Теги → учёные
Быстрый переход

Немцы разработали технологию высокоточной электротехнической постобработки металлических 3D-моделей

Аддитивная 3D-печать металлических моделей далеко не новость. Но для ряда применений создаваемые на 3D-принтерах изделия требуют соблюдения строжайших норм допуска с точностью до сотых и тысячных долей миллиметра. Популярные технологии аддитивной печати не могут обеспечить подобной точности, отчего моделям требуется сложная постобработка. Немецкие учёные нашли возможность довести модель до ума проще и быстрее.

Oliver Dietze

Oliver Dietze

Разработанный учеными из Саарского университета в Германии инструмент представляет собой нечто типа зонда с головкой-распылителем в нижней части. Головка распыляет электролит из растворённых в воде солей на поверхность металлической модели, которая требуют дополнительной обработки. Одновременно через зонд и головку пропускаются импульсы высокого напряжения. В результате на поверхности обрабатываемой модели начинают происходить электрохимические процессы, снимающие металл слой за слоем.

Настраивая частоту вибрации головки и регулируя длительность и амплитуду импульсов, можно точно регулировать объём снимаемого металла. Технология испытана на 3D-моделях из стали, титана и алюминия. Точность обработки поверхности составила одну тысячную долю миллиметра. Объёмные металлические модели могут быстро обрабатываться до состояния гладкой поверхности с нужным допуском, что обещает сделать аддитивную печать металлических изделий ещё дешевле и лучше.

Редкоземельные элементы могут приоткрыть дверь к сверхплотной магнитной записи

Металлорганические соединения в виде так называемых сэндвичевых соединений (sandwich compounds) плохо изучены, но могут привести к прорыву как на пути к более плотной магнитной записи, так и на пути к новым дисплейным технологиям. Это неизвестный, но многообещающий путь, зелёный свет которому дал центральный орган содействия научным исследованиям в Германии — Немецкое научно-исследовательское общество (DFG).

Молекула ферроцена — одно из наиболее известных металлоорганических соединений, представитель класса сэндвичевых соединений

Молекула ферроцена — одно из наиболее известных металлоорганических соединений, представитель класса сэндвичевых соединений

В рамках финансирования научных проектов в Германии обществом DFG есть Фонд Райнхарта Козеллека (Reinhart Koselleck Projects). Этот фонд вкладывает деньги в проекты с высочайшей степенью риска с точки зрения гарантии получения практических результатов. Например, в 2019 году фонд профинансировал только восемь проектов. В этом году деньги в размере 500 тыс. евро были выделены Фондом Райнхарта Козеллека на изучение сэндвичевых соединений на основе редкоземельных элементов, что станет первым в мире подобным исследованием.

Сэндвичевые соединения условно состоят из атома металла, заключённого (захваченного) между двумя кольцевыми структурами. Фактически это бутерброд размером с молекулу. Вернее, это и есть молекула. В зависимости от кольцевой структуры в составе сэндвича и задействованного металла свойства соединения могут очень и очень сильно отличаться. Магнитные и люминесцентные свойства редкоземельных элементов намекают на возможность сверхплотной записи, где каждый бит может быть записан в область размером с молекулу, и на появление дисплеев с немыслимым доселе разрешением.

Схематическое изображение сэндвичевого соединенния (KIT)

Схематическое изображение сэндвичевого соединения (KIT)

Впрочем, сейчас перед немецкими учёными из Карлсруэского технологического института (KIT) поставлена задача изучить влияние состава и размера кольцевых структур в сэндвичевых соединениях на свойства соединений. Иначе говоря, пока только понять, как меняются физические свойства соединений в зависимости от ряда переменных параметров в их составе. Но акцент, повторимся, будет делаться на магнетизм и люминесценцию. Добавим, проект рассчитан на пять лет, и он не ставит перед собой обязательное достижение практического результата за этот отрезок времени.

Зеленее зелёного: предложены солнечные элементы на квантовых точках без токсичных примесей

Квантовые точки рассматриваются как перспективные «присадки» не только при производстве дисплеев, в которых они испускают чистые спектры, но также и в солнечных панелях. За счёт квантовых точек солнечные панели могут вырабатывать электричество в более широком диапазоне улавливаемого излучения. Проблема в том, что для этого обычно используются токсичные материалы. Но если не гнаться за КПД, то солнечные панели можно сделать экологически чище.

