Теги → учёные
Быстрый переход

DARPA возьмёт на работу ИИ для создания молекул боевого назначения

На сайте агентства DARPA (The Defense Advanced Research Projects Agency, Defense ARPA) появилось сообщение о запуске новой программы Accelerated Molecular Discovery (AMD). Программа по ускорению открытия новых молекул направлена на военные цели, что, впрочем, не исключает мирного применения разработок, если таковые будут предложены.

DARPA

DARPA

По представлению учёных, вселенная молекул насчитывает 1060 комбинаций. Из этого фактически бесконечного множества человечеством открыто и исследовано только 140 млн молекул. Среди неоткрытых молекул наверняка скрываются такие, которые способны укрепить оборонную и наступательную мощь США. Проблема только в том, что каждое новое открытие молекул до сих пор — это интуитивный путь движения учёных с длительными повторяющимися экспериментами, а военным надо быстро и чётко. Дан приказ — немедленно выполнить и доложить!

К счастью, на подхвате оказался поднимающий голову искусственный интеллект. Программа AMD (не путать с одноимённой компанией) предполагает конкурс решений на базе ИИ для создания молекул по представленному набору требований. Это могут быть молекулы для безопасного моделирования боевых химических агентов, для медицины, для покрытий, для красок, для эффективного топлива и многое другое, что придёт на ум пытливому военному разуму.

Платформы ИИ для поиска новых молекул должны уметь извлекать информацию из баз данных и из текстов и создавать инструменты и физически обоснованные руководства для производства молекул с заранее заданными характеристиками. Вебинар с разъяснениями программы DARPA AMD запланирован на 18 октября. Кроме этого, агентство ждёт талантливых химиков и коллективы для работы над увлекательными проектами.

Предложен новый вариант одноатомного транзистора

Транзисторы размером с один атом остаются неблизким, но неизбежным рубежом, после которого невозможно будет развивать данный тип электронных приборов. Исследователи давно изучают данный рубеж, чтобы понять насколько близко и как скором мы сможем к нему приблизиться. Очередной экспериментальный одноатомный транзистор создали в Технологическом институте Карлсруэ (Karlsruhe Institute of Technology, KIT). Разработка стала продолжением серии экспериментов по созданию одноатомного транзистора в жидком электролите. Новая структура создана в твёрдом электролите и может считаться уникальной.

экспериментальный одноатомный транзистор разработки Технологического института Карлсруэ (KIT)

Экспериментальный одноатомный транзистор разработки Технологического института Карлсруэ (KIT)


Отмечается, что предложенный в KIT транзистор может стать основой квантовых вычислительных систем. При этом он работает при комнатной температуре, а не с охлаждением до −273 °C, как современные квантовые коммутаторы. Но даже для традиционной вычислительной и другой электроники разработка сулит немыслимое — снижение потребления для транзисторов более чем в 10 000 раз.

Высокая энергоэффективность предложенной транзисторной структуры достигнута также за счёт того, что разработчики отказались от полупроводников в пользу исключительно металлов. Транзистор представляет собой два металлических контакта с зазором между ними в один атом. В зазоре находится твёрдый электролит, полученный из жидкого состояния путём высокотемпературного воздействия. С помощью импульса тока, приложенного к контактам, в зазор вводится атом серебра, который замыкает цепь (транзистор переходит в открытое состояние). Обратный импульс выводит атом серебра из зазора, размыкая цепь и запирая транзистор.

Современная электроника и вычислительные мощности во всём мире потребляют около 10 % вырабатываемой электростанциями электроэнергии. В этом свете вопрос снижения потребления транзисторов крайне актуален, уверены в институте. Может так статься, что именно эта разработка окажется востребованной отраслью и приблизит создание электроники с никогда не разряжающейся батарейкой.

Ни гелия, ни воздуха: вакуум поможет на треть увеличить ёмкость жёстких дисков

На недавней конференции 2018 IEEE TMRC Conference сообщество разработчиков технологий записи на магнитные носители и производителей жёстких дисков рассмотрело ряд идей, которые могут помочь в наращивании ёмкости накопителей на магнитных пластинах.

