваний человека, инженер-строитель Росс Брокуэлл (Ross Brockwell) будет выполнять функции бортинженера, а Натан Джонс (Nathan Jones) является медицинским специалистом. Наконец, Анка Селариу (Anca Selariu) служит микробиологом в морской пехоте США и будет выполнять роль научного сотрудника.

Участникам миссии не просто придётся выживать вместе в замкнутом помещении более года, но и адаптироваться к некоторым изменениям в «сценарии». Известно, что астронавтов ограничат в ресурсах и создадут им «реалистичные», насколько это возможно, условия — количество продуктов питания будет лимитировано, связь будет осуществляться с задержкой, будет возникать «непредвиденные обстоятельства» различного характера. Контроль миссии будет осуществляться круглосуточно, но сообщения от базы Mars Dune Alpha будут приходить через 22 минуты — именно столько будет уходить у настоящих марсианских колонистов для связи с Землёй. Команда будет употреблять в пищу специально приготовленную еду длительного хранения. К счастью, поскольку имитировать марсианскую гравитацию в 38 % земной невозможно, использовать специальный туалет не придётся. Кроме того, команда будет придерживаться земного, а не марсианского времени. Как известно, если на Земле сутки длятся 24 часа, то на Красной планете местные дни — «солы», длятся приблизительно 24 часа 39 минут 35 секунд.

В остальном команда CHAPEA будет жить точно так же, как жила бы на Марсе — принимая участие в специальных мероприятиях, проводя «научные исследования» и поддерживая работу системы жизнеобеспечения, а также выращивая свежие продукты. Кроме того, людям будут регулярно создавать проблемы, на которые им придётся реагировать, хотя какие именно — в NASA не уточняют.

Эксперимент далеко не первый в США. Например, ещё в 2017 году организовали «изоляционный» проект HI-SEAS на Гавайях, а в прошлом году в NASA сообщили, что будут использовать для тренировок виртуальную реальность на движке Unreal Engine 5.

Зонд BepiColombo прислал фото и видео испещрённого кратерами Меркурия — они сделаны с расстояния всего 236 км

Результат сотрудничества Евросоюза и Японии — зонд BepiColombo, предназначенный для изучения Меркурия, — совершил близкий пролёт мимо планеты 19 июня, сняв поверхность, испещрённую кратерами. В ходе миссии были получены как фото, так и видеоматериалы.

 Источник изображения: ESA

Источник изображения: ESA

Совместная европейско-японская миссия стартовала в 2018 году. В ходе путешествия BepiColombo полагается на гравитацию Земли, Венеры и Меркурия, чтобы замедлиться достаточно для того, чтобы перейти с орбиты вокруг Солнца на орбиту вокруг Меркурия в 2025 году. Последний из подобных, рассчитанных с учётом гравитации манёвров имел место в понедельник — BepiColombo пролетел в 236 км от поверхности Меркурия. Учёные использовали возможность для съёмки его поверхности.

Европейское космическое агентство (ESA) опубликовало первые из снимков менее чем через 24 часа после максимального сближения, состоявшегося в понедельник, в 22:34 по московскому времени. На снимках видны кратеры, древние вулканические выступы и застывшие потоки лавы, а также кратер, только что получивший название в честь ямайской и британской художницы Эдны Мэнли (Edna Manley) — он будет представлять интерес для учёных в будущем из-за разнообразных следов вулканической активности.

 Источник изображения: ESA

Источник изображения: ESA

Кроме того, космический аппарат снял систему уступов Beagle Rupes, простирающуюся на 600 км, она сформировалась миллиарды лет назад в ходе охлаждения и деформации коры Меркурия. Система была открыта ещё в прошлом десятилетии и теперь учёные намерены сравнить старые снимки NASA с теми, что сделаны BepiColombo. Также на фото имеются ударные кратеры с застывшей лавой — они появились в первый миллиард лет существования планеты, когда она была всё ещё очень тектонически активной. По мнению учёных, регион очень интересен, поскольку демонстрирует следы сложных взаимодействий, которые происходили, когда планета остывала и буквально сжималась, в результате чего рельеф на поверхности заметно менялся — в дальнейшем следы этих процессов будут изучаться с орбиты.