Исследователи из Лос-Аламосской национальной лаборатории (LANL) разработали новый тип солнечных элементов с квантовыми точками, которые не используют токсичных материалов. Эффективность предложенных фотоэлектрических преобразователей оказалась чуть ниже средней для данной категории продуктов (с квантовыми точками), однако альтернативные технологии используют свинец, кадмий или другие токсичные материалы, что делает новую разработку привлекательнее с точки зрения защиты окружающей среды и заботы о здоровье человека.

Вместо токсичных материалов учёные соединили вместе четыре элемента ― создали ядро из меди, индия и селена и покрыли его цинком. Это объекты нанометрового размера, что позволяет судить о сложности процессов. Затем эти объекты ― квантовые точки ― были равномерно внесены в нанопоры тонкой плёнки из диоксида титана. Надо отметить, что сложность изготовления квантовых точек из четырёх элементов привела к росту дефектов в их кристаллической структуре, но эти дефекты не помешали новым солнечным элементам выполнять свою работу.

В ходе экспериментов, статья о которых опубликована в журнале Nature Energy, квантовые точки показали высокую эффективность: из каждых 100 падающих на солнечный элемент фотонов в электроны превращалось 85 из них. Общая эффективность фотоэлектрического преобразователя оказалась меньше ― около 9 %. По данным источника, это примерно средний показатель КПД для солнечный элементов на квантовых точках. Рекорд в этой области принадлежит «токсичным» панелям на квантовых точках и достигает 16,6 %. Разработчики отмечают, что они не гнались за эффективностью, а хотели создать экологически чистый продукт с приемлемым КПД.

Учёные научились печатать большие модели на маленьких 3D-принтерах

По понятным всем причинам размеры 3D-модели не могут быть больше размеров рабочей зоны 3D-принтера. Но что понятно обывателю, то для учёного ― вызов. Группа учёных из США нашла способ обойти это ограничение, используя для печати модели смолу, многократно расширяющуюся при нагревании.

Команда учёных из Калифорнийского университета в Сан-Диего под руководством Дэвида Вирта (David Wirth) и Джонатана Покорского (Jonathan Pokorski) подобрала для 3D-печати методом стереолитографии смолу, которая сильно увеличивается в объёме после нагрева. При существенном повышении температуры один из летучих компонентов смолы превращается в газ и пузырится, превращая материал в пену, подобную по структуре полистиролу.

За счёт этих свойств объём модели увеличивается до 40 раз с сохранением первоначальной формы. Таким способом можно научиться печать объекты значительно превосходящие по размерам рабочие зоны 3D-принтеров. Вспененный материал может использоваться для создания плавучих средств, аэродинамических поверхностей, прокладочных материалов или, в отдалённой перспективе, для расширения мест обитания на космических станциях.

Разработанный учёными материал имеет менее прочную структуру, чем полистирол. Но учёные намерены продолжить изыскания и повысить его прочность, чтобы найти изобретению практическое применение. Добавим, статья о работе опубликована в журнале ACS Applied Materials & Interfaces.

Самая быстрая в мире камера снимает со скоростью 70 триллионов кадров в секунду

Смартфоны позволяют снимать видео со скоростью порядка 1000 кадров в секунду. Профессиональные камеры захватывают движение со скоростью до 10 тыс. кадров в секунду. Но всё это меркнет по сравнению со съёмкой со скоростью 70 триллионов кадров в секунду, которую научились вести учёные из Калифорнийского технологического института. Теперь можно будет взглянуть даже на движение световой волны.

pstocks/Depositphotos

pstocks/Depositphotos

Группа исследователей из Caltech опубликовала в журнале Nature Communications статью (она доступна по ссылке), в которой рассказала об улучшенной технологии скоростной съёмки. Это не первый прорыв учёных из Калифорнийского технологического на данном направлении. Руководит исследованиями специалист института Лихонг Ван (Lihong Wang).

