Сегодня 19 апреля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → сверхновая
Быстрый переход

«Джеймс Уэбб» помог установить происхождение сильнейшего в истории наблюдений гамма-всплеска

В один миг 9 октября 2022 года космические и наземные гамма-телескопы ослепли все как один. Это стало моментом регистрации сильнейшего в истории наблюдений гамма-всплеска, который получил индекс GRB 221009A и официальное прозвище BOAT (английская аббревиатура от «ярчайший за всё время»). Событие оказалось настолько ярким, что на месяцы затмило послесвечение, по которому можно было определить его источник. Но теперь эта тайна раскрыта.

 Источник изображения: IHEP

Источник изображения: IHEP

Группа американских астрономов из Северо-Западного университета (Чикаго) в сегодняшнем номере журнала Nature Astronomy опубликовала статью, в которой сообщила о происхождении всплеска BOAT и о процессах, его сопровождавших, что также стало открытием. Учёные смогли приступить к поискам источника только полгода спустя после регистрации всплеска. До этого высокоэнергичные фотоны гамма-излучения буквально слепили все направленные на потенциальный объект излучения датчики.

Следует сказать, что учёные не сильно удивились, когда обнаружили на месте «преступления» останки сверхновой. Взрывы сверхновых — это один из вероятных источников гамма-всплесков. Интересно здесь то, что взорвалась, в общем-то, рядовая сверхновая, а не нечто рекордное по своему масштабу, как можно было бы ожидать. Другое дело, что гамма-излучение, возникшее в результате взрыва, оказалось очень сильно сфокусированным. Именно эта концентрация, да ещё направленная в сторону Земли, привела к столь яркому эффекту. Такое может происходить не чаще одного раза в 10 тыс. лет, считают учёные.

Учёные считают, что предельная фокусировка гамма-лучей произошла по причине высокой скорости вращения звезды перед взрывом. В теории такие процессы могут вести к образованию наиболее тяжёлых металлов во Вселенной. Считается, что в звёздах в обычных условиях не могут быть синтезированы вещества тяжелее железа. Но в ряде экстремальных процессов, например, подогреваемые интенсивным гамма-всплеском, могут появиться и более тяжёлые элементы, включая золото и платину.

Обратив свой взор к месту рождения события BOAT, учёные начали поиск золота и платины. Помог им в этом спектрометр космического телескопа «Джеймс Уэбб». Ни золота, ни платины в результате обнаружить на месте взрыва сверхновой не удалось. Это позволяет отодвинуть в сторону теорию о GBR-канале, как катализаторе синтеза тяжёлых элементов. В то же время это лишь повод обнаружить больше похожих событий и набрать достаточно данных либо для полного опровержения такой возможности, либо для создания списка исключений. В любом случае, изучение события BOAT дало целый спектр данных, чтобы учёным было чем занять свои головы в поиске ответов на загадки Вселенной.

«Джеймс Уэбб» нашёл лучшее доказательство существования нейтронных звёзд

Нейтронные звёзды обнаружить ничуть не легче, чем чёрные дыры. Они тоже темны, но к тому же очень компактны. Все обнаруженные ранее нейтронные звёзды определены по косвенным признакам и нашим моделям. Телескоп «Уэбб» вплотную подобрался к обнаружению нейтронной звёзды, являющейся останками взрыва сверхновой.

 Источник изображения: NASA

Источник изображения: NASA

Сразу после ввода телескопа в строй летом 2022 года учёные начали следить за останками сверхновой 1987A. Это близкий к нам объект всего в 160 тыс. световых лет. Сверхновая вспыхнула в феврале 1987 года и к маю стала видна на Земле даже невооруженным глазом. Это первая такая яркая сверхновая с 1604 года (со времён сверхновой Кеплера).

За два часа до обнаружения сверхновой в оптическом диапазоне три земных нейтринных обсерватории зафиксировали короткий всплеск нейтрино от объекта в том же месте пространства. Расчёты показали, что сверхновая, скорее всего, закончит своё существование нейтронной звездой, а не чёрной дырой. Однако твёрдых доказательств этому не было, и учёные все последующие 40 лет следили за сверхновой 1987A в надежде получить больше данных для уточнения моделей терминальной стадии эволюции звёзд.

Обсерватория им. Джеймса Уэбба получила лучшие доказательства в пользу образования после взрыва сверхновой 1987A нейтронной звезды, а не чёрной дыры. На снимке выше слева можно увидеть изображение останков сверхновой 1987A, сделанные камерой NIRCam телескопа. Справа вверху данные прибора MIRI показывают однократно ионизированный аргон вокруг предполагаемой нейтронной звезды (атомы аргона потеряли по одному электрону под воздействием ионизирующего излучения нейтронной звезды).

Справа внизу показан снимок многократно ионизированного аргона, полученный прибором NIRSpec «Уэбба» (атомы аргона потеряли до пяти электронов каждый). Ионизация аргона означает, что компактный объект в центре излучает высокоэнергичные фотоны, которые выбивают электроны из окружающего объект газового облака. На основании наших знаний об эволюции звёзд с большой вероятностью можно предположить, что в центре останков сверхновой 1987A находится нейтронная звезда, а не чёрная дыра, что на сегодня стало лучшим доказательством существования нейтронных звёзд. На этом работа по объекту не прекратится. Открытие придало исследованиям ещё больше смысла.