Одним из самых горячо обсуждаемых вопросов была тема влияния газовой среды в блоке с магнитными пластинами на ёмкость жёстких дисков. Компания Western Digital на практических примерах доказала, что замена воздуха на гелий в блоке с пластинами однозначно улучшила динамику наращивания ёмкостей HDD. Пойти ещё дальше — вовсе отказаться от воздуха, гелия или иной газовой среды и создать вокруг пластин и головок вакуум — предложил стартап L2.

Фото Tom Coughlin, 2018 IEEE TMRC

Фото Tom Coughlin, 2018 IEEE TMRC

По мнению разработчиков из L2, полная откачка газа из блока с пластинами поможет упростить производство жёстких дисков за счёт отказа от смазки поверхности носителей и головок, а также за счёт отказа от специального углеродного защитного покрытия всех поверхностей в месте возможного касания. Но главное — переход на вакуум позволит уменьшить расстояние между головками и магнитными пластинами, за счёт чего можно будет увеличить плотность размещения дорожек.

В конечном итоге зазор между головками и пластинами может быть снижен до 3 или 4 нм. При этом в вакууме появляется возможность активного управления зазором. Всё это позволит увеличить ёмкость HDD на величину до 35 % для обычной перпендикулярной записи. Это отличный резерв для наращивания ёмкостей жёстких дисков для всех современных и новых технологий, включая перспективные HAMR (с нагревом) и MAMR (с микроволновым излучением).

Доказана возможность уплотнить запись на жёстких дисках до размеров одного атома

Физики из федеральной политехнической школы Лозанны (EPFL), расположенной в Швейцарии, опубликовали исследования, в которых доказана возможность уплотнить запись на жёстких дисках или магнитных лентах до размеров одного атома. Это открывает небывалые перспективы перед «классическими» накопителями. Увы, твердотельная память и SSD не могут справиться с тем растущим потоком данных, который необходимо хранить каждый день. По самым скромным оценкам, ежедневный прирост информации приближается к 15 млн гигабайт. Запись информации на уровне одиночного атома стала бы настоящей находкой, с возможностью радикально увеличить плотность размещения информации на магнитных носителях.

Слева изображение со сканирующего туннельного микроскопа, справа вспомогательные атомы кобальта на подложке их оксида марганца (EPFL)

Слева изображение со сканирующего туннельного микроскопа (одноатомный гольмиевый магнит), справа вспомогательные атомы кобальта на подложке из оксида магния (EPFL)

Активнее других разработками на направлении одноатомной записи занимаются физики из Лозанны. На базе лабораторий EPFL ведутся фундаментальные исследования, которые подтверждают, что одноатомная запись больше не является фантастикой. Впрочем, до реального использования она тоже далека. Основной проблемой записи на уровне одиночного атома остаётся остаточная намагниченность. Из-за неё остаётся большая вероятность изменения направления магнитного поля атома под воздействием случайного внешнего поля или в случае температурных скачков. Физики доказали, что существуют материалы и состояния, когда магнитное поле одиночных атомов остаётся стабильным. Иначе говоря, данные после записи не теряются.

В ходе эксперимента использовалась подложка из оксида магния, которая абсорбировала в себя пары из атомов гольмия и вспомогательных атомов кобальта. «Битами» выступали атомы гольмия. С помощью наблюдения через сканирующий туннельный микроскоп учёные убедились, что сильное магнитное поле, как и нагрев не привели к потере «информации» — не изменили намагниченность атомов гольмия. Тем самым на практике подтверждена бистабильность одноатомной записи. По мнению учёных, это может стать последним элементом головоломки для дальнейшей коммерциализации одноатомной записи.