В ходе выполнения миссии BepiColombo используется два орбитальных модуля, соединённых друг с другом — европейский и японский. Сейчас доступны изображения с трёх камер со скромным разрешением 1024 × 1024 пикселя. Основные камеры орбитального аппарата с высоким разрешением, к сожалению, пока недоступны.

Космический аппарат использует вспомогательные камеры для отправки на Землю «открыток» — в 2020 году он посылал их при облёте Земли, в 2020 и 2021 годах — при облёте Венеры и в 2021 и 2022 годах — при облёте Меркурия. В ближайшие годы стоит ожидать новых снимков Меркурия, а в декабре 2025 года аппарат наконец должен окончательно выйти на орбиту вокруг планеты.

Сегодня зонд BepiColombo пролетит над Меркурием на расстоянии всего 240 км

Сегодня зонд Европейского космического агентства (ESA) BepiColombo совершит очередной гравитационный манёвр около своей целевой планеты — Меркурия. Манёвр поможет космическому аппарату снизить скорость, чтобы через два с половиной года выйти на орбиту Меркурия.

 Источник изображений: ESA

Источник изображений: ESA

Это будет третий пролёт BepiColombo мимо Меркурия, и в 22:34 по МСК космический аппарат пронесётся мимо планеты на крайне близком расстоянии всего в 236 км. Это ближе, чем орбита двух орбитальных аппаратов зонда, которые отделятся от него во время основной миссии. Однако главная цель пролёта заключается не в том, чтобы сделать потрясающие крупные планы поверхности Меркурия, а в том, чтобы замедлить зонд с помощью гравитации Меркурия, чтобы он мог выйти на орбиту планеты в конце 2025 года.

«Так как Земля вращается вокруг Солнца, наш космический аппарат стартовал со слишком большим количеством энергии. Чтобы быть захваченными Меркурием, ему нужно замедлиться, и мы используем гравитацию Земли, Венеры и Меркурия, чтобы сделать это», — сказал в официальном заявлении эксперт ESA по динамике полёта Фрэнк Будник (Frank Budnik).

Миссия BepiColombo, совместный проект Европейского космического агентства (ESA) и Японского агентства аэрокосмических исследований (JAXA), является лишь третьим в истории космическим аппаратом, который взглянет на Меркурий, самую близкую к Солнцу планету. Хотя Меркурий в среднем в 10 раз ближе к Земле, чем Юпитер, для того чтобы добраться до планеты, требуется столько же времени, сколько и для того, чтобы добраться до газового гиганта. Это связано с тем, что космический аппарат, находящийся на Меркурии, должен постоянно тормозить против мощного гравитационного притяжения Солнца. Для этого BepiColombo, запущенный в 2018 году, совершает тщательно рассчитанные пролёты мимо планет на своём пути, находясь на орбите Солнца. Ранее зонд дважды пролетал мимо Меркурия — в октябре 2021 года и в июле 2022 года. До этого космический аппарат также один раз посетил Землю и дважды Венеру.

«Когда BepiColombo начнёт ощущать гравитационное притяжение Меркурия, он будет двигаться со скоростью 3,6 км/с по отношению к планете. Это чуть больше половины скорости, к которой он приблизился во время двух предыдущих пролётов Меркурия. Пролёт ещё больше уменьшит скорость космического аппарата относительно Солнца на 0,8 км/с и изменит его направление на 2,6 градуса», — добавил Будник. Прежде чем BepiColombo станет достаточно медленным для захвата скалистой планетой, которая лишь немного больше земной луны, произойдёт ещё три пролёта Меркурия: в сентябре 2024 года, в декабре того же года и последний — в январе 2025 года.

Поскольку некоторые приборы космического аппарата будут работать во время пролёта, учёные с нетерпением ждут возможности использовать эту возможность для проведения измерений среды вокруг Меркурия. BepiColombo также несёт три камеры наблюдения с низким разрешением, которые во время пролёта будут делать черно-белые снимки малоизученной скалистой планеты. «Предыдущие два пролёта Меркурия уже дали интересные научные результаты», — сказал Йоханнес Бенкхофф (Johannes Benkhoff), научный сотрудник проекта BepiColombo в ЕSА. Например, зонд провёл первые в истории измерения слабой южной внутренней магнитосферы планеты и выявил состав заряженных частиц в этой области.

