Сегодня 23 ноября 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → телескоп
Быстрый переход

Работу космического телескопа «Чандра» намерены продлить на десятки лет, отправив к нему сервисную миссию

Спустя почти четверть века после запуска, знаменитый телескоп «Чандра» агентства NASA, работающий в рентгеновском диапазоне, может получить первое сервисное обслуживание непосредственно в космосе. В последние 18 месяцев Northrop Grumman изучает возможность отправки к телескопу сервисной миссии, способной продлить срок его работы на десятилетия.

«Чандра» в представлении художника. Источник изображения: NASA

Обслуживание «Чандры» — не единственная амбициозная миссия, находящаяся в разработке. В частности, частные компании рассматривают возможность отправить космические аппараты к телескопам «Хаббл» и «Спитцер».

Для каждой из миссий характерны свои проблемы. «Хаббл» находится довольно близко от Земли, но шаттл, предназначавшийся для его обслуживания, уже не используется. «Спитцер» находится очень далеко от нашей планеты, на расстоянии двух астрономических единиц, (определяющих дистанцию от Земли до Солнца). Впрочем, телескоп уже отключён и намерение вернуть его в строй может пойти только на пользу. Для сравнения, «Чандра» находится относительно далеко от Земли и всё ещё функционирует, поэтому реализация проекта может быть довольно интересна как учёным, так и общественности.

Возможность миссии впервые была озвучена в ходе Космического симпозиума Годдарда в марте 2022 года. Предполагается участие дочернего подразделения Northrop Grumman — компании SpaceLogistics.

Вероятна отправка к «Чандре» специально разработанного космического буксира. Было заявлено, что SpaceLogistics может отправить предложение NASA уже к концу 2022 года, хотя дальнейшие планы пока не раскрываются. Сервисное обслуживание не только позволит изучать Вселенную в рентгеновском диапазоне, что невозможно на поверхности Земли из-за атмосферных помех, но и работать «в связке» с телескопом «Хаббл». Известно, что «Чандра» использовался для перепроверки изображений «Хаббла».

Ещё в 2021 году отмечалось, что в числе ключевых приоритетов США предусмотрено строительство рентгеновского телескопа, но оно имеет меньший приоритет, чем телескопы, оптимизированные для изучения Вселенной в инфракрасном, оптическом и ультрафиолетовом диапазонах. В SpaceLogistics посчитали, что возможность сохранить работоспособность «Чандры» за относительно небольшие деньги будет привлекательна для NASA — миссия позволит произвести дозаправку телескопа и организовать действия для сохранения точности измерений с помощью его инструментов.

Гравитационные детекторы получили «глаза» — к работе приступили первые роботизированные телескопы BlackGEM

Европейская южная обсерватория (ESO) сообщила о начале работы первых трёх телескопов BlackGEM, которые в оптическом диапазоне будут искать источники гравитационных волн. Детекторы гравитационных волн LIGO и Virgo не могут указать точку в небе, где произошло слияние чёрных дыр или нейтронных звёзд, а без этого информация о событии неполная. Восполнять этот недостаток будет массив BlackGEM, который с огромной скоростью будет осматривать южное небо.

 Источник изображения: ESO

Источник изображения: ESO

Всего массив будет состоять из 15 телескопов. У каждого из них сравнительно небольшое зеркало — всего 65 см. Тем не менее, за счёт расположения — на высокогорном плато в Чили (в Ла Силла) — обзор и разрешение обещают быть превосходными по сравнению с даже большими телескопами в других местах.

В лучшем случае, детекторы LIGO и Virgo могут определять участок неба, откуда пришли зафиксированные гравитационные волны, площадью около 400 полных лун. Массив BlackGEM должен быстро осмотреть этот участок и зафиксировать все видимые быстрые изменения. Если роботизированные телескопы обнаружат изменения в зоне наблюдения, цель для детального изучения будет передана на по-настоящему большие телескопы.

Определение направления на источники гравитационных волн станет не единственной задачей комплекса BlackGEM. Массив будет определять другие быстрые переходные процессы, например, искать взрывы сверхновых в Южном полушарии, а также выявлять потенциально опасные для Земли астероиды и кометы.

Космический телескоп «Спитцер» намерены «воскресить» — по техническим причинам его выключили в 2020 году

Последнюю из четырёх «Великих обсерваторий» NASA — инфракрасный телескоп «Спитцер» — пришлось отключить три года назад. Телескоп находится на противоположной от нас стороне относительно Солнца, что сделало невозможным поддержку с ним связи. Восстановить канал связи и возобновить научную работу телескопа намерен стартап Rhea Space Activity. На днях он получил грант от Космических сил США на разработку спутника-спасателя. Но миссия начнётся нескоро.

 Космическая обсерватория «Спитцер». Источник изображения: NASA

Космическая обсерватория «Спитцер». Источник изображения: NASA

«Спитцер» (Spitzer Space Telescope) был выведен на гелиоцентрическую орбиту. Он удалялся от Земли со скоростью до 15 млн км в год. Сейчас он отошёл от Земли примерно на 2 а.е. (астрономические единицы), что означает, что он находится в два раза дальше, чем Земля от Солнца.

Для своего времени это был наимощнейший инфракрасный телескоп. Работа инфракрасных датчиков поддерживалась активной системой охлаждения на жидком гелии, запас которого иссяк через 7,5 лет непрерывной работы. Но даже после этого телескоп продолжал работать в режиме «тёплой миссии» — данные вполне нормально можно было принимать по двум оставшимся каналам в более коротковолновом диапазоне. Проблема крылась в другом: для связи с Землёй телескоп необходимо было развернуть в пространстве, а это подставляло чувствительные научные приборы под разрушительные лучи Солнца. И в определённый момент телескоп отключили, хотя он мог бы продолжать работу.

