|
Опрос
|
реклама
Быстрый переход
Лазерный луч может отбрасывать тень, выяснили учёные
14.11.2024 [13:40],
Геннадий Детинич
Несовершенство 3D-симулятора нелинейно-оптических явлений в материалах, который в программе создавал тень от цифрового образа лазерного луча, заставило учёных задуматься об эксперименте, который позволил бы настоящему лазерному лучу отбрасывать тень. В обычных условиях такого никогда не происходит — светящиеся объекты и явления не создают теней. Но уникальный эксперимент сделал невозможное, и лазерный луч впервые обзавёлся собственной тенью.
Тень на стенке рубина от зелёного лазера. Источник изображения: Raphael A. Abrahao Научная работа об открытии принята для публикации в рецензируемом журнале Optica. Эксперимент поставили учёные из Брукхейвенской национальной лаборатории США (Brookhaven National Laboratory, BNL). Опыт стал частью более широкого проекта по изучению нелинейно-оптических свойств материалов. «Лазерный луч, отбрасывающий тень, ранее считался невозможным, поскольку свет обычно проходит сквозь другой источник света, не взаимодействуя, — сказал руководитель исследовательской группы Рафаэль А. Абрахао (Raphael A. Abrahao). — Наша демонстрация весьма нелогичного оптического эффекта побуждает нас пересмотреть наше представление о тени».
Тень от лазера на экране Для постановки эксперимента учёные посветили лучом зелёного лазера на одну сторону куба из рубина (популярного для экспериментов с лазером материала). На другую сторону куба перпендикулярно зелёному лучу направили свет интенсивного синего лазера. После этого на противоположной от освещённой синим лазером стороне рубинового куба возникла тень от зелёного лазера. Это была самая настоящая тень: она скользила по экрану вслед за перемещением зелёного луча, повторяя все изгибы экрана.
Схема экспериментальной установки Как пояснили учёные, зелёный лазер изменял локальные свойства рубина, увеличивая поглощение синего лазера в таких областях (возбуждал в атомах рубина электроны, которые «мешались под ногами» у синего лазера с более короткой длиной волны). «Наше понимание теней развивалось рука об руку с нашим пониманием света и оптики, — поясняет Абрахао. — Это новое открытие может оказаться полезным в различных приложениях, таких как оптическая коммутация, устройства, в которых свет контролирует присутствие другого источника света, или технологии, требующие точного контроля светопропускания, связанного с мощными лазерами». Япония установила рекорд по скорости оптической связи между спутниками на низкой и высокой орбитах
12.10.2024 [16:33],
Геннадий Детинич
Японское агентство аэрокосмических исследований (JAXA) сообщило, что провело серию успешных экспериментов по организации оптической связи в околоземном космическом пространстве. Данные передавались со спутника на низкой орбите на спутник ретрансляции на высоте 40 тыс. км. При этом достигнута рекордная для заданных условий скорость передачи в 1,8 Гбит/с, что найдёт отражение в новом уровне управления спутниками дальнего зондирования Земли.
Слева модуль оптической связи для спутника-ретранслятора, справа — для Daichi 4. Источник изображения: JAXA Сбором данных занимался новейший спутник-шпион Daichi 4 (ALOS-4). Он был запущен на геосинхронную орбиту 1 июля 2024 года. Проверка его работы началась 4 июля, а с 20 августа началось тестирование модуля космической оптической связи. Данные по оптическому каналу принимал экспериментальный спутник LUCAS на солнечно-синхронной орбите на высоте 40 тыс. км. Затем он транслировал их на Землю по обычному радиоканалу. Максимально достигнутая скорость оптической связи между спутниками составила 1,8 Гбит/с, что для созданных условий стало мировым рекордом. Япония продолжит эксперименты с оптической передачей данных также на других высотах, например, с оптического модуля Кибо на МКС (для НОО 400 км). Оптическая связь с ретранслятором позволит спутникам наблюдения за Землёй подобным Daichi 4 дольше оставаться в режиме реальной передачи данных на Землю. В частности, без ретранслятора связь с Daichi 4 с наземной станцией продолжается всего 1 час, тогда как через LUCAS она продлевается до 9 часов. Важно отметить, что передача велась в оптическом диапазоне обычных волоконных сетей — 1,5 мкм. В JAXA считают, что это наиболее перспективный путь для развития космической связи — в диапазоне, для которого оборудование выпускается в наибольшем объёме. Квантовая механика помогла придумать оптическую память невообразимой плотности
04.10.2024 [23:06],
Геннадий Детинич
Группа учёных из США смогла соединить квантово-механическую теорию и цифровую запись, проложив путь к потенциально сверхплотной оптической памяти. Запись осуществляется излучателями атомарного размера, встроенными в саму память, а ячейками для хранения информации выступают множественные дефекты в атомарной структуре памяти. Всё это замешано на управляемом изменении квантовых состояний дефектов, явив собой смесь классической и квантовой физики.