«Хаббл» показал галактику, в которой взорвалась сверхновая в 2,5 млрд раз ярче Солнца

Космический телескоп «Хаббл» (Hubble) продемонстрировал изображение небольшой галактики UGC 5189A, которая расположена в 150 млн световых лет от Земли и наблюдается в созвездии Льва. В 2010 году в этой галактике наблюдался взрыв сверхновой.

 Источник изображения: esahubble.org

Источник изображения: esahubble.org

SN 2010jl — это сверхновая II типа, что означает смерть массивной звезды, которая при жизни имела массу как минимум в 40–50 солнечных. Когда у такой массивной звезды заканчивается топливо для термоядерного синтеза, и энергия, которая миллионы и миллиарды лет поддерживала её в борьбе с гравитационным коллапсом, иссякает, происходит взрыв. Изучение сверхновых представляет для учёных огромную ценность, но не менее плодотворным может оказаться исследование обломков, которые оставляют после себя эти космические взрывы. К примеру, можно установить условия, необходимые для возникновения сверхновой, и отследить смену звездой своего окружения.

Поэтому «Хаббл» много раз наблюдал UGC 5189A. Всего за три года расположенная в этой галактике сверхновая произвела как минимум в 2,5 раза больше видимой энергии, чем высвободило Солнце во всех длинах волн. Ширина UGC 5189A составляет 36 000 световых лет — для сравнения, диаметр Млечного Пути равен 100 000 световым годам. На снимке маленькая галактика выглядит как несколько деформированный диск с восходящей кривизной. Голубая область в правой стороне галактики — это шлейф яркого газа и пыли. Левая сторона UGC 5189A не столь яркая — здесь тоже имеются газ и пыль, но в менее однородных слоях, а длинный газовый шлейф уходит в левый верхний угол снимка.

«Хаббл» изучал UGC 5189A не только для того, чтобы рассмотреть обломки сверхновой. Телескоп помог в исследовании нескольких других, более удалённых галактик, в которых в недавнем прошлом также наблюдались взрывы звёзд.

Учёные нашли останки звезды «Барбенгеймер» — она нарушила известные законы физики при взрыве

Группа астрономов из Чикагского университета обнаружила в нашей галактике следы сверхновой, взорвавшейся с нарушением известных законов физики. Это была древняя звезда, родившаяся на заре времён. По всем правилам она должна была закончить жизнь чёрной дырой, но вместо этого её разметало взрывом сверхновой по Вселенной.

 Источник изображения: University of Chicago/SDSS-V/Melissa Weiss

Взрыв звезды Barbenheimer в представлении художника. Источник изображения: University of Chicago/SDSS-V/Melissa Weiss

Учёные назвали неизвестную звезду «Барбенгеймер» (Barbenheimer), увековечив тем самым популярный мем. Как невозможно сочетать рассказанные в фильмах «Барби» и «Оппенгеймер» истории, так и звезда Barbenheimer состоит из сплошных невозможных состояний.

Следует подчеркнуть, что Barbenheimer взорвалась достаточно давно. О её существовании и последствиях жизни на завершающем этапе учёные узнали по косвенным наблюдениям и благодаря моделированию. Так опытные сыщики узнают об особенностях преступления по оставленным на месте происшествия уликам. Останки Barbenheimer были обнаружены в спектре звезды J0931 + 0038. Это красный гигант сравнительно небольшой массы, который обнаружился в гало нашей галактики (не в плоскости Млечного Пути, а гораздо выше).

Химический состав J0931 + 0038 оказался настолько странным, что учёным пришлось моделировать условия её образования. Наиболее вероятной оказалась ситуация, когда звезда J0931 + 0038 образовалась из облака межзвёздного газа с неожиданным составом химических элементов. Расчёты показали, что прародительницей J0931 + 0038 должна была быть гигантская древняя звезда с массой от 50 до 80 солнечных масс. Парадокс в том, что звёзды подобной массы коллапсируют в чёрные дыры, а не разлетаются облаком синтезированных в их недрах веществ по окрестностям.

Если бы «Барбенгеймер» существовала, практически всё синтезированное в ней вещество должно было сжаться до возникновения чёрной дыры. Однако она стала настоящей сверхновой, сбросив оболочку, ставшей со временем колыбелью для рождения звезды J0931 + 0038. Отдельные факты наблюдаемого явления учёные ещё могут как-то объяснить, но всё вместе представляет загадку, которую ещё предстоит отгадать.

NASA и JAXA показали детальный снимок взрыва сверхновой в соседней галактике

Американское космическое агентство NASA совместно с Японским агентством аэрокосмических исследований (JAXA) показали детальный рентгеновский снимок взрыва звезды в глубинах космоса. Этот прорыв в исследованиях был совершён с помощью космической обсерватории XRISM (X-ray Imaging and Spectroscopy Mission), нацеленной на изучение самых горячих областей Вселенной. Это первый научный снимок XRISM и с ним учёные впервые провели подробный анализ остатков сверхновой, известной как N132D.

 Источник изображений: JAXA / NASA / XRISM

Источник изображений: JAXA / NASA / XRISM

Расположенный в 160 000 световых лет от нашей планеты, этот объект находится в пределах Большого Магелланова Облака, карликовой галактики, соседствующей с нашей галактикой Млечный Путь. С помощью приборов XRISM учёные провели детальное исследование N132D и установили, что звезда исчерпала свои запасы энергии примерно 3000 лет назад, что вызвало мощный взрыв сверхновой, следы которого заметны до сих пор.