Компания Rhea Space Activity разработала проект по «воскрешению» телескопа. На самом деле, ничего сложного спутнику-спасателю делать не предстоит. Ему не нужно попадать на борт обсерватории. Фактически — это будет ретранслятор, который поможет создать канал связи телескопа с Землёй. На это же намекают его предполагаемые габариты — куб со сторонами метр на метр.

На завершение разработки миссии компания Rhea Space Activity получила $250 000. Ожидается, что спутник будет запущен в 2026 году и долетит до телескопа три года спустя. Это будет не единственная его миссия. По дороге аппарат будет вести наблюдения за вспышками на Солнце. По прибытию к телескопу спутник совершит его облёт на удалении от 100 до 50 км и проведёт оценку состояния телескопа. Может так статься, что воскрешать уже будет нечего. Космос — это агрессивная среда.

«Я думаю, это было бы довольно амбициозно... но очень здорово, если бы мы смогли это осуществить», — сказал глава компании астрофизик Шон Усман (Shawn Usman). Отметим, просто так рассчитывать на грант в четверть миллиона долларов США нельзя. За этой компанией стоят Смитсоновская астрофизическая обсерватория, Лаборатория прикладной физики Университета Джона Хопкинса, Blue Sun Enterprises и Lockheed Martin. Судя по такому авторитетному составу поддержки миссия, скорее всего, состоится.

«Джеймс Уэбб» открывает новый сезон научной работы — теперь в его прицел попадут даже астероиды

Институт исследований космоса с помощью космического телескопа (STScI) объявил об утверждении программы второго года общих наблюдений с помощью обсерватории «Джеймс Уэбб». Из 1600 поданных с начала года заявок отобрано 249, рассчитанных на 5000 часов прямой работы телескопа и 1215 часов параллельных наблюдений. Выбор сбалансирован по широкому спектру научных тем — от астероидов и экзопланет до космологии.

 Источник изображения: NASA

Источник изображения: NASA

Всего заявки на наблюдения подавало более чем 5450 учёных из 52 стран, включая США, страны-члены ЕКА (Европейского космического агентства) и Канаду. Заявки охватывали все темы астрономии и астрофизики — от тел Солнечной системы, экзопланет, остатков сверхновых и сливающихся нейтронных звёзд до близких и далёких галактик, сверхмассивных чёрных дыр в центрах галактик и крупномасштабной структуры Вселенной. В совокупности поданные заявки потребовали бы более 35 000 часов работы телескопа, что значительно превышает выделенные 5000 часов работы обсерватории.

Отбор заявок методом двойного анонимного экспертного обзора (DAPR) проводили 225 приглашённых экспертов, а также 350 членов Комитета по распределению рабочего времени телескопов и команды «Джеймса Уэбба» в STScI и NASA. Метод DAPR был введён в 2016 году и подразумевает, что эксперты ничего не знают о подающих заявки учёных и учёные не знают, кто занимается отбором и по какой теме. Утверждается, что это сразу возымело эффект. Например, выросло число одобренных заявок от руководителей-студентов и женщин.

Кроме общих часов, наблюдения второго года будут включать 12 больших финансируемых властями программ общей длительностью 1650 часов. Из примерно 5000 часов общих наблюдений 48 % времени будет отдано малым программам (менее 25 ч), 35 % — средним (от 25 до 75 ч) и 17 % крупным (более 75 ч). Отобранные заявки были подготовлены более чем 2088 исследователями из 41 страны, включая 38 штатов и территорий США, 14 стран-членов ЕКА и 6 провинций Канады. Десять процентов заявок подготовлены возглавляющими свои проекты студентами.

Первый год наблюдений «Джеймса Уэбба» был насыщен открытиями. Новый год обещает оказаться ещё более интересным. Год спустя учёные намного лучше понимают, чего можно ждать от нового телескопа и как его лучше использовать.

Миллион снимков в одном изображении — Европейская южная обсерватория поделилась панорамой «питомника» звёзд

Расположенная в Чили Европейская южная обсерватория представила изображение звёздных яслей, составленный из более миллиона фотографий неба. Уникальность снимка не только в годах сбора информации для него, но также в способности передать видимый и невидимый человеческому глазу инфракрасный свет. Без последней возможности мы не могли бы заглянуть вглубь облаков из космической пыли, где и рождаются молодые звёзды. Любуйтесь!

 Нажмите, чтобы увеличить. Источник изображения: ESO

Нажмите, чтобы увеличить. Источник изображений: ESO

Данные о нескольких регионах звездообразования собрал обзорный телескоп VISTA. У него небольшое зеркало — всего 4,1 м, но широкое — на три полных Луны — поле обзора. Это позволяет за ночь сделать снимки неба всего Южного полушария. Телескоп введён в строй в 2009 году. Он выдаёт колоссальный объём информации. Инструмент такого рода способен выявлять быстро происходящие явлений от вспышек сверхновых до астероидов и комет в Солнечной системе. Его затмит только телескоп им. Веры Рубин, когда начнёт работать в следующем году.