Доказательство бистабильности атомов гольмия (EPFL)

Доказательство бистабильности атомов гольмия (EPFL)

Добавим, что эксперимент выявил способность атомов гольмия оставаться стабильными во внешнем магнитном поле силой, превышающей 8 тесла. С нагревом сложнее. Для записи и считывания данных на уровне одного атома необходимо опираться на квантовые механизмы. Это предполагает экстремально низкие температуры. Намагниченность атомов гольмия оставалась стабильной до температуры 35 К, но уже при нагреве до 45 К (–233,15 °C) атомы начинали спонтанно менять намагниченность в соответствии с направлением внешнего магнитного поля. На следующем этапе учёные намерены решить три ключевых вопроса по одноатомной записи: стабильность, запись и сигнально-шумовые характеристики процессов.

Сделан шаг к памяти будущего: воспроизведён магнитный вихрь (скирмион) размерами 13 нм

Скирмионы или мельчайшие магнитные вихревые структуры, направление магнитной оси индивидуальных атомов в которых меняется по мере удаления от центра вплоть до полной противоположности, интересуют учёных не первый год. Скирмион как устойчивая структура может служить единицей для записи данных на магнитном носителе. Главная особенность скирмиона заключается в возможности воспроизвести его в магнитном материале с меньшими энергетическими затратами, чем в случае изменения намагниченности обычного домена на магнитном носителе жёсткого диска. Происходит это благодаря тому, что векторы атомов в магнитном вихре уже частично и даже полностью развёрнуты в нужную сторону, тогда как в обычном случае приходится менять направление намагниченности на полностью противоположное.

Условное изображение магнитнго вихря, известного как скирмион (Nanoscale / Royal Society of Chemistry)

Условное изображение магнитного вихря, известного как скирмион (Nanoscale / Royal Society of Chemistry)

Очевидно, что подобные качества скирмионов заставляют задуматься об использовании мельчайших магнитных вихрей в качестве основы для памяти будущего. Остаётся решить вопросы масштабирования, подобрать материалы и создать условия для формирования устойчивых вихревых структур при комнатных температурах. Что-то из этого решено, пусть частично, что-то требуется решить. Так, учёные из Университета Небраски-Линкольна (University of Nebraska–Lincoln) смогли закрутить магнитную спираль скирмиона диаметром всего 13 нм. До этого рекордом считался 50-нм скирмион, и дальше дело не шло. Материалом, на котором создан мельчайший магнитный вихрь, остаётся моносилицид марганца (MnSi). Температура, при котором скирмион оставался стабильным, составила −230 °C.

Трековая память в представлении IBM

Трековая память в представлении IBM

Интересным явлением также считается возможность перемещения скирмион с помощью электрических имульсов. Это открывает путь к так называемой трековой памяти, когда данные хранятся и считываются с наномасштабных нитей. В магнитной нити или треке электрический ток способен передавать вихревое состояние (скирмион) от одной группы атомов к другой. Это очевидным образом открывает возможность создания магнитных носителей без механически движущихся частей. Иначе говоря, с высочайшей и недоступной механическим конструкциям надёжностью. Перспективной, например, считается разработка треков шириной около 20 нм. Опыты группы учёных из Университета Небраски-Линкольна приближают создание подобных систем хранения данных.

Учёные не смогли доказать явный вред радиочастотного излучения смартфонов

Помните страшилки про то, как мобильные телефоны «облучают наш организм», а длительные разговоры по сотовому и вовсе провоцируют рак мозга? Такими конспирологическими теориями пугали каждого из нас особо впечатлительные родственники, их обсуждали коллеги по работе, ими стращали псевдоэксперты с экранов ТВ. Под пагубным воздействием смартфонов и их предшественников подразумевался вред от радиочастотного излучения, возникающего при подключении устройства к 2G/3G/4G-сетям.  