Особый интерес представляет анализ данных XRISM, который позволил исследователям определить состав элементов в остатках сверхновой. Эти элементы были сформированы в недрах звезды и выброшены в момент её взрыва. Брайан Уильямс (Brian Williams), научный сотрудник проекта XRISM в NASA, подчеркнул значимость этого открытия: «Прибор Resolve даёт нам возможность увидеть форму спектральных линий с невиданной ранее точностью, что позволит определить не только содержание различных элементов, но и их температуру, плотность и направление их движения. Отсюда мы сможем собрать воедино информацию о первоначальной звезде и её взрыве».

 Cамый подробный рентгеновский спектр N132D из когда-либо созданных. В спектре видны пики, связанные с кремнием, серой, аргоном, кальцием и железом. Вставка справа - изображение N132D, полученное прибором Xtend космической обсерватории XRISM

Cамый подробный рентгеновский спектр N132D из когда-либо созданных. В спектре видны пики, связанные с кремнием, серой, аргоном, кальцием и железом. Вставка справа — изображение N132D, полученное прибором Xtend космической обсерватории XRISM

Рентгеновский телескоп XRISM был запущен в сентябре прошлого года и до недавнего времени проходил настройку, а теперь прислал первое научное фото. Низкоорбитальная обсерватория поможет изучать Вселенную в высокоэнергетическом рентгеновском диапазоне. Аппарат поможет в исследовании крупнейших структур во Вселенной, в определении механизмов распределения материи и формирования галактик со сверхмассивными чёрными дырами в центрах. Это позволит лучше понять механизмы формирования и эволюции Вселенной.

Resolve — это высокоточный спектрометр мягких рентгеновских лучей (с наибольшей длиной волны), который работает при температуре всего на несколько сотых градуса выше абсолютного нуля и способен улавливать спектры рентгеновских лучей с энергией от 300 до 12 000 эВ. Он измеряет крошечные изменения температуры, возникающие при попадании рентгеновского луча на его детектор размером 6×6 пикселей. Получаемые им спектры являются самыми детализированными из когда-либо полученных для объектов во Вселенной.

Заметим, что устройство Resolve работает с ограничениями, поскольку учёным не удалось открыть защитное окошко перед одним из датчиков, из-за чего пострадала чувствительность. Данный слой призван защитить датчик от воздействия атмосферы на Земле и после запуска, поскольку предотвращает прилипание газообразных веществ внутри спутника к оптическим фильтрам. Секция окна имеет бериллиевую пленку толщиной 250 микрон, поэтому прибор сможет работать с рентгеновскими лучами даже при закрытой секции. Бериллиевое окно экранирует рентгеновское излучение с энергией ниже 2000 эВ, тогда как без защитного окошка можно было бы наблюдать рентгеновское излучение с энергией от 300 эВ.

Xtend — это камера для получения изображения в мягком рентгеновском диапазоне, предназначенная для расширения поля зрения обсерватории до 38 угловых минут с каждой стороны в диапазоне энергии 400–13000 эВ. Это большое поле зрения позволяет наблюдать области примерно на 60 % больше среднего видимого размера полной Луны, что делает её мощным инструментом для получения детализированных рентгеновских изображений небесных объектов, таких как скопления галактик и остатки сверхновых.

 Прибор Xtend космической обсерватории XRISM зафиксировал скопление галактик Abell 2319 в рентгеновских лучах, показанное здесь фиолетовым цветом и очерченное белой рамкой, обозначающей область действия детектора

Прибор Xtend космической обсерватории XRISM зафиксировал скопление галактик Abell 2319 в рентгеновских лучах, показанное здесь фиолетовым цветом и очерченное белой рамкой, обозначающей область действия детектора

Результаты, полученные с помощью XRISM, играют значительную роль в понимании космических процессов. Открытие такого масштаба — важный шаг в расширении границ нашего знания о Вселенной и изучении процессов формирования элементов, составляющих основу мироздания.

Телескопы NASA начали год с изучения двойного взрыва сверхновых не очень далеко от нас

Астрономы начали новый 2024 год с изучения останков взрывов как минимум двух сверхновых в относительной близости от нас. Для изучения всех нюансов процесса в одном снимке объединили данные с четырёх телескопов в рентгеновском, инфракрасном и видимом диапазонах. Кроме научной ценности комбинированное изображении эстетически привлекательно и не оставит равнодушным ни одного ценителя красот Вселенной.

 Нажмите для увеличения. Источник изображения: NASA

Нажмите для увеличения. Источник изображения: NASA

На снимке запечатлены останки взрывов как минимум двух сверхновых, которые взорвались примерно 5000 лет назад. Изучаемая область пространства находится всего в 160 тыс. световых лет от нас в Большом Магеллановом Облаке — небольшой галактике-спутнике Млечного Пути. Изучаемый объект — остатки сверхновой 30 Doradus B — входят в туманность Тарантул в созвездии Золотой Рыбы. Создание комбинированного изображения от нескольких телескопов позволило доказать, что останки 30 Doradus B не могли образоваться в наблюдаемом виде лишь в результате взрыва одной единственной сверхновой.

На вероятность одного или даже нескольких предшествующих взрывов указывают данные рентгеновского телескопа «Чандра». На снимке они выделены фиолетовым цветом. Далеко распространившаяся тонкая оболочка — её следы — слишком большая, если бы речь шла о единственном взрыве 5000 лет назад. Моделирование показывает, что этому предшествовал ещё один взрыв несколько ранее, как и не исключена другая активность в наблюдаемом регионе.