Источник изображения: Giulia Galli Исследование и разработку моделей изучаемых явлений осуществили физики из Аргоннской национальной лаборатории министерства энергетики США и Притцкеровской школы молекулярной инженерии Чикагского университета. Сначала они провели моделирование и предсказали возможные результаты и лишь потом провели эксперименты. Проделанная учёными работа во многом новаторская. Ещё никто не изучал вопрос, как поведут себя дефекты в атомарной структуре твёрдых материалов, если по соседству с ними в нанометровой доступности расположатся излучатели энергии (фотонов). Фактически это физика в ближнем поле, которая непросто поддаётся изучению и, прежде всего, из-за возникновения разного рода квантовых эффектов. «Мы разработали фундаментальные физические основы того, как передача энергии между дефектами может лежать в основе невероятно эффективного оптического метода хранения, — сказала Джулия Галли (Giulia Galli), профессор Чикагского университета и старший научный сотрудник Аргоннской национальной лаборатории. — Это исследование иллюстрирует важность изучения основных принципов и квантовомеханических теорий для освещения новых, зарождающихся технологий». Если мы будет рассматривать, например, оптические диски, то минимально допустимое пятно для записи будет ограничено дифракционным пределом оптической системы и не сможет быть меньше длины волны записывающего лазера. Учёные предложили насытить материал атомами редкоземельных элементов, которые отличаются тем, что способны переизлучать падающий на них свет в более узком диапазоне и на других длинах волн. Тем самым можно создать материал с мириадами записывающих «лазеров» внутри, каждый из которых был бы размером с атом. Точно также материал можно насытить ячейками для записи, в роли которых выступали бы дефекты в кристаллической структуре. При достаточном количестве атомов редкоземельных элементов и дефектов большинство из них находились бы в нанометровой доступности друг от друга. Суть открытия в том, что редкоземельные излучатели (точнее — переизлучатели) необратимо или на очень длительное время меняют квантовые состояния находящихся по соседству дефектов (переводят их из синглетного в триплетное состояние). А это память, работающая в оптическом диапазоне. И очень плотная память — на уровне атомарной структуры. Учёные предупреждают, что они пока слабо представляют многие механизмы работы такой памяти, но не сомневаются, что это интересный и перспективный путь для удовлетворения нужд человечества в сохранении цифровых архивов. Samyang представила фикс-объектив со сменной оптикой
23.08.2024 [12:37],
Павел Котов
Корейская Samyang представила фикс-объектив (дискретный) Remaster Slim, позволяющий фотографу менять фокусное расстояние, заменяя не объектив полностью, а только оптические элементы внутри него.
Источник изображения: lksamyang.com Более простая конструкция фикс-объектов — тех, что не поддерживают зума — означает некоторые преимущества для них, в том числе более чёткое изображение и уменьшенную глубину резкости. Компромисс состоит в том, что фотографу приходится самостоятельно приближаться и удаляться при кадрировании или устанавливать фикс-объективы с разным фокусным расстоянием. Это недёшево и не очень удобно, поэтому Samyang предложила объектив Remaster Slim толщиной 2 см. Для оптики внутри Remaster Slim предусмотрено специальное магнитное крепление, в которое первоначально можно установить три вставки: широкую 21 мм и f/2,8, вариант 28 мм f/3,5, а также подходящую для портретной съёмки с близкого расстояния 32 мм и f/3.5. В сумке для камеры они займут намного меньше места, чем три полноценных фикс-объектива. Remaster Slim обеспечивает при съёмке «подлинную аналоговую чувственность, которая заметно отличается от изображений со смартфона, созданных с помощью цифровых технологий», рассказали в Samyang и добавили, что при разработке проекта источником вдохновения послужили «легендарные плёночные компактные фотоаппараты», снимки на которые не всегда получались чёткими. ![]() Объектив Samyang Remaster Slim совместим с Sony E-mount и был доступен для предварительного заказа с 32-мм оптикой за 308 000 корейских вон или около $229, но сейчас тираж полностью распродан, хотя покупатели их получат лишь в начале сентября. Новая партия, доступная для всех желающих, появится в Южной Корее лишь в октябре; о выходе товара в других странах пока не сообщается ничего. Учёные в 10 000 раз уменьшили размеры перспективных лазеров
05.07.2024 [13:29],
Геннадий Детинич
Учёные из Стэнфордского университета создали первый в мире практичный титаново-сапфировый лазер в масштабе микросхемы. Современные Ti:sapphire-лазеры в 10 000 раз больше и в 1000 раз дороже, тогда как стоимость производства крошечных лазеров на чипе будет условно копеечная. Такие лазеры подтолкнут развитие квантовых наук, помогут в офтальмологии, нейробиологии и много где ещё, где необходим источник интенсивного света.