Космический аппарат BepiColombo состоит из двух орбитальных аппаратов, которые в настоящее время путешествуют по Солнечной системе, состыкованные друг с другом. В результате этого некоторые приборы зондов закрыты во время полёта. Тем не менее, во время сегодняшнего пролёта два прибора, предназначенные для измерения формы поверхности Меркурия и изучения его гравитационного поля, впервые соберут данные. Основные камеры орбитального аппарата с высоким разрешением, к сожалению, пока недоступны.

Японские учёные испытали навигацию с помощью космических лучей — систему можно будет использовать под водой и под землёй

Система GPS чрезвычайно востребована в обиходе — она помогает в навигации, слежении, картографировании и всевозможных других целях. Тем не менее, GPS имеет некоторые важные недостатки, в первую очередь — практически не работает в зданиях, пещерах или, например, под водой. Поэтому японские учёные разработали метод альтернативной навигации — с использованием т.н. «космических лучей».

 Источник изображения: BlenderTimer/pixabay.com

Источник изображения: BlenderTimer/pixabay.com

Как сообщается в журнале iScience, альтернативная система заменит навигацию с помощью радиоволн — вместо этого оборудование регистрирует мюоны космических лучей. Команда исследователей провела успешный тест — однажды система, возможно, будет применяться исследовательскими и спасательными командами, например для точного направления подводных роботов или для того, чтобы автономные модули могли ориентироваться под землёй.

По словам одного из авторов исследования Хироюки Танаки (Hiroyuki Tanaka) из международного объединения The International Muography Research Orgzanization (Muographix), теперь разработан новый тип навигации, названный «мюометрической системой позиционирования (muPS), способной работать под землёй, в помещениях и под водой».

Данные элементарные частицы мюоны давно используются в археологических исследованиях, для поиска нелегально транспортируемых ядерных материалов на границах, для точного мониторинга активности вулканов — в попытках предсказать новые извержения.

Так, в 2008 году учёные Техасского университета в Остине перепрофилировали старые мюонные детекторы для поиска скрытых руин майя в Белизе. Физики Лос-Аламосской национальной лаборатории разрабатывают портативные варианты мюонных систем, позволяющих открыть секреты конструкции купола собора Санта-Мария-дель-Фьоре во Флоренции.

В 2016 году учёные использовали мюонные технологии для обнаружения скрытого коридора в Великой пирамиде Гизы в Египте, а годом позже обнаружили таинственное пространство в ещё одной зоне той же пирамиды. Наконец, только в прошлом месяце учёные использовали мюонную визуализацию, открыв ранее скрытую полость в руинах древнего некрополя в Неаполе — на глубине около 10 м под поверхностью современного итальянского города.

В США создали подробную 3D-карту Марса с помощью суперкомпьютеров — она доступна любому владельцу смартфона

Насладиться видами Марса теперь легче, чем когда-либо раньше. В США создали общедоступную карту Красной планеты на основе огромного количества снимков, сделанных известным орбитальным модулем NASA — Mars Reconnaissance Orbiter.

 Источник изображения: NASA/USGS

Источник изображения: NASA/USGS

Новая карта скомпилирована с помощью суперкомпьютеров и облачных технологий и обеспечивает 3D-виды поверхности планеты в высоком разрешении. Карта создана при участии Научного центра астрогеологии Геологической службы США (USGS) и состоит из более чем 4800 цифровых моделей ландшафта (DTM) и более 155 тыс. снимков марсианской поверхности. Как заявляют в центре, теперь воспользоваться этими данными может любой владелец смартфона на Земле — это касается и обладателей компьютеров и других устройств и теперь, как считают учёные, буквально любой сможет внести потенциальный вклад в исследования.

Данные собраны камерой Context Camera орбитального модуля Mars Reconnaissance Orbiter, способной делать снимки с разрешением до 6 м на пиксель, покрывая единовременно территорию шириной 30 км и длиной 160 км. Наложение пар снимков одной и той же местности и обработка их с помощью суперкомпьютера позволило команде учёных создавать цифровые объёмные модели (DTM) с последующим формированием детального 3D-ландшафта — примерно так же мозг обрабатывает информацию с обоих глаз человека, создавая трёхмерное изображение окружения.