Также на снимке находятся данные наблюдений в оптическом диапазоне, представленные 4-метровым телескопом им. Виктора Бланко в Чили (оранжевый и голубой), инфракрасные данные космического телескопа «Спитцер» (красный цвет), а также оптические данные космического телескопа «Хаббл», которые были добавлены в чёрно-белом варианте, чтобы воссоздать чёткое изображение.

Комбинированная картинка позволяет охватить глазом все нюансы и последствия двух взрывов сверхновых от расширяющейся оболочки до выбросов пульсаров, оставшихся после взрывов массивных звёзд. Джеты и активное излучении пульсаров дополнительно раздувают межзвёздный газ, создавая подобие туманности — добавляя в картину нюансы, по которым можно воссоздать историю взорвавшихся звёзд.

В далёкой-далёкой галактике взорвалась сверхновая «На бис!»

Иногда о крайне редком событии говорят, как о втором попадании снаряда в одну и ту же воронку. Примерно так можно описать сделанное телескопом «Джеймс Уэбб» открытие. Он сумел отыскать в одной и той же гравитационно линзированной галактике вторую сверхновую. Наблюдение за обеими позволит уточнить постоянную Хаббла и, возможно, станет ещё одним шагом в сторону разрешения величайшей загадки в астрофизике.

 Источник изображения: NASA

Слева — три изображения сверхновой «Реквием», справа — два изображения сверхновой «На бис!». Источник изображения: NASA

В ноябре 2023 года космический телескоп NASA им. Джеймса Уэбба наблюдал массивное скопление галактик под названием MACS J0138.0-2155. Благодаря эффекту гравитационного линзирования, предсказанному ещё Альбертом Эйнштейном, далекая галактика под названием MRG-M0138 позади скопления предстала на изображении сильно деформированной из-за мощной гравитации промежуточного скопления галактик.

Помимо искажения и увеличения далекой галактики, эффект гравитационного линзирования «размножил» изображения MACS J0138, позволив получить пять различных изображений галактики. Деформация пространства-времени вокруг скопления MACS J0138.0-2155 далеко не идеальной формы и свет от фоновой галактики шёл по пяти различным маршрутам с разной длительностью. Поскольку линзированная галактика отстоит на 10 млрд световых лет, запаздывание света в ряде случаев было значительным.

Но самое замечательное, что астрономы обнаружили во время наблюдения вспышку сверхновой! Более того, это была сверхновая типа Iа. А сверхновые этого типа являются в астрофизике «стандартными свечами». Это термоядерные взрывы белых карликов. Эти процессы хорошо описаны и раз за разом повторяются с очень и очень высокой точностью. На ядро белого карлика падает водород до начала запуска ядерной реакции синтеза. Энергия вспышки известна и позволяет оценить расстояние до сверхновой.

Удивительным стало то, что за семь лет до этого в галактике MACS J0138 телескопом «Хаббл» точно также была обнаружена другая сверхновая типа Iа. Тем самым «Уэбб» впервые наблюдал вторую линзированную сверхновую в одной и той же галактике. И тоже от «стандартной свечи»! И если наблюдение «Хаббла» было неполным и не позволило собрать данные для определения постоянной Хаббла, то теперь астрономы сделали всё возможное, чтобы собрать как можно больше информации о событии. Всего таких событий (линзированных сверхновых типа Ia) зарегистрировано около дюжины, и новое открытие станет ценным вкладом в наблюдения о расширяющейся Вселенной.

Предыдущая сверхновая получила название «Реквием». Она отобразилась на трёх участках неба и появится в гравитационной линзе ещё два раза: в 2037 и 2041 годах. Вторую обнаруженную сверхновую назвали «На бис!» (Encore). Ещё раз свет от неё придёт в 2035 году.

«Теперь мы обнаружили гравитационной линзой вторую сверхновую в той же галактике, что и "Реквием", которую мы назвали сверхновая "На бис!". Она была обнаружена по счастливой случайности, и сейчас мы активно следим за текущей сверхновой по специальной программе наблюдений "Уэбба". Используя эти изображения "Уэбба" на основе многократного изображения сверхновой, мы измерим и подтвердим постоянную Хаббла. Подтверждено, что Encore является стандартной свечой или сверхновой типа Ia, что делает Encore и Requiem, безусловно, самой удаленной парой "братьев и сестёр" сверхновых стандартной свечи, когда-либо обнаруженных», — сообщают учёные.

Серия беспорядочных сверхмощных вспышек в космосе поставила астрономов в тупик

Учёные вновь зарегистрировали загадочное космическое явление LFBOT — светящийся быстрый синий оптический переход. Все ранее наблюдаемые события LFBOT сопровождались яркой вспышкой и быстрым затуханием, тогда как зарегистрированное в сентябре 2022 года событие AT2022tsd положило начало наблюдению целой серии из нерегулярных 14 вспышек разной интенсивности. Что-то на удалении одного миллиарда световых лет от нас долго горело и взрывалось.

 Событие в представлении художника. Источник изображения: Robert L. Hurt/Caltech/IPAC/Cornell University

Событие LFBOT AT2022tsd в представлении художника. Источник изображения: Robert L. Hurt/Caltech/IPAC/Cornell University

За свою непредсказуемость событие LFBOT AT2022tsd получило прозвище «Тасманийский дьявол». Впервые явление LFBOT было зарегистрировано в 2018 году. Нечто далеко во Вселенной совершило колоссальный выброс энергии, видимый в оптическом диапазоне в синем цвете, и очень быстро снизило свою яркость. Все ранее наблюдаемые вспышки сверхновых длились существенно дольше, что заставило признать существование неких иных процессов во Вселенной.