В 2014 году под его руководством была представлена оригинальная технология скоростной съёмки CUP (сжатая сверхскоростная фотография) со скоростью 100 млрд кадров/с. К 2018 году технология была усовершенствована и получила название Т-CUP, а скорость съёмки достигла 10 трлн кадров/с. Новая технология CUSP (сжатая сверхбыстрая спектральная фотография) увеличила скорость съёмки ещё в семь раз ― до 70 трлн кадров/с.

В основе сверхскоростной съёмки CUSP лежит импульсный лазер излучающий сверхкороткие световые импульсы длительностью в одну фемтосекунду (10−15 с). Оптическая система разделяет эти импульсы на ещё более короткие вспышки. Этими дробными импульсами подсвечивается объект съёмки, и затем, через другую оптическую систему, они попадают на датчик изображения, который формирует итоговую картинку.

Схематитческое изображение установки для съёмки видео со скоростью 70 трлн кадров/с (Caltech)

Схематическое изображение установки для съёмки видео со скоростью 70 трлн кадров/с (Caltech)

«Мы предполагаем применение [разработки] в широком спектре чрезвычайно быстрых явлений, таких как сверхкороткое распространение света, распространение волн, ядерный синтез, перенос фотонов в облаках и биологических тканях и, среди прочего, флуоресцентный распад биомолекул», ― сказал Ван. Также технология CUSP может быть использована для исследования сверхбыстрого мира фундаментальной физики и для создания более компактной и чувствительной электроники.

Британцы создадут робота с ИИ для прополки грядок и сбора слизней

Несмотря на значительный прогресс в развитии сельскохозяйственных технологий и техники, в этой отрасли остаётся очень много ручного труда. Пандемия коронавируса и закрытие границ особенно остро высветили эту проблему, когда фермеры развитых государств столкнулись с дефицитом сезонных рабочих рук из бедных стран. По мнению британских инженеров, помочь в обработке полей и теплиц должна робототехника и искусственный интеллект.

Проект робота «Dick»

Проект робота «Dick»

Как сообщают источники, в Англии организован консорциум, который планирует создать роботов для мониторинга и обработки сельскохозяйственных растений. Консорциум образован двумя стартапами ― робототехническим Small Robot Company и специализирующемся на компьютерном зрении Cosmonio, а также центром Crop Health and Protection (CHAP) и двумя сельскохозяйственными подрядчиками. Частичное финансирование проекта осуществляет фонд Innovate UK SMART.

Первой разработкой группы компаний станет робот SlugBot для автоматического мониторинга и сбора слизней без химической обработки. Эти вредители способны быстро уничтожить рассаду и урожай, а борьба с ними с помощью химии малоэффективна и очень затратна. Поэтому в борьбе со слизнями крайне много ручного труда, автоматизация этого процесса поможет сохранить урожай и снизить его себестоимость.

Прототип робота «Dick» для прополки насаждений

Прототип робота «Dick» для прополки насаждений

На первом этапе проекта SlugBot основное внимание будет уделено развитию способности обнаружения слизняков с помощью искусственного интеллекта, в том числе с использованием мультиспектральных изображений. На втором этапе начнётся использование гиперспектральных изображений с запуском в поле робота SRC «Tom». В условиях теплицы испытания системы по визуализации роботами слизней и материалов на поверхности земли будут проведены этой осенью, а следующей весной начнутся испытания по обнаружению заражений слизнями в полевых условиях.

Прототип робота для сборки слизней

Прототип робота для сборки слизней

Кроме этого, компания SRC разрабатывает робота Dick, который будет заниматься точечным опрыскиванием поражённых болезнями и вредителями растений и прополкой сорняков. Испытания робота Dick по нехимической прополке пройдут в этом году с запуском коммерческой службы осенью 2021 года. Долгосрочный план заключается в обеспечении ухода и защиты пахотных культур роботизированными платформами, включая борьбу со всеми вредителями и болезнями, а также точную посадку. Как заявили разработчики: «Наши роботы ― это тракторы будущего».

Разработана система охлаждения, которая ещё и электричество вырабатывает

Жаль, что законы физики не позволяют сделать вечный двигатель. Но это не означает, что потерями нельзя воспользоваться для повторной выработки энергии. Группа учёных из Уханьского университета в Китае создала гидрогелевый пластырь, который не только охлаждает электронику, но попутно вырабатывает электричество в процессе охлаждения.