Разрушить миф о вреде излучения, испускаемого смартфонами, взялись специалисты Национального института рака (Национальная токсикологическая программа) при Национальном институте здравоохранения США. Роль подопытных в данном исследовании взяли на себя лабораторные крысы, на которых учёные и ставили опыты для выявления чётко прослеживаемой зависимости состояния здоровья от интенсивности излучения. 

www.bbc.com

www.bbc.com

На протяжении двух лет по девять часов в сутки грызуны находились вблизи источников 2G/3G-излучения, подвергаясь его воздействию. В эксперименте принимали участие крысы разного возраста и пола, что позволило бы учёным сформировать объективную картину происходящих изменений в организме подопытных. Так, у некоторых особей мужского пола в ходе исследования развилась опухоль поблизости сердца, в то время как особи женского пола росли абсолютно здоровыми без каких-либо патологий. При этом, как отмечают эксперты, подвергшиеся воздействию излучения крысы прожили дольше своих собратьев, защищённых от негативного влияния извне. Хотя такой результат может быть банальным совпадением и не иметь под собой закономерности. 

Несмотря на незначительные потери массы новорождённых крыс и кормящих их взрослых особей все они достигли среднестатистических размеров и массы. При этом уровень излучения значительно превышал действующие стандарты безопасности для сотовых сетей, принятые Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов.

Photo by Cathy Keifer/Shutterstock

Photo by Cathy Keifer/Shutterstock

В своих комментариях представители Управления по санитарному надзору за качеством пищевых продуктов и медикаментов обратили внимание, что прямой связи между интенсивным регулярным радиочастотным излучением и формированием опухоли головного мозга эксперимент не выявил. Однако результат такого исследования не может достоверно отражать все явления и процессы, происходящие в организме человека при схожих условиях. Не затрагивался и вопрос LTE-излучения, также подлежащий тщательному изучению. 

Японцы показали возможность цифровой модуляции единичными электронами

Японский национальный институт AIST (National Institute of Advanced Industrial Science and Technology) совместно с рядом ведущих учебных и исследовательских подразделений, включая небезызвестную компанию Nippon Telegraph and Telephone Corporation, разработал первую в мире технологию и схемотехнику для управления цифровой модуляцией с помощью манипуляции единичными электронами. Это открывает путь к электронике с предельно малыми токами, которые только возможны, ведь ток — это поток электронов и что может быть меньше, чем перенос заряда единичным электроном?

Электронная полупроводниковая схема для манипуляцией одним электроном и принцип использования цифрового сигнала для дальнейшей модуляции (AIST)

Электронная полупроводниковая схема для оперирования одним электроном и принцип использования цифрового сигнала для дальнейшей модуляции (AIST)

Разработки одноэлектронных приборов (транзисторов) ведутся достаточно давно и не только японцами. Например, десять лет назад наш сайт рассказывал об одноэлектронных транзисторах из графена. Как и другие разработчики, специалисты института AIST использовали принцип кулоновской блокады, когда в одном ограниченном пространстве не может находиться больше допустимого числа электронов — сила отталкивания не даёт им приблизиться ближе допустимого. Созданы прототипы электронных приборов с дозированным испусканием электронов в одном направлении — это источники постоянного тока. Учёные AIST преуспели в том, что первыми сумели создать одноэлектронные приборы для генерации переменного тока в достаточно широком частотном диапазоне: от нуля герц до мегагерц. И это, подчеркнём, предельно малые из возможных токов на уровне нескольких фемтоампер (10−15 А).

Два вида модуляции, воспроизведённые с помощью одноэлектронного сигнала (AIST)

Два вида модуляции, воспроизведённые с помощью одноэлектронного сигнала (AIST)

Для создания переменного тока минимального уровня была создана электронная схема, управляющая единичным электроном как для создания постоянного тока, только в схему были добавлены приборы для управления периодом испускания электронов. По сути, единичные электроны использовались для цифровой модуляции волны заданной формы. Регулируя интервалы времени между испусканием электронов с помощью обычного цифрового сигнала, который подавался на контакты одноэлектронной «пушки», исследователи смогли сформировать на выходе как синусоиду, так и прямоугольную волну. Это обычная цифровая модуляция, только амплитуда волны измерялась значениями токов на уровне энергетических состояний одного электрона.