Событие AT2022tsd стало поистине уникальным, придав LFBOT (Luminous Fast Blue Optical Transients) ещё больше загадочности. В течение 120 дней после первой регистрации вспышки последовало ещё 14 вспышек с неравным интервалом. Более того, часть последующих вспышек была большей яркости, чем предыдущие.

Безусловно, у учёных есть пара гипотез, что происходило в случае LFBOT AT2022tsd. С большой вероятностью мы действительно видим последствия взрыва сверхновой, которая превратилась либо в чёрную дыру, либо в нейтронную звезду. На месте некогда яркой звезды остался её труп — намного меньше, но со своими странными свойствами.

«Удивительно, но вместо того, чтобы стабильно угасать, как можно было бы ожидать, источник ненадолго становился ярче, снова и снова, — рассказала ведущий автор работы Анна Хо (Anna Ho), доцент Корнельского университета. — уже является своего рода странным, экзотическим событием, так что это было ещё более странным».

Как сообщается в посвящённой исследованию работе, опубликованной в Nature, ведущей остаётся версия о неудачном взрыве сверхновой. На пороге взрыва звезда превратилась в чёрную дыру или нейтронную звезду. Исходная звезда массой около 20 солнечных сожгла всё топливо и коллапсировала без взрыва. Также источником уникального может оказаться чёрная дыра средней массы, поглощающая звёзды.

В любом случае, у учёных появились данные для расширения ранее предложенных моделей поведения нейтронных звёзд, чёрных дыр и сверхновых, а также для более полного описания эволюции останков звёзд после их смерти.

Странности Бетельгейзе объяснили случаем звёздного каннибализма

Бетельгейзе — одна из ярчайших звёзд на небе — удивляет не только силой блеска, но также своим загадочным поведением. Это заставляет учёных пристально следить за ней и пытаться угадать её дальнейшую судьбу и причуды эволюции. Проведённое новое исследование, в частности, заставляет подозревать звезду в случае каннибализма, в результате которого она могла поглотить более мелкого компаньона по системе.

 Масштабы звезды в нашей системе: фотосфера Бетельгейзе распространялась бы до орбиты Юпитера. Источник изображения: ESO

Масштабы звезды в нашей системе: фотосфера Бетельгейзе распространялась бы до орбиты Юпитера. Источник изображения: ESO

От других наблюдаемых во Вселенной красных гигантов — огромных звёзд на последнем этапе жизненного цикла перед превращением в сверхновую — Бетельгейзе отличается по двум наблюдаемым параметрам. Во-первых, она вращается быстрее всех других собратьев. Во-вторых, в её атмосфере обнаруживается чрезмерный объём тяжёлых атомов, в частности, азота (для астрофизиков тяжёлым считается всё, что тяжелее гелия).

Высокая скорость вращения и сверхвысокая концентрация тяжёлых элементов намекают на то, что в эволюции Бетельгейзе было что-то особенное. Наиболее вероятна ситуация, что звезда поглотила меньшего партнёра по системе, благо двойных звёздных систем во Вселенной не просто много, а очень много. Дать более-менее чёткий ответ на этот вопрос помогло компьютерное моделирование. Компьютер действительно рассчитал условия, при которых две звезды в системе могли породить ту Бетельгейзе и с теми характеристиками, которые мы сейчас наблюдаем.

Согласно расчётам, красный гигант массой 16 солнечных с выгоревшим в гелий ядром понемногу сбрасывал атмосферу, которая распространялась до орбиты меньшего компаньона — ещё активной звезды с массой около 4 солнечных. Меньший компаньон набирал массу и тормозился, пока в итоге не слился с большей звездой. Слияние было «тихим» без значительной потери массы в процессе, но это привело к разрушению гелиевого ядра, к перемешиванию масс звезды с выбросом в её атмосферу большого объёма тяжёлых элементов и к ускорению её вращения за счёт добавочного импульса.

Подтвердить данный сценарий можно будет только в процессе наблюдения сверхновой, когда Бетельгейзе в неё превратится. Об этом расскажет состав и соотношение тяжёлых элементов в продуктах взрыва. Но этого придётся ждать 50–100 тыс. лет. Впрочем, некоторые астрономы считают, что Бетельгейзе может превратиться в сверхновую уже через 30 лет.

Обнаружена неправильная сверхновая — до взрыва она сбросила вещество массой в одну солнечную

В мае 2023 года японский астроном-любитель Коити Итагаки (Kōichi Itagaki) обнаружил сверхновую, которая родилась всего за пару часов до этого. Столь раннее обнаружение объекта позволило астрономам проследить за первыми часами и сутками эволюции взорвавшейся звезды, и это оказалось бесценным — сверхновая повела себя совсем не так, как это предписывала стандартная теория эволюции звёзд.

 Источник изображения: Melissa Weiss/CfA

Источник изображения: Melissa Weiss/CfA

Сверхновая SN 2023ixf находится сравнительно недалеко от нас — на удалении 20 млн световых лет в галактике Вертушка (Pinwheel) в созвездии Большая Медведица. Это делает её удобным объектом для наблюдения, и сообщение о её появлении сразу же запустило процесс наблюдения во всех доступных диапазонах от оптического до микроволнового. Учёным редко выпадает такая удача — следить за процессами в сверхновой почти с самого их начала. Сверхновая SN 2023ixf такую возможность предоставила.