Впрочем, процесс оказался довольно ресурсоёмким и потребовал больших вычислительных мощностей суперкомпьютера Denali, расположенного в Южной Дакоте. Сообщается, что у стандартного компьютера на работу ушло бы от 2 до 35 лет. Впрочем, 4800 скомпилированных DTM — пока лишь верхушка айсберга, команда работает над тысячами других пар изображений для создания более детального пейзажа. Кроме того, пары снимков, сделанные другой камерой модуля HiRISE — имеют невероятное разрешение до 25 см на пиксель, но с её помощью сняты лишь небольшие фрагменты поверхности. Для того, чтобы сделать данные общедоступными, учёным пришлось обработать каталог из 155 тыс. изображений, эквивалентных 114 Тбайт данных с помощью облачных технологий NASA.

Тестирование показало, что полученные изображения вышли «надёжными и полезными» — теперь в облаке можно проводить настоящий анализ, данные можно изучать без необходимости загрузки каждого изображения полностью, буквально на имеющемся под рукой смартфоне.

Данные хранятся в облаке Amazon в базе Open Data Registry и бесплатны для использования. Чтобы сделать процесс поиска и загрузки проще для широкого круга пользователей, представлен и специальный поисковый инструмент, воспользоваться которым можно немедленно, хотя для большего удобства стоит всё же применять ПК.

Марсоход Perseverance обнаружил на Марсе следы бурной реки

По последним данным, на Марсе текли по-настоящему бурные реки. Хотя на Красной планете имеется множество следов пребывания воды в жидком виде, в основном они связаны с океанами, озёрами и относительно небольшими ручьями, например — древние русла были обнаружены марсоходом Curiosity в кратере Гейла. Тем не менее, теперь марсоход Perseverance обнаружил в кратере Езеро следы давно высохшей реки, структурно отличающиеся от прежних находок.

 Источник изображения: NASA

Источник изображения: NASA

В ложе высохшей реки обнаружены булыжники и другие довольно крупные структуры, которые невозможно было бы переместить тонкими струйками жидкости. По словам представителя NASA, это свидетельствует о том, что «высокоэнергетическая» река несла множество мусора — чем сильнее течение, тем легче оно может двигать крупные фрагменты материалов.

В локации Skrinkle Haven имеются изогнутые «ленты» слоистых каменных пород, которые, почти наверняка сформированы мощным течением. Тем не менее, учёные пока не пришли к единому мнению о природе этой реки. Это могла быть как извилистая река, чьи берега менялись со временем, так и река со многими рукавами.

В любом случае каменные «ленты» изначально были значительно выше, но позже марсианский ветер, несущий большое количество песка, почти полностью разрушил их, «действуя как скальпель». По данным учёных, подобные структуры имеются и на Земле, но их невозможно наблюдать так же хорошо, как и на Марсе — из-за растительности, скрывающей детали.

 Источник изображения: NASA

Источник изображения: NASA

Perseverance также обнаружил мозаичный холм высотой до 20 м, получивший имя Pinestand, в 0,45 км от Skrinkle Haven. Учёные считают, что слои осадочных отложений, расположенные один на другом, могли сформироваться большой рекой с быстрым течением. Такие слои аномально высоки для земных рек, но именно река могла бы создать подобное образование. В древности в 45-километровом кратере Езеро находилось как большое озеро, так и речная дельта. Perseverance продолжит исследования остатков среды, возможно, когда-то имевшей возможность поддерживать жизнь.

Как сообщают в NASA, учёные добрались до очередной «страницы» истории Езеро — впервые на Марсе обнаружен подобный рельеф, позволяющий по-новому оценить реки Красной планеты, протекавшие здесь в древности. Perseverance начал работать в кратере Езеро в феврале 2021 года, совместно с вертолётом Ingenuity, собирая образцы местного грунта и занимаясь поиском следов жизни на Марсе, возможно, имевшейся в прошлом, а также исследованием местной геологии.

Старые данные миссий «Аполлон» спустя десятилетия позволили обнаружить твёрдое ядро Луны

Проанализировав данные, собранные в ходе геологических экспериментов на поверхности Луны, проводившихся в ходе американских миссий «Аполлон», выполнявшихся полвека назад, учёные смогли установить, что спутник Земли имеет твёрдое ядро, окружённое внешним жидким, схожим с земным.