Миниатюрный лазер опирается на титаново-сапфировый кубик на фоне 25-центовой монеты. Источник изображения: Nature Титаново-сапфировые лазеры ценны тем, что они могут перестраиваться в относительно широком спектре когерентного излучения. Для науки и промышленности — это важнейшее качество, имя которому универсальность. Только сегодня подобные установки редкость даже в лабораториях, не говоря о промышленности. Они могут быть размером со средний рабочий стол, не говоря о вспомогательном оборудовании, например, лазерах для накачки, которые тоже стоят немалых денег. В конечном итоге стоимость одного такого лазерного комплекса может достигать полумиллиона долларов США. Исследователи из Стэнфорда разработали технику создания титаново-сапфировых лазеров микрометрового масштаба. Сначала они нанесли на слой настоящего сапфирового стекла подложку из диоксида кремния (SiO2), а затем создали поверх подложки объёмное титаново-сапфировое покрытие. Верхний слой травится и шлифуется до толщины в несколько сотен нанометров. На подложке остаётся волновод, как на показанном ниже снимке. Этот волновод работает как усилитель лазерного излучения. ![]() Но самым ценным в разработке стал механизм перестройки лазера. Делается это с помощью дозированного нагрева волновода. В случае экспериментального лазера частоту его работы учёные смогли менять в пределах длин волн от красного до инфракрасного: от 700 до 1000 нм. Уменьшение размеров лазера также увеличило его интенсивность и энергоэффективность. Лазером накачки для такой платформы может быть очень маломощный источник. «Это полный отход от старой модели, — поясняют учёные. — Вместо одного большого и дорогого лазера в любой лаборатории вскоре могут появиться сотни таких ценных лазеров на одном чипе. И всё это можно подпитывать зеленой лазерной указкой». PCIe 7.0 достиг впечатляющей скорости 128 ГТ/с с помощью оптического подключения
19.06.2024 [12:08],
Павел Котов
Компании, занимающиеся разработкой решений в области PCIe, уже некоторое время экспериментируют с оптической передачей данных в качестве альтернативы интерфейсу CopperLink. На мероприятии DevCon 2024 было продемонстрировано важное достижение: Cadence показала соединение PCIe 7.0 на скорости 128 ГТ/с с использованием стандартных компонентов.
Источник изображения: Cadence В рамках демонстрации соединение поддерживалось непрерывно в течение двух дней — на протяжении всего мероприятия — без перерывов. Оптические коннекторы PCIe предназначаются для корпоративных решений: гиперскейлеров, облачных провайдеров, центров обработки данных и HPC. В качестве альтернативы CopperLink оптические коннекторы могут обеспечить разработчикам серверов и операторам ЦОД расширенные возможности с учётом высокой пропускной способности. Спецификации CopperLink, утверждённые ранее в этом году, предлагают скорость до 32 и 64 ГТ/с для PCIe 5.0 и 6.0 соответственно; оптика поможет разогнать PCIe 6.0 и 7.0, но скорость в 128 ГТ/с, которую продемонстрировала Cadence, актуальна только для последней версии стандарта. Организация PCI-SIG создала отдел для разработки оптических соединений ещё в августе 2023 года. Планируется создание целого спектра решений для PCIe: подключаемые оптические трансиверы, встроенная оптика и оптические системы ввода-вывода. Окончательные спецификации оптического подключения, как ожидается, будут подготовлены к декабрю 2024 года. Передовые потребительские ПК в настоящее время работают с PCIe 5.0 — стандарт обеспечивает SSD скорость выше 10 Гбайт/с. Спецификации PCIe 6.0 были опубликованы в начале 2022 года — в корпоративных системах соответствующие ему компоненты могут появиться в 2024 и 2025 годах. На минувшей неделе во время DevCon предварительные спецификации PCIe 7.0 обновились до версии 0.5, а окончательные появятся в следующем году. По первоначальным оценкам PCI-SIG, соответствующее им оборудование должно было появиться в 2027 году, но впоследствии сроки были перенесены ещё на год вперёд. Спецификации PCIe 6.0 и 7.0 должны поддерживать пропускную способность до 256 и 512 Гбайт/с соответственно для интерфейсов x16. Их нововведения включают в себя модуляцию PAM4, Lightweight Forward Error Correction (L-FEC), Cyclic Redundancy Check (CRC) и Flow Control Units (Flits). Flits и многие другие функции PCIe 6.0 компания Cadence также продемонстрировала на DevCon. Учёные создали тончайшую линзу в мире — всего три атома в толщину
31.05.2024 [20:50],
Геннадий Детинич
Долгое время линзы были достаточно толстыми и тяжёлыми, что ограничивало их применение в ряде областей, например, в астрономии или в области крупногабаритных осветительных приборов. Жизнь стала проще с изобретением линзы Френеля со ступенчатой конструкцией. Сегодня учёные из Стэнфорда и Амстердамского университета довели идею ступенчатой линзы до абсолюта — они создали линзу толщиной всего в три атома, которой может найтись много применений.