По всем признакам SN 2023ixf относится к сверхновым II типа или к сверхновым с коллапсирующим ядром. Такие сверхновые служат основным источником вещества во Вселенной, а также могут образовывать нейтронные звёзды и чёрные дыры. Масса звёзд до взрыва должна быть не меньше 8 и не более 50 солнечных масс. Перед взрывом ядро звезды под своим весом сжимается и происходит взрыв. Когда через несколько часов после этого ударная волна от взрыва достигает внешнего края оболочки звезды, возникает мощнейшая вспышка в видимом и других диапазонах, но в случае SN 2023ixf вспышка возникла с существенной задержкой.

Как показало дополнительное исследование, ударная волна от взорвавшегося ядра сверхновой встретила неожиданное сопротивление в виде массы вещества на своём пути. Анализ излучения звезды в целом спектре диапазонов позволил реконструировать последовательность событий. Оказалось, что красный гигант ещё за год до своего превращения в сверхновую сбросил с себя вещество в объёме одной солнечной массы. Именно это вещество затормозило прохождение фронта ударной волны от коллапсирующего ядра.

 Изображение сверхновой через месяц после взрыва. Источник изображения: S. Gomez/STScI

Изображение сверхновой через месяц после взрыва. Источник изображения: S. Gomez/STScI

Подобной потери массы звездой перед её превращением в сверхновую астрономы ещё не наблюдали, поэтому поведение SN 2023ixf стало для них сюрпризом. Также стало очевидно, что в наших знаниях об эволюции звёзд, образующих сверхновые II типа, имеются пробелы. Дальнейшее наблюдение за SN 2023ixf и поиск похожих событий дадут земной науке пищу для лучшего понимания таких явлений.

«Джеймс Уэбб» заснял легендарную сверхновую Supernova 1987A с беспрецедентной детализацией

Новый снимок космической обсерватории им. Джеймса Уэбба в очередной раз показал невероятные возможности этого инструмента. С помощью камеры ближнего инфракрасного диапазона получено изображение легендарной сверхновой Supernova 1987A, наблюдения за которой ведутся без малого 40 лет. Новый снимок выявил невидимые ранее детали в структуре останков звезды, что делает наблюдения за ней ещё интереснее.

 Нажмите для увеличения. Источник изображения: NASA

Нажмите для увеличения. Источник изображения: NASA

Останки сверхновой Supernova 1987A были обнаружены в феврале 1987 года. Они находятся на удалении 168 тыс. световых лет и поэтому удобны для наблюдения за эволюцией объектов такого рода. Со времени открытия за этой сверхновой постоянно наблюдают все самые совершенные телескопы по мере их появления во всех диапазонах от радио и гамма до инфракрасных и оптических. Последние данные о Supernova 1987A в инфракрасном диапазоне представил космический телескоп «Спитцер» (Spitzer Space Telescope). Но только «Уэбб» позволил увидеть тонкие структуры в останках этой сверхновой.

 Предыдущие изображения этой же сверхнвой, которые совмещают данные от телескопов «Чандры» и «Хаббла».

Предыдущее изображения этой же сверхновой, которое совмещает данные от телескопов «Чандры» и «Хаббла».

На снимке «Уэбба» во внутренней области останков сверхновой, окружённых кольцом из ярких сгустков (образованных ударными явлениями в сброшенном звездой веществе), проявились два тёмных «полумесяца». Ранее эти структуры не фиксировались нашими приборами, и они стали для учёных следующими объектами для изучения. В центральной области останков сверхновой чрезвычайно много пыли, что затрудняет их изучение даже с помощью инфракрасных приборов. На следующем этапе «Уэбб» посмотрит на эту область с помощью камеры среднего инфракрасного диапазона, что обещает ещё сильнее улучшить детализацию останков Supernova 1987A.

Где-то в центре этих клубов пыли находится нейтронная звезда, оставшаяся после взрыва сверхновой. Будет большой удачей, если «Уэбб» поможет её найти. Но даже без этого новый инфракрасный телескоп предоставляет учёным множество новых деталей об эволюции останков сверхновых и это позволяет заполнить пробелы в наших знаниях об эволюции звёзд и вещества во Вселенной. Ведь все мы когда-то были частью звёзд. Все атомы нашего тела были выброшены во Вселенную во взрывах сверхновых. Нельзя исключать, что в некоторых из нас есть атомы Supernova 1987A.

NASA опубликовало снимок спиральной галактики UGC 11860, пережившей недавний взрыв сверхновой

NASA опубликовало фото отдалённой галактики, сделанное космическим телескопом «Хаббл» — она пережила относительно недавний взрыв сверхновой. Галактика UGC 11860 находится в 184 млн световых лет от Земли в созвездии Пегаса.

 Источник изображения: NASA

Источник изображения: NASA

Речь идёт о спиральной галактике, похожей на наш собственный Млечный путь — на снимке отчётливо заметны рукава, исходящие из яркого ядра галактики и свивающиеся в спиралеобразную структуру.

Судя по фото, опубликованному NASA, UGC 11860 находится в довольно стабильном состоянии, и как сообщает Space.com, «спокойно плывёт» в космосе. Тем не менее, по данным космического агентства, в недавнем прошлом она пережила «невообразимо мощный звёздный взрыв».