Полученная на практике синусоида и прямоугодьная волна частотой 80 кГц с амплитудой 5 пикоампер (AIST)

Полученная на практике синусоида и прямоугольная волна частотой 80 кГц с амплитудой 5 пикоампер (AIST)

Разработанная в институте AIST технология жизненно необходима для дальнейшего развития электроники. Это ключ к пониманию процессов в цепях наноуровня, ведь с такими инструментами можно с высочайшей точностью измерить токи и напряжения, а также на практике изучить физику процессов, проходящих где-то там внизу, где полно места, как говорил великий физик Ричард Фейнман.

Литиево-ионные аккумуляторы из вторсырья окажутся не хуже новых

По сравнению с другими источниками автономного питания литиево-ионные аккумуляторы выпускаются в относительно небольших объёмах, но рост парка электромобилей качнёт ситуацию в другую сторону. Пройдёт пять или десять лет и объём отработанных литиево-ионных аккумуляторов превысит несколько миллионов тонн в год. Это не только рост потребления редких ресурсов в виде лития, кобальта и других материалов, которые не бесконечны, это также загрязнение земли и вод от отработанных батарей. Не пора ли об этом подумать?

Восстановленный материал для катода литиево-ионного аккумулятора (University of California San Diego)

Восстановленный материал для катода литиево-ионного аккумулятора (University of California San Diego)

Сегодня утилизируется примерно 5 % отработавших свой ресурс литиево-ионных аккумуляторов. Это очень маленькая цифра на фоне ожидаемого спроса на данный вид батарей. Перед учёными стоит задача создать техпроцесс по доступной утилизации аккумуляторов или, в идеальном случае, по повторному использованию материалов в новой продукции. Такой техпроцесс разработан в лаборатории Калифорнийского университета в Сан-Диего (University of California San Diego).

Профессор Женг Чен (Zheng Chen) разработал технологию восстановления материала катода отработанной литиево-ионной батареи. Техпроцесс с небольшими изменениями одинаково подходит для восстановления литиево-кобальтового оксида и соединения NMC (никеля, марганца и кобальта). В первом случае речь идёт о катодах из аккумуляторов для электроники, а во втором — о катодах из аккумуляторов для электромобилей (преимущественно).

Лабораторные опыты подтвердили полное восстанлвление катода (University of California San Diego)

Лабораторные опыты подтвердили полное восстановление катода (University of California San Diego)

Отработанный катод, лишившийся большей части ионов лития и с нарушенной кристаллической решёткой соединения, помещается в щелочной раствор с солями лития. Затем происходит быстрый и кратковременный нагрев смеси до 800 градусов по Цельсию, после чего раствор медленно остывает. Если из прошедшего такую обработку материала снова создать катод для литиево-ионного аккумулятора, то батарея будет вести себя как будто она сделана из совершенно новых и только что добытых материалов. Тесты в лаборатории показали, что аккумулятор с катодом из восстановленного материала ни в чём не уступает аккумулятору с катодом, изготовленным из свежего сырья.

Новейшие автомобильные литиево-ионные аккумуляторы Samsung

Новейшие автомобильные литиево-ионные аккумуляторы Samsung

Разработка учёных убивает нескольких зайцев. Экономятся земные ресурсы, отходы не будут засорять окружающую среду, а аккумуляторы из «вторсырья» могут стать дешевле. Предложенный профессором Женг Ченом техпроцесс вдвое экономичнее задействованных сегодня при переработке катодов. Так, на восстановление первичных свойств материала уходит 5,9 мегаджоулей, что эквивалентно трём четвёртым бокала бензина. Для внедрения техпроцесса на производство необходимо создать автоматизированную систему извлечения катодов из аккумуляторов вне зависимости от формфактора батарей и адаптировать лабораторные операции до промышленного уровня. Планируется, что переработкой будут заниматься предприятия, расположенные в Азии.