Перегрев ― это бич электроники и мусорное тепловое излучение. Между тем, термоэлектрические элементы — далеко не новость. Для китайских учёных стало вызовом объединить охлаждающие и вырабатывающие энергию модули в единое и автономно работающее устройство или, точнее, создать метаматериал с комбинацией из этих свойств.

В ходе экспериментов был разработан материал в виде пластыря или тонкой плёнки с каркасной структурой, содержащей особый гидрогель. Каркас материала представлен такой органической полимерной структурой, как полиакриламид. В каркасе содержится насыщенная ионами вода.

В процессе нагрева теплоотводящей плёнки в ней возникают два явления. Во-первых, происходит испарение воды и снижение температуры материала и охлаждаемой им нагретой поверхности. Во-вторых, находящиеся в воде ионы ― феррицианид и ферроцианид ― начинают процесс переноса заряжённых частиц от одного электрода к другому. Иначе говоря, между электродами начинает течь электрический ток.

В ходе опытов с быстрой разрядкой аккумулятора для смартфона приклеенный к одной стороне аккумулятора пластырь с гидрогелем толщиной 2 мм охладил батарею на 20 °C. При этом пластырь произвёл генерацию электричества мощностью 5 мкВт. Этой энергии может хватить на питание системы мониторинга батареи или для системы дополнительного отвода тепла. Уровень воды в составе материала, что важно, восстанавливается самостоятельно. Вода абсорбируется из окружающего воздуха, когда система прекращает работу или высыхает до состояния запуска процесса поглощения.

Интересная разработка. Осталось понять, есть ли у неё коммерческие перспективы. Но об этом пока неизвестно. Отчёт об исследовании опубликован в журнале Nano Letters.

Литиево-ионные аккумуляторы станут безопаснее благодаря популярному компоненту кремов для кожи

Литиево-ионные аккумуляторы по многим параметрам ещё не достигли совершенства. И если с недобором по ёмкости ещё можно мириться, то вопросы безопасной эксплуатации литийсодержащих элементов питания остаются приоритетными. Одним из решений для повышения безопасности литиево-ионных аккумуляторов может стать переход на водные растворы электролита. Но обычная вода для этого не годится, а вот вода со стабилизаторами имеет перспективы.

egorovartem/Depositphotos

egorovartem/Depositphotos

На днях в журнале Nature Materials группа исследователей из Китайского университета Гонконга опубликовала статью, в которой рассказала о создании электролита на водной основе с добавками популярного среди производителей косметики и продуктов питания полимера. Это полиэтиленгликоль, который придаёт растворам вязкость.

Кроме этого в водный раствор с полиэтиленгликолем учёные добавили соли лития, но этой добавки потребовалось существенно меньше, чем в случае традиционных электролитов. Это означает, что полученный таким образом электролит оказался намного менее токсичным, чем тот, который используется в широко распространенных литиево-ионных аккумуляторах.

Созданный на основе воды, полиэтиленгликоля и солей лития электролит позволил представить опытный элемент питания с удельной энергией от 75 до 110 Вт·ч/кг и напряжением 3,2 В. Вода без примеси стабилизатора не позволила бы добиться такого достаточно высокого напряжения для электролита на водной основе. Подтверждённое опытом число циклов заряда/разряда аккумулятора достигло 300.

«Эти результаты исследований предоставляют новую платформу для проектирования водного электролита с большим окном напряжения и высокой стабильностью для безопасного, недорогого и экологически чистого хранения энергии».

Со смартфоном на грядке: наносенсоры в листьях предупредят о стрессе растений

За последние десятилетия генетики и биотехнологи сделали массу открытий, которые помогли увеличить урожайность сельскохозяйственных растений. Многие не знают, но вдоволь кушать было можно далеко не всегда и очень не всем. Но теперь на помощь растениеводам приходят достижения в сфере нанотехнологий и электроники: они предоставляют возможность отслеживать здоровье растений на индивидуальном уровне.

Группа инженеров Массачусетского технологического института (MIT) вместе с коллегами из Сингапура при содействии ряда сингапурских фондов (включая A*STAR) и Министерства энергетики США разработали нанодатчики для отслеживания уровня стресса растений и определения его причин.