Когда жизнь массивной звезды подходит к концу, она погибает в «эффектном» взрыве, превращаясь в сверхновую. На этом этапе звезда становится чрезвычайно яркой, выбрасывая в окружающий космос огромное количество материи и формирует расширяющиеся оболочки из газа и пыли, по остаткам которых не в последнюю очередь и можно отследить недавний взрыв.

Как заявляют в NASA, высокоэнергетические процессы при взрыве отвечают за формирование разнообразных химических элементов, от кремния до никеля. Это, в частности, позволяет многое понять о происхождении многих химических элементов на Земле.

Наблюдения UGC 11860 проводились ещё в 2014 году с использованием камеры «Хаббла» Wide Field Camera 3, но снимок опубликован NASA только теперь. Данные с «Хаббла» позволили астрономам подробно изучить последствия звёздного взрыва и сохранившиеся в галактике остатки сверхновой после него.

Учёные нашли «обнажённые» звёзды — недостающее звено в эволюции перед взрывом килоновой

Международная группа учёных рассказала об обнаружении нового класса звёзд, представляющих собой недостающее звено в эволюции двойных систем, в конце жизни которых происходит столкновение нейтронных звёзд.

 Источник изображений: uni-heidelberg.de

Источник изображений: uni-heidelberg.de

Считается, что при сопровождающем такое столкновение взрыве — килоновой — возникают условия для формирования элементов тяжелее железа: серебра, золота и платины, которые не могут возникать в звёздных ядрах. Поэтому слияния нейтронных звёзд жизненно важны для распространения тяжёлых элементов во Вселенной. Недостающим звеном эволюции килоновых являются входящие в двойные системы звёзды, внешние слои водорода которых поглощаются звездой-компаньоном. «Пострадавшая» при этом процессе звезда остаётся с обнажёнными плотными горячими слоями гелия, образовавшегося в результате синтеза водорода.

Астрономам уже известно о существовании малых и, напротив, массивных обнажённых звёздах (звёздах Вольфа — Райе), но они либо слишком малы, либо слишком велики, чтобы оказаться в системах, производящих килоновые. Ранее не удавалось обнаружить гелиевые звёзды с массой от двух до восьми солнечных. Из-за этого даже выдвигалась гипотеза о «разрыве масс гелиевых звёзд» и возникали вопросы, могут ли модели жизненного цикла массивных звёзд быть ошибочными. Теперь же международной группе учёных под руководством доцента Университета Торонто Марии Друт (Maria Drout) удалось обнаружить 25 возможных примеров объектов, представляющих это недостающее звено эволюции.

Обнажённые гелиевые звезды промежуточной массы начинают жизненный цикл как гиганты с массой от 8 до 25 солнечных. Они находятся в двойных системах с компаньонами, которые постепенно захватывают их внешние слои. Когда у такой звезды заканчивается топливо для ядерного синтеза, она производит взрыв — сверхновую, при котором выбрасывается относительно небольшое количество вещества, но остаётся ядро в виде нейтронной звезды. В этот момент они меняются местами в паре, и уже новая нейтронная звезда начинает поглощать своего компаньона, который тоже в какой-то момент производит сверхновую.

 Эволюция двойных систем с обнажёнными звёздами

Эволюция двойных систем с обнажёнными звёздами

Образуется двойная система нейтронных звёзд, состоящая из пары тесно связанных «мертвецов», излучающих при вращении вокруг друг друга гравитационные волны. Эти гравитационные волны уносят с собой момент импульса двойной системы, нейтронные звёзды закручиваются по спирали всё быстрее, пока они не столкнутся и не произведут килоновую. Но для обнаруженных учёными объектов этот сценарий располагается ещё в отдалённом будущем.

Астрономы предполагают, что есть причина, по которой обнаружить обнажённые звёзды промежуточной массы так трудно. Свет, излучаемый ими в видимом диапазоне, перебивается светом сжигающих водород компаньонов. Чтобы обойти это ограничение, исследователи начали искать их в ультрафиолетовом диапазоне, и поиски начали с расположенных неподалёку от Млечного Пути карликовых галактик — Большого и Малого Магеллановых Облаков. В результате удалось обнаружить 25 объектов, которые произведут сверхновые и пары нейтронных звёзд с последующим слиянием.

Одна из таких звёзд сильно отличается от того, что ожидали увидеть учёные: она пока ещё не полностью растеряла внешний водородный слой, и если подобный механизм характерен для других объектов промежуточной массы, то они могут казаться намного больше и холоднее, чем есть на самом деле. Это значит, что звёзды нового класса, возможно, всё время прятались у всех на виду.

На заре формирования Солнечная система пережила взрыв близкой сверхновой — стечение обстоятельств помогло ей уцелеть

Как считают учёные, взрыв близкой сверхновой рядом с Солнцем на заре формирования нашей звезды мог поставить точку в истории формирования нашей звёздной системы — если бы не облако молекулярного газа, выступившего в роли своеобразного щита.

 Иллюстрация. Источник изображения: NASA

Иллюстрация. Источник изображения: NASA

Учёные пришли к такому мнению после изучения изотопов элементов, обнаруженных в метеоритах. Обычно такие объекты являются фрагментами астероидов, сформировавшихся из материалов, находившихся рядом, когда формировалась звезда и другие планеты. Таким образом, метеориты являются своеобразными остатками, позволяющими исследователям реконструировать эволюцию Солнечной системы.