Австралийские учёные представили 480-кубитный кремниевый квантовый процессор

Университет Нового Южного Уэльса (University of New South Wales, UNSW) имеет собственную позицию в сфере разработки квантовых компьютеров. Квантовые вычислительные системы могут использовать сверхпроводящие элементы, оптические ловушки, атомы, ионы, спины или что-то ещё. Но все они сталкиваются с проблемами масштабирования и со сложностями удержать квантовые состояния согласованным (когерентными) так долго, чтобы можно было с высокой точностью произвести расчёты и прочитать результат. Обе эти проблемы UNSW собирается решить в одном устройстве — в квантовом кремниевом процессоре.

Кремниевый квановый процессор в представлении художника

Кремниевый квантовый процессор в представлении художника

На днях в сетевом журнале Nature Communications в открытом доступе появилась статья «Кремниевая КМОП-архитектура для квантовых компьютеров на спинах» за авторством работников университета. Инженеры и учёные представили проект кремниевого процессора, который оперирует спинами одиночных электронов в качестве квантовых объектов (точек). Для производства такого процессора подходят классические КМОП (CMOS) технологические процессы и традиционные материалы. В данном случае проект разработан для выпуска решений на обычной кремниевой пластине со слоями изоляции из диоксида кремния. Рабочий уровень, в котором хранятся кубиты-электроны, это слой, насыщенный изотопами silicon-28. При этом следует помнить, что даже такой кремниевый процессор должен работать при криогенных температурах порядка 1K или ниже.

Структура, схема элементарной квантовой ячейки и архитектура кремниевого 480-кубитного квантового процессора (Nature)

Структура, схема элементарной квантовой ячейки и архитектура кремниевого 480-кубитного квантового процессора (Nature)

Проект процессора создан модульным с возможностью расширения. Минимальный строительный кирпичик процессора — это блок со сторонами 4 × 20 кубитов. Весь процессор спроектирован как массив 24 × 20 кубитов и состоит из 480 кубитов. Допускается дальнейшее горизонтальное масштабирование для увеличения числа кубитов в процессоре, как и уменьшение масштаба техпроцесса производства. Представленный проект, как заявляют разработчики, хорошо ложится на 14-нм техпроцесс Intel, где расстояние между затворами приближается к 70 нм. Для надёжной работы спроектированного кремниевого квантового процессора необходима ячейка для электрона (кубита) со сторонами 63 нм.

Электрическая схема и сигнальная управляющая структура команд квантового процессора (Nature)

Электрическая схема и сигнальная управляющая структура команд квантового процессора (Nature)

Выбранная учёными 2D-архитектура расположения кубитов преследует главную цель — снизить вероятность появления ошибок в ходе квантовых вычислений. Вернее, они на практике реализовали так называемый поверхностный код (surface code). Поверхностный код подразумевает, что часть кубитов не участвуют в хранении данных, а используются для исправления ошибок в кубитах, отвечающих за данные. Это сравнимо с аппаратной схемой ECC. Например, информационные кубиты и условно ECC-кубиты могут располагаться на плоскости в шахматном порядке. Это позволяет загружать в квантовый процессор программный код и обеспечивать надёжность расчётов.

В предложенной конструкции и схеме нет ничего сложного для современного производства. Схемотехника и её реализация также близка к широко использующейся при выпуске чипов. В общем случае кремниевый квантовый процессор напоминает организацию и работу памяти DRAM. Квантовая точка (электрон) загружается в предназначенную для него область и управляется обычным плавающим затвором (транзистором), как и соседствующая с ним область (J-переход), которая контролирует связанность/взаимодействие соседних квантов. Выглядит просто. Может именно так делается революция?

Учёные создали 53-кубитную квантовую систему с хорошими перспективами

Команда учёных из Университета Мэриленда (UMD) и Национального института стандартов и технологий США (NIST) впервые смоделировала рекордную по числу кубитов квантовую систему, имитирующую такие квантовые явления, как возникновение магнетизма в материалах. Ранее исследователи смогли дойти до моделирования 20-кубитной системы. Новая разработка — это уже 53 взаимодействующих атомных кубита, что в 2,5 раза больше, чем в предыдущем случае.