 Инфракрасное изображение области Lupus 3

Инфракрасное изображение области Lupus 3

«На этих изображениях мы можем обнаружить даже самые слабые источники света, например, звёзды, гораздо менее массивные, чем Солнце, открывая объекты, которые никто раньше не видел, — сказал Стефан Мейнгаст (Stefan Meingast), астроном из Венского университета в Австрии и ведущий автор нового исследования, опубликованного в журнале Astronomy & Astrophysics. — Это позволит нам понять процессы, которые превращают газ и пыль в звёзды».

 Инфракрасное изображение объекта HH 909 A в Хамелеоне

Инфракрасное изображение объекта HH 909 A в Хамелеоне

Звёзды образуются, когда облака газа и пыли сжимаются под действием собственной гравитации, но детали того, как это происходит, не до конца понятны. Сколько звёзд рождается из облака? Насколько они массивны? Сколько звёзд будут иметь планеты? Наблюдения с помощью VISTA позволяет собирать данные в наилучшей доступной динамике. Мы сможем видеть, как отдельные звёзды покидают место рождения и это сделает оценки их параметров наиболее точными.

 Область Корона в видимом свете

Область Корона в видимом свете

Данные VISTA дополнят данные европейского астрометрического спутника «Гайа» (Gaia). У «Гайи» только работа в видимом диапазоне. Она не может заглянуть внутрь облаков из пыли и газа. Оба инструмента помогут создать наиболее полный и точный каталог объектов в нашей галактике и даже за её пределами, и это даст основу для множества новых открытий.

«Джеймс Уэбб» разглядел далёкий мир, окутанный паром, туманами и облаками

Используя приборы телескопа «Джеймс Уэбб», учёные изучили атмосферу далёкой экзопланеты необычным способом. Инопланетный мир оказался покрыт плотным туманом, дымкой или облаками. Это могла быть планета-океан, и таких может быть множество во Вселенной.

 Экзопланета в представлении художника. Источник изображения: NASA/JPL-Caltech/R. Hurt (IPAC)

Экзопланета GJ 1214 b в представлении художника. Источник изображения: NASA/JPL-Caltech/R. Hurt (IPAC)

Исследователи направили телескоп в сторону экзопланеты GJ 1214 b. Это так называемый мининептун — планета промежуточной массы между Нептуном и Землёй. Наши наблюдения показывают, что это один из самых распространённых из зарегистрированных на сегодня типов экзопланет. Система красного карлика GJ 1214 находится в 40 световых годах от нас и была изучена ранее. Об атмосфере GJ 1214 b также было известно, что она парообразная. Однако состав атмосферы в целом был неизвестен. «Уэбб» помог собрать больше данных по атмосфере этой экзопланеты и сделал это необычным образом.

Обычно подсказку о химическом и физическом составе атмосферы экзопланеты мы получаем транзитным способом, когда планета проходит по диску своей звезды и часть спектра её света поглощается атмосферой. По провалам в спектральных линиях мы можем узнать, какими газами богат воздух экзопланеты. В случае наблюдения за GJ 1214 b приборы «Уэбба» использовались для фиксации температуры планеты в течение её полного орбитального периода, благо она делает полный оборот вокруг своего «солнца» всего за 1,6 суток.

Выяснилось, что разница между температурами на дневной и ночной сторонах экзопланеты очень большая: днём она достигала 279 °C, а ночью — 165 °C. Подобная разница возможно только в том случае, если в атмосфере преобладают тяжёлые молекулы, например, воды или метана. Нюанс в том, что звезда-хозяин бедна на такие элементы и экзопланета, скорее всего, сформировалась вдали от неё и приближалась к ней постепенно.

Учёные предполагают, что GJ 1214 b могла сразу сформироваться как мир, богатый водой и льдами — как водный мир. Это дало ей впоследствии парообразную атмосферу. Это те кусочки головоломки, которые помогут в итоге сложить более полную картину об одних из самых часто встречающихся во Вселенной экзопланет. Без инструментов «Уэбба» подобное наблюдение сделать было невозможно. И оно будет не единственным. Только так можно будет увидеть всю картину целиком.

При обзоре системы Фомальгаута «Уэбб» искал астероиды, а нашёл планеты

Ближайшая к нам молодая звезда Фомальгаут своим ярким сиянием тысячелетиями завораживала наших предков и не могла оставить равнодушными современных астрономов, вооружённых передовыми телескопами. Это позволило ещё в 1983 году обнаружить вокруг звезды пылевое кольцо наподобие нашего пояса Койпера, но в два раза больше. Учёные не могли упустить случая рассмотреть инопланетный пояс астероидов с помощью «Джеймса Уэбба» и сильно удивились увиденному.

 Источник изображения: NASA, ESA, CSA

Источник изображения: NASA, ESA, CSA

Полученная «Уэббом» картинка системы Фомальгаута показала наличие там сложной внутренней структуры пылевых колец, кроме обнаруженного там ранее внешнего пояса. «Уэбб» работает в инфракрасном диапазоне и способен в деталях наблюдать нагретые тела и области. Исследователи были очень удивлены, когда увидели сильную неоднородность в структуре внутреннего пылевого диска.

«Рассматривая узоры в этих кольцах, мы можем сделать небольшой набросок того, как должна выглядеть планетная система, как если бы мы могли сделать достаточно детальный снимок, чтобы увидеть предполагаемые планеты», — сказал Андраш Гаспар (András Gáspár) из Аризонского университета в Тусоне и ведущий автор новой статьи, описывающей эти результаты.

Вскоре после образования планет в системе остаётся ещё много пыли и каменных тел различного размера — астероидов и зародышей планет. Всё это лежит, в основном, в плоскости огромного диска из пыли и камней, среди которых вращаются планеты. По сути, это оставшийся после образования планет мусор. Планеты как самые массивные тела на своих орбитах своей гравитацией формируют пояса астероидов, что издали выглядит как ярко выраженное кольцо на «мусорном» диске из пыли и камней.