Нанодатчики представляют собой встроенные в листья растений массивы из углеродных трубок. При обнаружении сигналов от растений о той или иной стрессовой ситуации датчики начинают испускать инфракрасный свет. Это излучение можно зафиксировать простейшими приборами, например, смартфоном с инфракрасной камерой. Последующий анализ излучения и картина его распространения по растению подскажет, что именно угнетает растение и как ему можно помочь.

Датчики в листьях реагируют на перекись водорода. В своё время выяснилось, что в стрессовых ситуациях, от жары, нанесённых ранений, недостатка воды, болезней и даже атаки вредителей, в клетках тканей растений начинает интенсивно вырабатываться перекись водорода. Более того, сигнал о стрессе распространяется волной по клеточной структуре растения с помощью той же перекиси водорода, запуская выработку не только этого вещества, но и других веществ, призванных противостоять возникшей беде.

По словам разработчиков, данные о распространении волны «антистресса» и параметры этой волны индивидуальны для каждого вида растений. Главное, что они поддаются расшифровке вплоть до определения того, что именно угнетает растение. Подобные знания помогут максимально увеличить урожайность и даже трансформировать некоторые виды стресса, например, недостаток освещения, в наращивание плодовой, а не растительной массы.

Американцы создали солнечный элемент с КПД под 50 %, но на самом деле нет

По мере расширения научных работ в области преобразования солнечной энергии в электричество эффективность солнечных ячеек неуклонно растёт. И уж тем более растут показатели эффективности элементов, созданных в лабораториях. Новый рекорд в этой области поставили учёные из США. КПД нового солнечного элемента составил 47,1 %. Впрочем, не всё так просто. Для этого придётся создать особые условия.

Солнечный элемент с перовскитом команды из Берлинского центра материалов и энергии имени Гельмгольца

Солнечный элемент с перовскитом команды из Берлинского центра материалов и энергии имени Гельмгольца

О достижении рекордного показателя эффективности солнечной ячейки сообщила группа учёных из Национальной лаборатории возобновляемой энергии (NREL) из Колорадо. Статья об этом исследовании опубликована в журнале Nature Energy (доступ платный). Представленная учёными ячейка показывает КПД 47,1 % только в том случае, если источник света сфокусирован и падает на неё с интенсивностью, которая в 143 раза превышает обычную солнечную активность. В условиях освещения обычным солнечным светом КПД опытного элемента достигает 39,2 %.

Как мы видим, последнее значение далеко от рекордных показателей в повседневных условиях. В то же время никто не мешает использовать вместе с предложенными учёными NREL ячейками систему зеркал для фокусирования солнечного света. Это вопрос цены и себестоимости, но главное, что новое исследование помогает двигаться дальше по пути поиска наиболее эффективных решений для получения энергии из возобновляемых источников.

Вкратце о новой ячейке. Она очень сложная. Фотоэлемент толщиной меньше человеческого волоса состоит из 140 слоёв из целого спектра химических элементов из III-V групп таблицы Менделеева. Все они разбиты на шесть чередующихся и соединённых фотоактивных слоёв, что дало название этой разработке ― шести-переходная III-V солнечная ячейка. Выглядит очень сложно и дорого, хотя слои чрезвычайно тонкие и наносятся напылением или осаждением в вакууме. Будет интересно проследить за разработкой.

Ещё одно исследование, информация о котором попала на страницы журнала Joule (доступ к статье свободный), говорит о достижении команды из Берлинского центра материалов и энергии имени Гельмгольца (Helmholtz Zentrum Berlin, HZB). Исследователи из HZB создали солнечный элемент с КПД 24,16 %. Немного, но группа изучила новые варианты создания так называемых тандемных элементов, когда ячейка собирается из двух разных слоёв, каждый из которых нацелен на работу со своим диапазоном освещения, например, один преобразует энергию инфракрасного излучения, а второй ― видимого.

Исследователи создали один слой из перовскита, а второй из комбинации меди, индия, галлия и селена, который они назвали CIGS. Вначале осаждается слой CIGS толщиной от 3 до 4 микрометров, а затем на поверхность наносится слой перовскита толщиной всего 0,5 микрометра. Перовскит взаимодействует с видимым диапазоном, а CIGS ― с инфракрасным. Для лучшего контакта между двумя слоями добавлен слой атомов рубидия.