Квановая последовательность, управляемая лазером в представлении художника

Квантовая последовательность, управляемая лазером в представлении художника

Классические компьютеры, что важно, уже неспособны моделировать поведение квантовых систем такого порядка, поскольку все элементы квантовой системы одновременно находятся в слишком большом числе квантовых состояний. К тому же, по мере увеличения количества исследуемых частиц (квантов) это число растёт экспоненциально. Квантовые вычислительные системы позволяют обойти этот запрет. Их нельзя назвать компьютерами в классическом смысле этого слова. По факту — это в некотором роде аналоги настоящих квантовых систем, наблюдая за поведением которых можно с уверенностью представить поведение реальных квантовых систем. Например, как в случае эксперимента в Университете Мэриленда, изучив квантовые явление возникновения магнетизма.

Квантовая система UMD-NIST представляет собой 53 отдельных ионов иттербия-171 — заряженных атомов в ловушках из позолоченных электродов. На основе представленной модели появляется возможным создать систему с большим числом кубитов и, в итоге, разработать программируемый квантовый компьютер общего назначения. Ионный кубит, по словам разработчиков, это стабильные атомные часы с отличной способностью воспроизведения. Они эффективно увязываются друг с другом с помощью внешнего лазерного излучения. Это означает, что система поддаётся перепрограммированию и реконфигурации под воздействием внешних управляющих факторов.

Оптический квантовый компьютер компании NTT

Оптический квантовый компьютер компании NTT

Атомные и, в частности, ионные кубиты интересны тем, что построенная на них квантовая система хотя и использует вакуумные камеры, но работает при комнатной температуре и обычном атмосферном давлении. Подобную систему 27 ноября сделали публично доступной в Японии благодаря компании NTT. Она потребляет примерно как мощный настольный компьютер, хотя специализированные расчёты выполняет во много раз быстрее.

Схема эксперимента учёных из Университета Мэриленда (Nature)

Схема эксперимента учёных из Университета Мэриленда (Nature)

Модель квантовой системы UMD-NIST предельно специализированна. Каждый ион в ловушке имитирует частицу со своим спином — маленький магнит (см. на картинке выше). Таким образом — это цепочка спинов, которая моделирует квантовые магнитные явления в материалах. Сначала спины упорядочивают — придают им одинаковое направление внешним магнитным полем, а потом ослабляют поле и постепенно повышают его напряжённость. Тем самым в действие включаются квантовые явления ближнего и дальнего взаимодействия спинов, что невозможно в представленном объёме смоделировать на обычных компьютерах. В созданной на основе оптических ловушек модели всё происходит как «на самом деле», позволяя на практике наблюдать квантовый магнетизм в «естественных» условиях.

Автофокусирующиеся смарт-очки помогут людям с нарушениями зрения

Проблемы со зрением в некоторых случаях могут решить линзы или очки с диоптриями, в других же — лишь длительное медикаментозное лечение или хирургическое вмешательство. Универсальных очков, которые подошли бы пациентам с различными отклонениями зрительного восприятия, до недавнего момента не существовало. Однако усилиями специалистов из Университета Юты удалось разработать носимый смарт-гаджет с самофокусирующимися линзами, который превратит неразборчивые очертания предмета в хорошо различимый объект. 

При близорукости пациентам выписываются очки с «минусовой» диоптрией, а при дальнозоркости — с «плюсовой». Более сложные нарушения зрения, когда человек испытывает трудности как при чтении текста вблизи, так и не способен различать предметы вдали, требуют уже бифокальные или трифокальные линзы. Учёные из Университета Юты предложили универсальную альтернативу, готовую взять на себя решение проблем комплексного характера. Алгоритм действия их смарт-электроники по общему принципу схож с работой автофокуса камер в современных смартфонах.

Инновационное устройство оснащается жидкими линзами, установленными в оправе с электромеханической регулировкой. Последняя отвечает за коррекцию линзы в соответствии с показателями, снятыми датчиками. Под воздействием электромеханического привода происходит искривление мембраны в той или иной степени. Это позволяет мгновенно обеспечить обладателю таких очков правильный фокус на нужном объекте. Узнать, куда именно смотрит пользователь гаджета в данный момент системе поможет набор датчиков на мосту очков, которые возьмутся отслеживать направление вашего взгляда. 