Именно такую структуру впервые в системе Фомальгаута помог обнаружить «Уэбб» и, как уверены учёные, эта же методика поможет обнаружить внутренние пылевые кольца в других системах, что даст представление об их планетарных структурах даже без прямого обнаружения экзопланет.

Попутно «Уэбб» разгадал прошлую загадку — якобы обнаруженную «Хабблом» во внешнем пылевом кольце экзопланету. Это образование стало ещё больше с прошлого наблюдения, что заставляет предположить, что это последствия столкновения крупных астероидов с последующим разлётом обломков. Это оказалась не экзопланетой, а расширяющимся взрывом после столкновения.

 Облако пыли, которое приняли за планету

Облако пыли, которое раньше ошибочно приняли за планету

Представленная работа с анализом структуры пылевого кольца системы Фомальгаута подана для публикации в престижном журнале Nature, но ещё не прошла рецензирование и не дошла до печати.

Огромный суборбитальный шар NASA Super Pressure Balloon с телескопом на борту облетел Землю вокруг Антарктиды

Воздушный шар сверхвысокого давления (Super Pressure Balloon) агентства NASA с большим телескопом на борту пересёк отметку в 169,24 градуса восточной долготы 26 апреля, в 06:32 по московскому времени, тем самым официально завершив своё первое кругосветное путешествие на средних широтах после запуска 15 апреля (по восточному времени США) из аэропорта Ванака в Новой Зеландии.

 Источник изображения: NASA

Источник изображения: NASA

На карте мира можно посмотреть отправную и конечную точки шара, как и весь его последующий маршрут. Кругосветный полёт длился всего 10 дней, 3 часа и 50 минут, на высоте около 32,6 тыс. метров, шар продолжает своё путешествие и сегодня. По словам представителя NASA, шар ведёт себя именно таким образом, как задумывали разработчики, сохраняя стабильную высоту, несмотря на охлаждение и нагрев при смене времени суток. В агентстве продолжают тестировать шар и оценивать полученные данные для будущих полётов, заодно выполняя передовые научные эксперименты.

На борту шара установлен телескоп Super Pressure Balloon Imaging Telescope (SuperBIT), который, по данным учёных, обеспечил в ходе полёта блестящие результаты наблюдений. Дело в том, что на такой высоте очень разреженная атмосфера, за счёт чего значительно снижаются искажения при наблюдениях.

 Источник изображения: NASA

Источник изображения: NASA

Проживающие в относительной близости к пути движения шара, могут иногда видеть его, поскольку тот продолжает своё путешествие, его текущее положение можно увидеть на специальном сайте (заблокирован как минимум для некоторых IP из России).

Помимо первого проекта NASA Scientific Balloon Program, ещё один шар сверхвысокого давления планируется запустить с того же аэропорта для дальнейшего тестирования технологии и выполнения миссии Extreme Universe Space Observatory 2 (EUSO-2), организованной Чикагским университетом, которая будет опираться на данные, полученные в ходе одной из миссий 2017 года.

EUSO-2 поможет исследовать космические частицы сверхвысоких энергий, приходящие из других галактик и взаимодействующие с земной атмосферой. Происхождение этих частиц пока плохо изучено, поэтому данные, собранные в ходе миссии EUSO-2, помогут решить эту научную задачу. Более подробная информация о программе NASA Scientific Balloon Program имеется на сайте агентства.

Обнаружено самое близкое к Земле поглощение звезды чёрной дырой — это произошло буквально на «нашем заднем дворе»

Учёные Массачусетского технологического института сделали интереснейшее открытие. Они обнаружили событие разрыва звёзды чёрной дырой сравнительно недалеко от нас — всего в 137 млн световых лет от Земли. Это самое близкое событие в истории наблюдений. Более того, впервые наблюдение сделано в инфракрасном диапазоне, чего никогда не было. Новшество открывает путь к открытиям массы событий приливных разрушений, которые раньше были пропущены.

 Слева направо: научное изображение объекта во время события, эталонное изображение (по старым наблюдениям), разность в яркости, что показывает само событие, и галактика-хозяин события в оптическом диапазоне. Источник изображения: Astrophysical Journal Letters

Слева направо: научное изображение объекта во время события, эталонное изображение (по старым наблюдениям), разность в яркости, что показывает само событие, и галактика-хозяин события в оптическом диапазоне. На графиках изменение кривой блеска в спектре диапазонов. Источник изображения: Astrophysical Journal Letters

Астрономам известно около 100 событий приливных разрушений звёзд чёрными дырами в центрах далёких галактик. Считается, что такие события происходят раз в 10 тыс. лет. Пролетающая мимо чёрной дыры звезда захватывается гравитацией чёрной дыры и разрывается ею. Вещество звезды падает на дыру и вызывает вспышку энергии, которая легко наблюдается в рентгеновском и ультрафиолетовом или видимом диапазоне. Собственно, в этих диапазонах и велись наблюдения за событиями приливных разрушений.

Учёные из МТИ решили отступить от практики и взялись поискать признаки приливных разрушений в архивных данных телескопов с инфракрасными датчиками. В данных телескопа NASA NEOWISE такие данные были найдены и событие получило свой идентификатор — WTP14adbjsh. Вспышка была зафиксирована в конце 2104 года и достигла максимальной яркости к 2015 году, после чего её интенсивность начала спадать. Моделирование показало, что это не сверхновая. С большой вероятностью динамика изменения яркости события соответствует явлению приливного разрушения звезды чёрной дырой.