Ценность этого исследования в том, что впервые была опробована комбинация перовскита и слоя CIGS. Необычно малая толщина такого элемента подталкивает к изготовлению гибких солнечных панелей. Например, это было бы ценным для космоса, что удешевило бы вывод на орбиту огромных площадей солнечных элементов питания. Наконец, разработанный элемент оказался стойким к облучению, что для космического применения жизненно важно.

Прочнее чем алмаз: 3D-печать ведёт к появлению новых материалов

Аэрокосмическая отрасль нуждается в лёгких и очень прочных материалах. Помочь в этом могут новые технологии с использованием 3D-печати. Например, учёные из США смогли напечатать наноразмерную решётчатую структуру с лучшим соотношением прочности к плотности, чем у алмаза.

Наноструктурная решётка, напечатанная учёными из США (University of California, Irvine)

Наноструктурная решётка, напечатанная учёными из США (University of California, Irvine)

Искусственно повторить или превзойти прочностные характеристики алмаза ― мечта многих учёных и одновременно вызов природе. Как обычно, теоретические исследования в этой области идут быстрее практической реализации. Одну из таких теорий, которая говорила о возможности создать искусственный материал с меньшей плотностью без ущерба прочности, подтвердила группа учёных из Калифорнийского университета в Ирвине (UCI).

Традиционно решётчатые наноструктуры изготавливали в виде объёмной решётки с лучевыми (цилиндрическими) распорками в каждой плоскости и между вершинами ячейки. Теория гласила, что распорки из нанопластинок, например, как показано на картинке выше, придадут материалу лучшие прочностные характеристики. Проблема была в том, что создать такую наноструктуру оказалось чрезвычайно сложно.

Учёные из Калифорнийского университета в Ирвине смогли разработать технологию 3D-печати нанорешёток с пластинчатыми распорками. Печать структуры осуществлялась ультрафиолетовым лазером с послойной проекцией модели в жидкой смоле, чувствительной к УФ излучению. Об уровне технологии можно судить по тому, что толщина каждой нанопластинки составляла всего 160 нм.

Для стока избытков смолы из уже напечатанной модели в нанопластинках были предусмотрены отверстия. После удаления излишков смолы модель в течение часа выдерживалась в вакууме при температуре 900 °C. Последующие эксперименты с наноструктурой показали, что пластинчатые рёбра жёсткости по сравнению с лучевыми обеспечивают рост средней прочности материала на величину до 639 % и увеличивают среднюю жёсткость на величину до 522 %.

«Хотя теоретические характеристики этих структур были предсказаны ранее, мы были первой группой, которая экспериментально подтвердила, что они могут работать так же хорошо, как и прогнозировалось, и в то же время продемонстрировала спроектированный материал с беспрецедентными механическими характеристиками», ― сказал Лоренцо Вальдевит (Lorenzo Valdevit), профессор материаловедения и один из участников эксперимента.

«Резиновые» электроды помогут лучше считывать сигналы с мозга

Буквально вчера мы сообщали о новом исследовании по преобразованию электрических импульсов в коре головного мозга в понятную речь. В этом исследовании использовались по 250 вживленных в мозг каждого пациента электродов. Учёные из США и Китая предлагают поменять металлические электроды на более безопасные для тканей мозга мягкие электроды из резиноподобных полимеров. И не просто предлагают, а представляют технологию их производства.

Мягкие электроды для мозга (MIT)

Мягкие электроды для мозга (MIT)

Электрические сигналы в мозге проявляют себя перемещением ионов. Выработанные нейроном ионы попадают на металлические контакты электродов и обнаруживают нервную деятельность в прослушиваемом участке. Беда в том, что мягкие ткани мозга могут воспаляться в месте контакта с металлом зонда и вызывать появление рубцовой ткани. Мягкие полимерные электроды избавили бы пациентов от такой напасти. Но они должны быть не только безопасными, но также иметь возможность улавливать ионы и быть токопроводящими.

Международная американо-китайская группа учёных во главе с профессором Массачусетского технологического института Сюаньхэ Чжао (Xuanhe Zhao) разработала безопасную для пациентов альтернативу. За основу будущих мягких электродов был взят электропроводящий полимер PEDOT:PS. В обычном состоянии это жидкое вещество с высокой текучестью и предназначено для нанесения покрытий. Учёные предложили использовать PEDOT:PS в качестве строительного материала для отдельных электродов.