Изучение радиоактивных изотопов алюминия в образцах метеоритов позволило установить, что около 4,6 млрд лет назад в системе появился дополнительный радиоактивный алюминий — лучшим объяснением этому, по мнению учёных, является «впрыск» материала от взорвавшейся рядом сверхновой.

По данным исследователей Национальной астрономической обсерватории Японии, находившаяся во «младенчестве» Солнечная система, вероятно, действительно пережила такой взрыв, а окружавший её «кокон» защитил от полного уничтожения. Взрывы сверхновых обычно случаются, когда у массивных умирающих звёзд заканчивается топливо для ядерного синтеза и их ядра больше не могут противостоять гравитационному коллапсу. Это и приводит к взрыву, благодаря которому в космос выбрасываются элементы, накапливавшиеся во время жизни звезды. Материалы становятся кирпичиками следующего поколения звёзд — но достаточно мощный взрыв может негативно повлиять на находящуюся рядом звезду и зарождающуюся планетную систему.

Поскольку звёзды обычно рождаются в гигантских облаках молекулярного газа, по мнению учёных, у взорвавшейся сверхновой ушло около 300 тыс. лет, чтобы «взломать» плотную защиту, окружавшую Солнечную систему. Метеориты, богатые радиоактивными изотопами, в своё время откололись от астероидов, родившихся в первые 100 тыс. лет существования Солнечной системы, когда она всё ещё находилась в плотном газовом «коконе», который защищал её от жёсткой радиации — радиация могла негативно сказаться на формировании планет вроде Земли. Новые результаты свидетельствуют о том, что плотные «нити», сформировавшиеся из окружавшего систему газа, могли задержать и доставить в регион, близкий к Солнцу, и радиоактивные изотопы. Ожидается, что открытие станет критически важным для понимания процесса формирования и эволюции звёзд и их планетарных систем.

Например, подобные «нити» могут играть важную роль в защите молодой Солнечной системы от жёсткой радиации соседних звёзд, которая могла бы «испарить» протозвёздный диск, что повлияло бы на его конечный размер, в результате это обязательно сказалось бы на формировании планет в диске.

Бетельгейзе может взорваться в сверхновую в ближайшие 30–50 лет, говорит новый анализ светимости звезды

Четыре года назад одна из ярчайших звёзд нашего неба — Бетельгейзе — резко потеряла в яркости, что позже назвали Великим Потускнением. С тех пор астрономы стали уделять этой звезде максимальное внимание, чтобы на её примере отточить модели эволюции некоторого типа звёзд. Главной интригой остаётся точность прогноза о превращении Бетельгейзе в сверхновую. Раньше на это давали десятки тысяч лет, но есть мнение, что она рванёт очень и очень скоро.

 Масштабы звезды в нашей системе: фотосфера Бетельгейзе распространялась бы до орбиты Юпитера. Источник изображения: ESO

Масштабы Бетельгейзе: фотосфера звезды распространялась бы до орбиты Юпитера. Источник изображения: ESO

Бетельгейзе — это красный сверхгигант в созвездии Ориона на удалении 650 световых лет от Земли. Считается, что это звезда типа O. Звезда находится на грани превращения в сверхновую. Но когда она перейдёт эту грань зависит от целого ряда факторов и один из них — это реальные размеры звезды, о чём учёные спорят несколько десятилетий.

Согласно последним измерениям, Бетельгейзе скорее маленькая для звёзд типа O, чем большая. Это означает, что на превращение её в сверхновую могут уйти многие десятки тысяч лет. Однако исследователи из Университета Тохоку в Японии и Женевского университета в Швейцарии заново проанализировали все данные по Бетельгейзе и пришли к выводу, что звезда может иметь намного больший размер и её судьба — это превратиться в сверхновую за тридцать-пятьдесят лет или около того.

Согласно нашим наблюдениям, яркость Бетельгейзе меняется с двумя более-менее выраженными периодами — коротким длительностью 420 дней и большим длительностью 2200 дня. Если для оценки скорости эволюции звезды использовать более короткий период, то это определяет её радиус примерно в 800-900 раз больше радиуса нашего Солнца. Японские и швейцарские астрономы показали, что опора на 2200-дневную периодичность может указывать на радиус Бетельгейзе примерно в 1300 раз больше радиуса Солнца, что вносит радикальные коррективы в прогнозирование судьбы этой звезды. Если они правы, Бетельгейзе превратится в сверхновую после 2050 года.


window-new
Soft
Hard
Тренды 🔥
ИИ-стартап Stability AI сократит 10 % персонала из-за усиления конкуренции 32 мин.
Сказочная стратегия Fabledom покинет королевство раннего доступа Steam уже совсем скоро — дата выхода 1.0 и анонс консольных версий 39 мин.
Оно живое: спустя полгода молчания Telltale показала четыре новых скриншота The Wolf Among Us 2 2 ч.
У GPT-4 обнаружили способность эксплуатировать уязвимости по их описаниям 2 ч.
«Лаборатория Касперского» показала прототип магазина приложений для KasperskyOS 2 ч.
Apple удалила Telegram и WhatsApp из китайского App Store 3 ч.
Paradox перенесла релиз крупного дополнения Sphere of Influence к Victoria 3, чтобы не повторять ошибок прошлого 3 ч.
«Нам не терпится подорвать мир снова»: Amazon продлила сериал Fallout на второй сезон 5 ч.
OpenAI отключила генератор изображений DALL-E 2 — его место займёт более продвинутый DALL-E 3 7 ч.
Создание российского аналога GitHub предложено отменить, а средства направить на поддержку open source 8 ч.