Удивительно, но событие WTP14adbjsh не нашло отражения в рентгеновском и оптическом диапазоне. По мнению исследователей, так вышло по той причине, что галактика NGC 7392, в центре которой сверхмассивная чёрная дыра разорвала звезду, относится к звездообразующим (голубым) галактикам. В таких галактиках много пыли и газа, которые поглощают коротковолновые излучения, но ярко светятся в инфракрасном диапазоне. Телескоп «Джеймс Уэбб» наверняка наведут в сторону этого объекта.

Сделанное учёными открытие приведёт к появлению новой методики поиска приливных разрушений звёзд в инфракрасном диапазоне. Может так статься, что этих событий намного больше, чем мы до сих пор считали. Они были крайне редки в звездообразующих галактиках, но теперь учёные знают, как отбросить пелену завесы над ними.

Наконец, событие приливного разрушения, обнаруженное астрономами МТИ, оказалось всего на 25 % удаления по сравнению с предыдущим самым близким к нам подобным событием. Оно фактически произошло на нашем «заднем дворе», как выразились авторы работы. В этом мало хорошего. Это, конечно, не сверхновая, но если вспышка от поглощения произойдёт ближе и будет направлена на Землю, наша планета может получить опасную дозу радиации. А масштаб потенциально бедствия лучше понимать заранее.

Впервые получено прямое изображение чёрной дыры, которая выбросила мощную релятивистскую струю

Учёным впервые удалось получить прямое изображение, на котором одновременно оказались сверхмассивная чёрная дыра и испускаемая ей релятивистская струя (джет), которая выбрасывается с близкой к световой скоростью и соединяется с материей, которую поглощает эта чёрная дыра. Событие произошло в ядре галактики Мессье 87 (М 87). Ранее удавалось получить изображение либо самой чёрной дыры, либо её джета, но не всего одновременно.

 Источник изображения: eso.org

Источник изображения: eso.org

Первое в истории изображение сверхмассивной чёрной дыры М 87, которая имеет массу в 6,5 млрд раз больше солнечной и находится на расстоянии около 53 млн световых лет от Земли, было получено в 2017 году при помощи Телескопа горизонта событий (EHT), но обнародовано только через два года. Новое изображение объекта и его джета было создано на основе данных, полученных в 2018 году комплексом радиотелескопов GMVA и ALMA, а также Гренландским телескопом, которые сформировали виртуальный инструмент наблюдения планетарного масштаба — во многом как EHT.

Считается, что сверхмассивные чёрные дыры составляют ядра почти всех или вообще всех крупных галактик. И некоторые из этих объектов поглощают большое количество вещества в виде газа и пыли, а также звёзд, которым непосчастливилось оказаться слишком близко. При этом чёрные дыры выбрасывают мощные релятивистские струи вещества, которые движутся с околосветовой скоростью и имеют протяжённость в несколько тысяч световых лет — иногда далеко за пределы галактик, в которых они возникли. Однако механизмы этого процесса пока изучены недостаточно.

Помимо джета, на изображении видна так называемая тень чёрной дыры. Когда поглощаемое вещество с околосветовой скоростью вращается вокруг чёрной дыры, оно разогревается и светится — в результате образуется яркое золотистое кольцо, в центре которого находится полная тьма, и она называется тенью чёрной дыры. Новое изображение М 87 отличается от снимка, сделанного Телескопом горизонта событий — оно включает в себя излучение в диапазоне с более длинными волнами. Кроме того, на новом изображении размер кольца оказался на 50 % больше, чем на предыдущем. Это может свидетельствовать, что поглощение вещества сверхмассивной чёрной дырой происходит интенсивнее, чем считалось ранее. В будущем учёные планируют исследовать окрестности М 87 в разных диапазонах радиоволн, что поможет изучить релятивистские струи более плотно.

Стратосферный телескоп SuperBIT передал первые снимки Вселенной

Несколько лет назад астрономы из Университета Торонто, Университета Принстона, Даремского университета, а также инженеры Национального управления по аэронавтике и исследованию космического пространства (NASA) приступили к реализации проекта по запуску уникального телескопа Super Pressure Balloon-Borne Imaging Telescope (SuperBIT) для наблюдения гравитационного линзирования. Теперь же опубликованы первые снимки, сделанные этим необычным телескопом.

 Туманность Тарантул в видимом и ультрафиолетовом свете / Источник изображения: utoronto.ca

Туманность Тарантул в видимом и ультрафиолетовом свете / Источник изображения: utoronto.ca

Главная особенность SuperBIT в том, что он находится не в космосе, а на высоте в 33,5 км над поверхностью Земли, практически над атмосферой планеты. Туда он был доставлен с помощью огромного стратостата размером со стадион. Расположение на границе атмосферы позволит телескопу создавать изображения, по качеству сопоставимые с тем, что делают космические обсерватории. Стратостат с телескопом был запущен с территории Новой Зеландии в начале этой недели.

 Столкновение двух галактик / Источник изображения: utoronto.ca

Столкновение двух галактик / Источник изображения: utoronto.ca

Первыми объектами наблюдения SuperBIT стали туманность Тарантул, которая преимущественно состоит из ионизированного водорода и располагается на расстоянии 179 тыс. световых лет от нашей планеты в Большом Магеллановом Облаке, галактике-спутнике Млечного Пути, а также столкновение двух галактик NGC 4038 и NGC 4039. При условии сохранения стабильных ветров во время сезона SuperBIT в течение примерно трёх месяцев совершит несколько кругосветных путешествий вокруг южного полушария Земли, делая снимки разных объектов Вселенной в тёмное время суток и заряжая свои солнечные батареи днём.