Сначала с помощью сублимационной сушки (сушка замораживанием) из PEDOT:PS удалялся жидкий компонент. В результате получалась матрица из токопроводящих нановолокон. Затем эти волокна растворялись в воде в смеси с органическим растворителем. На выходе получался вязкий гидрогель, который можно было использовать в качестве «чернил» в 3D-принтере.

Результат печати токопроводящими чернилами электродов вы можете увидеть на фотографии выше. Полученные таким способом мягкие электроды были проверены на мозге живой мыши. Электрод смог зафиксировать активность одиночного нейрона. Такая высокая точность была достигнута за счёт того, что пористая структура мягкого электрода даёт возможность улавливать отдельные ионы всем объёмом, а не только контактной поверхностью.

Иллюстрация Nature Communications

Иллюстрация Nature Communications

Безусловно, использование даже мягких электродов требует хирургического доступа к живым тканям мозга. Но это всё равно лучше, чем втыкать в живой мозг иглы зондов. Данные об исследовании, добавим, были опубликованы в издании Nature Communications.

Хитиновые чешуйки жука подсказали, как получить яркий белый цвет без пигментов

Сегодня для придания белого цвета лакам, краскам, продуктам и даже лекарствам используется порошок диоксида титана (пищевая добавка E171). Это вещество не разлагается в природе и даже есть исследования, которые ставят под сомнение безопасность диоксида титана для здоровья человека. Немецкие учёные предлагают заменить диоксид титана наноструктурированным материалом с высокой отражающей способностью, секрет которого подсмотрен у природы.

Julia Syurik, KIT

Julia Syurik, KIT

Учёные из Технологического института Карлсруэ (KIT) изучили строение хитиновых чешуек жука Cyphochilus insulanus (род хрущей). Этот жук интересен тем, что он в солнечном свете выглядит белоснежно белым, хотя его чешуйки не несут окраски с таким пигментом. Высокое рассеивание отражённого света от чешуек происходит за счёт уникальной наноструктуры их поверхности. Если подобной текстурой покрыть мебель или поверхность других изделий, то они будут казаться ярко белыми даже без покраски. Тем самым диоксид титана с его сомнительными экологическими свойствами может уйти в прошлое.

Сотрудники Технологического института Карлсруэ разработали техпроцесс получения полимерной фольги с наноструктурированной поверхностью. Несмотря на то, что фольга чрезвычайно тонкая, гибкая и лёгкая, она механически стабильная и может быть использована в широком спектре продукции. При толщине 9 мкм такая плёнка отражает 57 % падающего света. Увеличивая толщину структуры можно добиться 90 % отражения падающего света.

По своей структуре полимерная светоотражающая поверхность напоминает пористую губку. Она отражает свет по тому же принципу, как это происходит с пеной для бритья. Материал, покрытый такой структурой, выглядит белым, хотя окраске он не подвергается. Для придания подобных свойств лаку или краске можно добавлять в него микроструктурные шарики из нового материала, тогда изделиям можно будет придавать белый цвет без добавления пигмента в виде диоксида титана. Утверждается, что ряд производителей лакокрасочных материалов заинтересовались разработкой.

Учёные сделали шаг в сторону ПЛИС на оптических вентилях

Фотоника стала новым фронтиром среди разработчиков интегральных схем. Переход с металлических соединений на оптические снизит потребление чипов и увеличит скорость их работы. Одним из барьеров на этом пути остаётся высочайший разброс параметров активных компонентов «фотонных» микросхем и следующий из этого высокий уровень брака при производстве. Обойти это препятствие поможет исследование нидерландских учёных.

Eindhoven University of Technology/Advanced Optical Materials

Eindhoven University of Technology/Advanced Optical Materials

Группа исследователей из Технологического университета Эйндховена предложила использовать для массового производства фотонных интегральных схем платформу перепрограммируемых матриц ПЛИС (FPGA). Если часть оптических вентилей в составе фотонной ПЛИС будут бракованными, то это не помешает программным способом исключить негодные вентили из схемы. Тем самым уровень выхода годных фотонных интегральных схем можно будет увеличить с 10–20 % до 50–80 %. Но основная хитрость заключается в другом ― в специальном перепрограммируемом материале, за счёт которого можно будет создать матрицу программируемых оптических переключателей.