 Источник изображения: Géoazur/Nicolas Sarter

Источник изображения: Géoazur/Nicolas Sarter

В ходе шести миссий с высадкой на Луну, выполнявшихся с 1969 по 1972 годы, астронавты проводили на поверхности небесного тела ряд экспериментов, включая, например, подрывы специальных зарядов. Кроме того, астронавты использовали инструменты для изучения спутника, включая т.н. геофоны и сейсмографы. Кроме того, лунные ускорители и ступени лунных моделей использовались для создания небольших искусственных аналогов «землетрясений».

В результате различные данные всё ещё поступали на Землю вплоть до 1977 года, после чего поддержка исследований была прекращена, хотя, как сообщается в журнале Nature, некий «пассивный» лазерный эксперимент можно проводить ещё буквально веками. Так или иначе, учёные всё ещё занимаются изучением полученных данных и пришли к интересным и очень важным выводам.

Французский национальный центр научных исследований (CNRS) совместно с Университетом Лазурного берега, Обсерваторией Лазурного берега, Сорбонной и Парижской обсерваторией изучили сейсмические данные, полученные в ходе миссий «Аполлон», объединив эту информацию с данными исследований, связанными с «неравномерностями» вращения Луны. Это позволило разработать модели, определяющие внутреннюю структуру спутника нашей планеты.

Ещё в 1990-е годы выяснилось, что Луна имеет жидкое внешнее ядро, «подогреваемое» приливными силами, но природа внутреннего ядра всё ещё была недоступна. Теперь выяснилось, что Луна имеет твёрдое внутренне ядро всего около 500 км диаметром, состоящее из металла, примерно соответствующего по плотности железу.

По данным команды исследователей, это имеет большое значение, поскольку подобное ядро было очень трудно обнаружить из-за его незначительного размера. Кроме того, учёные сообщают, что открытие неким образом позволит объяснить исчезновение магнитного поля Луны — хотя в своё время оно было предположительно в 100 раз интенсивнее земного. Результаты исследований опубликованы в журнале Nature.


window-new
Soft
Hard
Тренды 🔥
Более половины игровых студий применяют ИИ в разработке, показало исследование Unity 4 мин.
На смену Family Sharing в Steam придут «Семейные группы» с общей библиотекой, контролем за детьми и привязкой к региону 57 мин.
Nvidia запустила Quantum Cloud — облачный симулятор квантового компьютера для исследований 2 ч.
Telegram выгодно для себя привлёк $330 млн через продажу облигаций 2 ч.
Более 500 российских программистов приняли участие в совместном хакатоне Хоум Банка и «Сколково» 2 ч.
Всё своё ношу с собой: Nvidia представила контейнеры NIM для быстрого развёртывания оптимизированных ИИ-моделей 9 ч.
Nvidia AI Enterprise 5.0 предложит ИИ-микросервисы, которые ускорят развёртывание ИИ 10 ч.
NVIDIA запустила облачную платформу Quantum Cloud для квантово-классического моделирования 11 ч.
NVIDIA и Siemens внедрят генеративный ИИ в промышленное проектирование и производство 11 ч.
SAP и NVIDIA ускорят внедрение генеративного ИИ в корпоративные приложения 11 ч.
«Мерлион» выпустит SSD, блоки питания и другие комплектующие под собственным брендом 31 мин.
Смарт-часы Xiaomi Watch S3 и Redmi Watch 4 для любителей активного образа жизни и ТВ-приставка Mi Box S 2 Gen для развлечений 2 ч.
SK hynix запустила массовое производство стеков памяти HBM3E — первой её получит Nvidia 2 ч.
Смартфоны Redmi Note 13 и 13 Pro+ 5G, планшет Xiaomi Pad 6 расширят возможности для работы и развлечений 3 ч.
Зарубежные поставщики Intel и TSMC не спешат строить свои предприятия в Аризоне 4 ч.
Nvidia и Synopsys внедрили искусственный интеллект в сфере литографической подготовки производства чипов 5 ч.
NVIDIA представила облачную платформу для исследований в сфере 6G 11 ч.
Ускорители NVIDIA H100 лягут в основу японского суперкомпьютера ABCI-Q для квантовых вычислений 11 ч.
NVIDIA показала цифрового двойника нового дата-центра с ИИ-ускорителями Blackwell 11 ч.
NVIDIA B200, GB200 и GB200 NVL72 — новые ускорители на базе архитектуры Blackwell 12 ч.