 Телескоп SuperBIT перед запуском / Источник изображения: Columbia Scientific Balloon Facility

Телескоп SuperBIT перед запуском / Источник изображения: Columbia Scientific Balloon Facility

Научная цель проекта заключается в измерении гравитационного линзирования. Данный эффект возникает в процессе изменения траектории движения света объектами большой массы. Поскольку тёмная материя может наблюдаться только через гравитационные эффекты, линзирование остаётся одним из немногих доступных способов лучше узнать её природу. Предполагается, что SuperBIT поможет понять, способны ли частицы тёмной материи отталкиваться друг от друга. Для этого учёные намерены картировать места расположения тёмной материи вокруг скоплений галактик, сталкивающихся с другими скоплениями. Хотя тёмную материю нельзя увидеть, SuperBIT поможет нанести её на карту, отталкиваясь от того, как она искривляет проходящие лучи света.

Сверхновые способны уничтожать жизнь на планетах огромными дозами радиации на больших расстояниях

Используя данные рентгеновской обсерватории NASA «Чандра» (Chandra) и других телескопов учёные обнаружили неизвестную ранее угрозу для жизни на планетах земного типа. На определённой фазе процесса образования сверхновых исходящее от области взрыва рентгеновское излучение способно уничтожить биологическую жизнь на планетах в радиусе до 100 световых лет и больше. Раньше это явление не принималось во внимание. Но теперь к нему надо отнестись со всей серьёзностью.

 Гибель жизни на планете земного типа по представлению художника. Источник изображения: NASA/CXC/M. Weiss

Воздействие сверхновой и гибель жизни на планете земного типа в представлении художника. Источник изображения: NASA

Традиционно опасными для всего живого периодами в явлении сверхновых считались гамма-излучение в первые дни и месяцы после взрыва, а также поток высокоэнергичных частиц, приходящий через сотни и тысячи лет.

Новые наблюдения показали, что в процессе взрыва сверхновой возникает ещё одна угроза — поток рентгеновского излучения, который возникает в результате удара взрывной волны сверхновой звезды о плотный газ, окружающий взорвавшуюся звезду. Генерируемый процессом поток излучения может достичь обитаемой планеты в течение месяцев или лет и будет длиться десятилетиями, что приведёт к вымиранию биологической жизни на планетах земного типа.

Полученные данные проверены при наблюдении 31 сверхновой и последствий их взрывов. Наблюдения проводились в основном с помощью рентгеновской обсерватории NASA Chandra, и миссий Swift и NuSTAR, а также XMM-Newton Европейского космического агентства. Из данных следует, что планеты могут подвергнуться смертельным дозам радиации, находясь на расстоянии около 160 световых лет. На составном изображении ниже показаны четыре сверхновые в исследовании (SN 1979C, SN 1987A, SN 2010jl и SN 1994I).

 Источник изображения: NASA/CXC/Univ. of Illinois/I. Brunton et al.

Источник изображения: NASA/CXC/Univ. of Illinois/I. Brunton et al.

Среди представленных в наборе изображений четырёх сверхновых объект SN 2010jl произвёл наибольшее количество рентгеновского излучения. По оценкам авторов, эта сверхновая обеспечила смертельную дозу рентгеновского излучения для планет земного типа, находящихся на расстоянии менее 100 световых лет от неё.

Длительный поток рентгеновского излучения может серьёзно изменить химический состав атмосферы планеты. В частности, для похожей на Землю планеты этот процесс может привести к уничтожению значительной части озона, который защищает жизнь от опасного ультрафиолетового излучения звезды-хозяина. Это также может привести к гибели широкого спектра организмов, особенно морских, находящихся в основании пищевой цепи, что приведет к вымиранию.

В изменённом составе атмосферы начнёт преобладать диоксид азота, что проявит себя в виде образования коричневой дымки в воздухе. Растения на суше начнут погибать, и процесс рискует стать необратимым (это явление проиллюстрировано на заглавном изображении).

На Земле найдены изотопы, образование которых учёные объясняют избыточным гамма-излучением — это явный признак работы сверхновых. Тем самым последствия от взрывов могли сказаться на Земле в период от 2 до 8 млн лет назад. Оценки дают данные, что эти сверхновые находились на расстоянии от 65 до 500 световых лет от Земли.

В настоящее время Земля и Солнечная система находятся в безопасном пространстве с точки зрения потенциальных взрывов сверхновых, но масса других планет в Млечном Пути таковыми не являются. Поэтому такие высокоэнергетические события рискуют значительно сократить области в нашей галактике, известные как Галактическая зона обитаемости, где потенциально может существовать биологическая жизнь.

Авторы настоятельно рекомендуют проводить последующие наблюдения за взаимодействующими сверхновыми в течение месяцев и лет после взрыва, что позволит нам полнее оценить их опасность и степень влияния на близлежащие миры. Не стоит искать жизнь в радиационной пустыне, лишних ресурсов на это попросту нет.

«Хаббл» отметил 33-летнюю годовщину научной работы снимком неба неземной красоты

Космическая обсерватория «Хаббл» была выведена на орбиту в челноке «Дискавери» 25 апреля 1990 года. Свою 33-летнюю годовщину научной работы телескоп отметил потрясающим снимком зоны звездообразования в созвездии Персея. Это символично — фотография звёздных яслей ко дню рождения. Свыше 4,5 млрд лет назад наше Солнце рождалось в таком же или даже более активном котле из молекулярного газа и пыли.