Прежде чем рассказать об исследовании нидерландских учёных, отметим, что в основе оптических переключателей лежит эффект управляемого и обратимого изменения показателя преломления вещества. Эта величина показывает, насколько скорость распространения света уменьшается по сравнению с распространением скорости света в вакууме. Управляя показателем преломления можно изменить состояние вентиля и перестроить электронную схему.

Это не первое изучение возможностей переключаемых оптических материалов. Но до сих пор подобные переключатели либо требовали значительных объёмов энергии на нагрев или охлаждение материалов в процессе переключения, либо характеризовались высоким уровнем поглощения полезного сигнала. Учёные из Нидерландов смогли обойти оба этих ограничения.

Удивительно, но исследователи воспользовались хорошо известным и крайне негативным в работе обычных кремниевых солнечных элементов эффектом Стаблера-Вронского. Это эффект деградации солнечных элементов под воздействием света и тепла. Но если такой деградировавший элемент оставить в темноте и охладить, кремний в его основе частично возвращает свои полезные свойства.

Созданный учёными оптический коммутатор имеет вид микропетли из гидрированного аморфного кремния. Петля (петли) в течение 100 часов освещали лазером в ближнем инфракрасном диапазоне, а затем медленно охлаждали или отжигали в темноте в течение 4 часов. Выяснилось, что показатель преломления материала петли менялся на 0,3 %. Свет увеличивал этот показатель, а отжиг возвращал в обратное значение. Фактически удалось переключить вентили в заданное положение, а потом полностью сбросить состояние переключателей до исходного.

Величина обратимого изменения показателя преломления на уровне 0,3 % ― это далеко не то, что необходимо для запуска в коммерческое производство. Тем не менее, над снижением эффекта Стаблера-Вронского учёные во всём мире бьются порядка 40 лет. Багаж знаний по этому вопросу позволяет надеяться, что найдутся возможности усилить этот эффект в пользу коммутируемой оптической электроники. В солнечных элементах это было зло, зато для оптических процессоров окажется во благо.

Японские учёные разработали полностью новый электролит для литиево-ионных аккумуляторов

Учёные из Токийского университета уверены, что они совершили прорыв в сфере аккумулирования энергии с помощью литийсодержащих батарей. По их словам, никто с начала 90-х годов не создавал совершенно нового электролита, который мог бы значительно улучшить свойства литиево-ионных аккумуляторов. А они смогли это сделать.

В литиево-ионных аккумуляторах наука и промышленность десятилетиями использовала фактически тот же самый электролит на основе этиленкарбоната (EC). В неисчислимых экспериментах исследователи оставляли базовую химию этого растворителя неизменной, что не позволяло сделать прорыв на направлении электролитов. Группа японских учёных под руководством профессора Ацуо Ямады (Atsuo Yamada) сначала теоретически, а потом практически воссоздала полностью новый электролит, разработка которого велась с учётом знаний об основополагающих молекулярных структурах.

Новый электролит опирается на фторированный циклический фосфатный растворитель (TFEP). Это вещество, как утверждают разработчики, абсолютно негорючее, что обещает пожаробезопасные аккумуляторы. Но главное (хотя, что может быть главнее безопасности?) новый электролит позволит аккумуляторам работать при более высоком напряжении, чем на электролите на основе этиленкарбоната. Так, напряжение «классических» литиево-ионных аккумуляторов не может быть выше 4,3 В без риска возгорания. На основе TFEP-растворителя напряжение батарей может быть 4,9 В.

Большее напряжение даже при одинаковой ёмкости аккумулятора означает большую мощность и, следовательно, увеличенную дальность пробега электромобиля и большую продолжительность работы аккумулятора. То же самое можно будет сказать об аккумуляторах для смартфонов, если они получат новый электролит. Вот только когда это произойдёт, учёные не берутся предсказать. Добавим, статья об исследовании опубликована в журнале Nature Energy, но доступ к ней платный.

window-new
Soft
Hard
Тренды 🔥