Источник изображения: Ludovica Guarneri and Thomas Bauer Как и классические линзы Френеля, разработка учёных представляет собой комбинацию из нескольких концентрических структур. Фактически это напыление из дисульфида вольфрама (WS2), толщиной 0,6 нм. Предыдущий рекорд был установлен в 2016 году, когда учёные представили линзу толщиной 6,3 нм. В своей работе, опубликованной в журнале Nano Letters, исследователи показали, как линза фокусирует красный свет. Фокусное расстояние отстоит от линзы на 1 мм. Круги из дисульфида вольфрама поглощают красные длины волн, а затем излучают их в точку фокуса. Строго говоря, излучают свет короткоживущие квазичастицы экситоны, которые излучают распадаясь. Все другие длины волн проходят сквозь материал линзы почти совершенно свободно. Подобная избирательность, считают учёные, может пригодиться в очках дополненной реальности. Сквозь них будет всё хорошо видно, но часть света может фокусироваться и нести дополнительную информацию. Учёные продолжат работать над новыми линзами, намереваясь изучить вопрос создания сложных покрытий, активируемых электрическими зарядами. В России создали рекордно маленький нанолазер для чипов, дисплеев и медицинских приборов
30.05.2024 [10:37],
Геннадий Детинич
Исследователи из Санкт-Петербургского Института точной механики и оптики (ИТМО) создали самый маленький в мире нанолазер для широкого спектра применений. Светоизлучающий прибор, который в 5 тысяч раз меньше миллиметра, может послужить как основой оптоэлектронных чипов, так и элементом дисплеев и медицинских приборов для точной диагностики.
Сергей Макаров. Источник изображения: Новый физтех ИТМО «Ключевая идея предложенного дизайна нанолазера — использование нового механизма его работы за счет выстраивания сильной связи "свет-вещество". Это помогает значительно снизить порог его "включения". Излучение нанолазера имеет направленный характер, что позволяет эффективно собирать его в нашей оптической схеме и регистрировать на лабораторном спектрометре (прибор для фиксации, обработки и анализа волн света)», — рассказал Сергей Макаров, руководитель лаборатории гибридной нанофотоники и оптоэлектроники ИТМО. Нанолазеры позволяют излучать свет с длиной волны намного большей, чем источник излучения. Особенно проблемно было получить источник «зелёных» фотонов. Разработка ИТМО преодолела это ограничение, прозванное в научной среде «зелёной ямой» (green gap). Предыдущий созданный в институте зелёный нанолазер был размером 310 нм. Новый удалось уменьшить до 200 нм. В качестве светоизлучающего материала российские учёные использовали искусственно синтезированный перовскит — CsPbBr3 в форме кубоида. «Этот материал изучается в университете с 2017 года. За это время учёным удалось доказать, что он стабилен, имеет высокий коэффициент оптического усиления (позволяет использовать энергию света максимально эффективно), а главное — он лучше всего работает в зеленом спектре», — поясняется в пресс-релизе ИТМО. Следует уточнить, что все поставленные до этого времени эксперименты проводились с оптической накачкой нанолазера. На следующем этапе учёные начнут опыты с электрической накачкой нанолазера, для чего материал поместили на металлическую подложку. Это уже путь к дисплеям на базе светоизлучающих нанолазеров. |