 Источник изображения: NASA, ESA

Область звездообразования в виде молекулярного облака Персей. Нажмите, чтобы увеличить. Источник изображения: NASA, ESA

Область звездообразования в виде молекулярного облака Персей (Perseus Molecular Cloud), включая объект NGC 1333, давно привлекает внимание учёных. Ранее её рассматривал один из предыдущих орбитальных инфракрасных телескопов «Спитцер» (Spitzer Space Telescope). «Хаббл» не может заглянуть так далеко и детально в облако из пыли и газа, поскольку он работает в диапазоне от ультрафиолетового до ближнего инфракрасного, но ценность наблюдения от этого не падает, ведь одни данные дополняют другие, создавая более полную картину.

В верхней части снимка мы видим голубую сияющую сквозь завесу пыли яркую звезду (на увеличенном изображении). Мелкая пыль рассеивает звездный свет в синем диапазоне длин волн. В средней части снимка ещё одна яркая сверхгорячая звезда светит сквозь пряди пыли подобно Солнцу за облаками. Разбросанные вокруг звёзды выглядят красноватыми, но это потому, что пыль хорошо фильтрует остальные длины волн, меньше всего задерживая красный цвет.

В нижней части снимка в почти сплошной черноте — в пыли и копоти межзвёздного вещества, которое когда-нибудь станет звёздами и планетами со всем, что на них появится — выделяется яркая прореха. Это пятно — красноватое свечение ионизированного водорода. Струи ионизированного водорода свидетельствуют о рождении звёзд в глубине кадра, которых мы не видим на изображении. Там эти невидимые звёзды окружены околозвездными дисками, которые со временем могут породить планетные системы. Эти образования формируют мощные магнитные поля, которые и направляют струи горячего газа сквозь завесу пыли.

Это как лазерное шоу в тумане. Это признак рождающихся в пыли и газе звёзд. Около 4,6 млрд лет назад в таких же условиях родилось наше Солнце. Оно рождалось не одно, а в окружении других звёзд и, возможно, даже в более насыщенном котле вещества, чем мы видим на снимке «Хаббла».

За время научной работы телескоп «Хаббл» выполнил около 1,6 млн наблюдений почти 52 000 небесных объектов. Несмотря на ряд проблем, научная программа обсерватории продлена до 2026 года. Более того, NASA рассматривает вариант поднятия орбиты телескопа и его заправку и ремонт, что продлит его работу ещё на больший отрезок времени. Над этим проектом работает компания SpaceX, но окончательного решения по этому вопросу пока нет.

Астрономы научились находить экзопланеты по траектории звезды

Экзопланеты слишком маленькие и очень далеки, чтобы мы могли увидеть эти миры прямо в оптические телескопы. Поэтому почти все из обнаруженных на сегодня 5300 экзопланет выявлены тем или иным косвенным способом. Тем удивительнее было сделать открытие инопланетного мира с использованием редкого астрономического наблюдения и затем подтвердить его существование прямым наблюдением. Но самое ценное в этом — создание новой методики поиска экзопланет.

 Источник изображения: One of the Subaru images of HIP-99770b. ( T. Currie/Subaru Telescope/UTSA)

Одно из изображений экзопланеты HIP-99770b с телескопа Субару. Источник изображения: T. Currie/Subaru Telescope/UTSA

В астрономии для косвенного поиска экзопланет используется два основных метода: транзитный и доплеровский. В первом случае астрономы ищут повторяющиеся провалы в блеске звёзд, когда экзопланета перекрывает её свет при проходе по диску в орбитальном движении, а во втором случае фиксируются повторяющиеся изменения в длине волны света звёзд — так называемое доплеровское смещение. Пара звезда-планета вращается вокруг общего центра масс и звезда то приближается в нашу сторону, то движется от нас, что находит отражение в её спектре. В обоих случаях становится возможным обнаружить очень близкие к звёздам экзопланеты, что мешает разглядеть их в оптические телескопы на фоне яркого света материнских звёзд.

Но заметить «танец» звезды на небе можно и другим способом — астрометрическим. Измеряя точное положение звёзд в небе и их радиальную скорость, можно обнаружить характерное кружение звёзд вокруг линии, по которой она должна двигаться при вращении вокруг центра галактики.

 Источник изображения: ЕКА

Источник изображения: ЕКА

Если в системе звезды есть достаточная по массе экзопланета или несколько экзопланет, то звезда будет двигаться характерной «змейкой». Такие данные обнаружились в наблюдениях европейской космической станции Gaia «Гайя». «Гайя» точнейшим образом измеряет координаты звёзд и их скорости движения относительно Земли. Фактически она строит трёхмерную карту звёзд в Млечном Пути в динамике, что даёт массу информации для самых разнообразных открытий.

Ряд звёзд уже привлёк внимание астрономов и одна из них — HIP-99770 — была изучена на предмет наличия экзопланеты. Из данных «Гайи» стало понятно, в какую точку Вселенной надо смотреть и с помощью оптических телескопов Субару и обсерватории Кека на Гавайях в указанной области пространства у звезды HIP-99770 была визуально обнаружена экзопланета, получившая название HIP-99770b.

