Опрос
|
реклама
Быстрый переход
Учёные создали цемент, который поглощает больше углекислого газа, чем выбрасывается при его производстве
20.04.2023 [11:32],
Геннадий Детинич
Производство цемента ежегодно вносит в атмосферу около 8 % от общего объёма углекислого газа. Это колоссальные объёмы, снизить которые надеются многие учёные во всём мире. В ход идут энергосберегающие технологии, уникальные добавки и хитрые техпроцессы, однако особенного прогресса пока нет. Возможно, это получится у учёных из Университета штата Вашингтон, которые придумали цемент, который поглощает больше CO2, чем выбрасывается при его производстве. ![]() Источник изображения: Pixabay Сегодня выбросы CO2 при производстве цемента происходят главным образом из-за высоких температур (энергозатрат) и химических реакций. Теоретически переход на возобновляемые источники энергии мог бы повысить экологическую чистоту цемента и бетона, но химические реакции всё равно остаются барьером, за который так просто не пройти. Ранее было множество попыток снизить углеродный след химических реакций при производстве цемента. Известняк заменяли вулканическими породами, добавляли диоксид титана, пищевую соду, строительный мусор и даже глину. Более того, есть предложение использовать в качестве основы для строительных материалов картофельный крахмал. В новом исследовании, статья о котором опубликована в журнале Materials Letters, в качестве добавки предложен специальным образом обработанный древесный уголь, полученный при сжигании биологических отходов. Древесный уголь и раньше пытались добавлять в смеси для изготовления цемента. На этот раз уголь был предварительно обработан сточными водами, что привело к нескольким положительным результатам. Во-первых, произведённый в процессе бетон оказался прочнее. Во-вторых, подготовленный для изготовления цемента древесный уголь смог поглотить из окружающего воздуха углекислый газ в объёме до 23 % от собственного веса. Экспериментальный цемент с 30 % обработанного сточными водами древесного угля поглотил на 13 г больше CO2, чем было выброшено при его производстве — он оказался углеродно-отрицательным. Для сравнения, обычный цемент выделяет при производстве до 900 г CO2 на каждый килограмм. Разница очень и очень большая, что сулит интересные перспективы для нового материала. Измерение прочностных характеристик бетона после 28 дней с момента изготовления показало, что прочность бетона на сжатие составила 27,6 МПа, что примерно соответствует прочности обычного бетона. Здания из подобного материала будут такими же прочными, как из обычного бетона, но также смогут десятилетиями поглощать CO2 из атмосферы, а не только в процессе его изготовления. Теперь учёные будут проверять устойчивость нового бетона к атмосферным воздействиям и другим повреждениям, чтобы уверится в его пригодности для строительства безопасных зданий и сооружений. Первый кирпич из лунного грунта для китайской базы будет получен через пять лет
14.04.2023 [14:20],
Павел Котов
В минувшую субботу в Хуачжунском университете науки и технологии (КНР, Ухань) прошла конференция, посвящённая вопросам внеземного строительства. В мероприятии приняли участие более сотни учёных из университетов, научно-исследовательских институтов и космических компаний. ![]() Источник изображения: JB / pixabay.com В рамках обсуждения был охвачен широкий круг вопросов, в том числе строительство лунной базы, использование роботов и возможность имитации лунных условий на Земле. Одним из выступающих был Дин Лиюнь (Ding Lieyun), главный научный сотрудник Национального центра технологических инноваций и цифрового строительства при университете. Он рассказал о последних разработках лаборатории, в том числе о проекте по созданию материала, аналогичного лунному грунту — ранее специалисты учреждения уже предлагали проекты лунных баз, в том числе из материала на основе лунного грунта с использованием лазеров и 3D-принтеров. Команда Дина также предложила робота Chinese Super Mason, предназначенного для производства строительных материалов с использованием традиционных китайских решений — по мнению учёного, это менее рискованно и более эффективно, чем вывод на 3D-печать всего сооружения целиком. Для строительства лунной базы, рассказал исследователь, придётся преодолеть множество проблем, связанных с дефицитом воды, низкой гравитацией, частыми землетрясениями и сильным космическим излучением. Тем не менее, ожидается, что первый кирпич из лунного грунта будет получен в ходе миссии «Чанъэ-8» примерно через пять лет. ![]() Проект лунной базы Red Star. Источник изображения: scmp.com Ещё одной проблемой могут стать большие перепады температуры, заявил Юй Дэнъюнь (Yu Dengyun) из Китайской корпорации аэрокосмической науки и техники — прежде учёные этот фактор недооценивали. «Наши последние данные показали, что самая высокая температура на Луне составляет около 120 °C, а самая низкая — около -200 °C. Эта разница больше, чем мы ожидали, и она может усложнить строительство на Луне», — сообщил учёный. Ранее он при содействии коллег из Харбинского политехнического университета предложил проекты лунных баз Clover и Red Star. Первая может быть построена на поверхности Луны, а вторая — в лунном кратере. Оба проекта предполагают четыре помещения, в которых могут обустроиться на кратковременное пребывание три или четыре человека. «Чтобы обосноваться на Луне, нам может потребоваться 20, 30 лет или больше, но совместную работу нужно начинать уже сейчас», — добавил инженер. Юй Дэнъюнь как главный конструктор четвёртой фазы китайского проекта лунных исследований уточнил график предстоящих миссий «Чанъэ». Миссия «Чанъэ-6» стартует в 2025 году. Она впервые в истории человечества предполагает сбор образцов грунта с обратной стороны Луны. Год спустя в рамках миссии «Чанъэ-7» стартует аппарат, который совершит посадку в области бассейна Южный полюс — Эйткен. Это самый большой из известных кратеров, и расположен он на юге обратной стороны. Наконец, посадка «Чанъэ-8» произойдёт в 2028 году — миссия будет посвящена поиску возможностей использовать местные ресурсы для последующего строительства лунной базы. |