Таким образом, астрометрический метод дал звезду-кандидата на систему с экзопланетой, и проведённое после этого прямое наблюдение обнаружило там инопланетный мир. Из данных «Гайи» и базы более старой европейской астрометрической орбитальной обсерватории Hipparcos выделены ещё около 50 звёзд-кандидатов, «петляющих» по небу в своём галактическом движении, где также будут проводиться оптические поиски экзопланет. Эти исследования помогут отработать новую методику поиска инопланетных миров.

Испытанный учёными метод позволяет открывать экзопланеты на удалённых орбитах, что ценно само по себе. Экзопланета HIP-99770b имеет 14–16 масс Юпитера и в 1,05 раза больше радиуса Юпитера. Она вращается вокруг звезды массой в две солнечные массы, поэтому находясь от неё в три раза дальше Юпитера (на удалении 15 а. е.) получает примерно столько же энергии, как Юпитер.

Прямое наблюдение экзопланеты в телескоп вместе с астрометрическим методом позволило не только получить данные о размере, плотности и диаметре экзопланеты, но и дало увидеть облака в её атмосфере и даже что-то типа пояса Койпера вокруг местной звезды. Без сомнения, учёные ещё не раз будут изучать такой интересный объект, пытаясь получить о нём и его атмосфере больше данных. В конце концов, когда-нибудь будет обнаружен и близнец Земли. И чем больше у нас будет способов поиска таких экзопланет, тем быстрее это произойдёт.

«Джеймс Уэбб» показал неизвестные ранее детали в остатках самой молодой сверхновой нашей галактики

Среди целого ряда целей для изучения в списке космической обсерватории «Джеймс Уэбб» (James Webb) значатся остатки сверхновых. Всё, что мы видим вокруг и из чего состоим сами, — всё рождено в звёздах. Каждый атом нашего тела когда-то был рождён звездой, и некоторые атомы были выброшены во Вселенную во взрывах сверхновых. В этих процессах остаётся много неизвестного земной науке, и «Джеймс Уэбб» стал инструментом для их познания.

 Нажмите, чтобы увеличить. Источник изображения: NASA, ESA, CSA, D. D. Milisavljevic (Purdue)

Нажмите, чтобы увеличить. Источник изображения: NASA, ESA, CSA, D. D. Milisavljevic (Purdue)

Сверхновая в созвездии Кассиопея вспыхнула 340 лет назад. Это самые молодые остатки события такого рода в нашей галактике. Размеры остатков Cas A простираются на 10 световых лет и удалены от нас на 11 тыс. световых лет. Поскольку событие случилось сравнительно недавно, рассмотрение объекта — отличный способ узнать о характере, направлении и интенсивности разлёта остатков. Сверхчувствительные инфракрасные приборы «Уэбба» позволяют в деталях рассмотреть структуру газа и пыли после события и воссоздать историю звезды даже до момента её взрыва.

Остатки Кассиопея А ранее широко изучались рядом наземных и космических обсерваторий, включая рентгеновскую обсерваторию NASA «Чандра». Эти данные, полученные на разных длинах волн, были объединены с данными «Уэбба» для воссоздания детальной картины происшествия. Добавим, все изображения с «Уэбба» получены в невидимом для человеческого глаза диапазоне, и поэтому для общего использования и эстетики они специально раскрашиваются. По мере повышения частоты электромагнитного излучения объекта ему присваивают цвета от красного до синего.

На полученном «Уэббом» снимке Cas A сверху и слева по границам картинки мы видим завесы из материала оранжевого и красного цвета, рождённые излучением тёплой пыли. В этих областях выброшенное звездой вещество сталкивается с окружающим околозвездным газом и пылью. Ярко светящееся вещество звезды в виде пестрых нитей ярко-розового цвета лежит чуть глубже остывающей пыли и выделяется благодаря свечению смеси различных тяжелых элементов, таких как кислород, аргон и неон и других.

Во внутреннем пространстве объекта выделяется петля зелёного цвета, проходящая от центра к правому краю. В ней много пузырьков, природу которых учёные пока объяснить не могут, но отчаянно пытаются. Детальный разбор этого изображения — шанс приблизиться к пониманию происхождения космической пыли в межзвёздном пространстве. Её неожиданно много даже в молодых галактиках. Сверхновые — это один из предполагаемых источников космической пыли во Вселенной, но до конца этот вопрос так и не решён. Наблюдение за Cas A с помощью «Уэбба» позволит пролить толику света на эту загадку.

«Понимая процесс взрыва звёзд, мы читаем свою собственную историю происхождения», — говорят астрономы.


window-new
Soft
Hard
Тренды 🔥
Microsoft открыла доступ к скандальной ИИ-функции Recall — пользователям разрешили ограничить её «подглядывания» 4 ч.
Новая статья: Death of the Reprobate: что не так на картине? Рецензия 5 ч.
Главный конкурент OpanAI получил $4 млрд на развитие ИИ без следов Хуанга 6 ч.
Valve раскрыла часть игр, которые получат скидку на осенней распродаже Steam — официальный трейлер акции 6 ч.
Threads получила «давно назревавшие улучшения» в поиске и тренды 7 ч.
Ubisoft рассказала о возможностях и инновациях стелс-механик в Assassin's Creed Shadows — новый геймплей 8 ч.
Создатели Black Myth: Wukong удивят игроков до конца года — тизер от главы Game Science 9 ч.
У Nvidia больше не самые прибыльные акции — ажиотаж вокруг биткоина победил ИИ-бум 10 ч.
Заждались: продажи S.T.A.L.K.E.R. 2: Heart of Chornobyl за два дня после релиза превысили миллион копий 11 ч.
YouTube добавил в Shorts функцию Dream Screen — ИИ-генератор фонов для роликов 12 ч.