Импульсное инфракрасное излучение позволит системе не только в точности определить, на какой предмет вы смотрите сейчас, но и измерить расстояние до него. На всю операцию с момента фиксации носимой электроникой направления взгляда, обработки собранных данных и до момента автофокусировки уйдёт не более 14 мс.  

На данном этапе смарт-очки, способные компенсировать недостатки зрительного аппарата, являются экспериментальным образцом и вряд ли обзаведутся коммерческой версией в ближайшие несколько лет. 

Орнитологи используют дронов для слушания пения птиц

Когда речь заходит о дронах, прежде всего на ум приходит их применение в качестве летающей камеры. Но орнитологи из Геттисбергского колледжа Пенсильвании используют дронов в качестве летающих ушей, для мониторинга пения птиц в Аппалачских горах. Результаты их исследований были опубликованы на днях в научном журнале The Auk: Ornithological Advances.

Исследователи пришли к заключению, что в деле определения популяции певчих птиц собранные дронами данные во многих случаях настолько же эффективны, как и данные, полученные экспертами традиционными методами с земли. Авторами исследования «Возможность подсчёта певчих птиц с помощью беспилотных летающих аппаратов» выступили профессор Энди Уилсон (Andy Wilson) и двое студентов его лаборатории по изучению окружающей среды — Жанин Барр (Janine Barr) и Меган Загорски (Megan Zagorski).

Господин Уилсон отметил, что идея использования дронов пришла к нему во время изучения голубых лесных певунов несколько сезонов ранее. «Это холмистая местность, и мы изучали преимущественно вершины. Я знал, что мы получили хорошее представление об этой среде обитания, но нам не хватало данных с крутых склонов по обе стороны от нас», — добавил он. При этом дроны позволяют изучать не только крутые склоны, но также заснеженные области, болотные топи, различные преграды вроде дамб и так далее.

Голубой лесной певун

Голубой лесной певун

Птицы поют, чтобы пометить свою территорию и привлечь противоположный пол. Постоянное пение требует больших затрат энергии. Если птица понимает, что её песнь не будет услышана (например, вблизи автострады или из-за иной активности людей), она может прекратить петь, чтобы не тратить энергию. Отсутствие пения птиц — один из признаков проблем с окружающей средой, которые могут оказать пагубное влияние и на жизни людей.

Чтобы не пугать птиц шумом пропеллеров, а также отодвинуть микрофон подальше от источника шума, команда Энди Уилсона опускает микрофон на длинном 8-метровом проводе. Данные о пении птиц собираются в различных точках, а потом обрабатываются для оценки величины популяции и других выводов. Они использовали для своей работы коптеры DJI Matrice 100.

Учёные заявили в беседе с журналистами TechCrunch, что будут и далее исследовать вопрос применимости дронов для изучения популяции птиц в Аппалачских горах, а также вопросы реакции птиц собственно на приближающиеся к ним дроны. Ограничивающим фактором для применения дронов в работе является относительно небольшое время автономного полёта — обычно до 22 минут — а также достаточно высокая шумность аппаратов. Оба эти параметра важны не только для учёных-орнитологов, но и для рынка дронов в целом.

На Тайване предложена недорогая альтернатива золотым проводникам в чипах

Дальнейшее снижение себестоимости производства микросхем сопряжено с невероятными трудностями. Снижение масштаба технологических норм для широко распространённого КМОП-процесса (металл/оксид/полупроводник) подходит к своему пределу. Сделать микросхемы дешевле можно за счёт более высокой интеграции компонентов, а также за счёт разного рода оптимизаций. Это не самый простой путь к снижению себестоимости, но других вариантов просто не остаётся. А оптимизировать можно многое. Пока снижение себестоимости шло скачками — с одних технологических норм на меньшие, на оптимизацию мало кто обращал внимание. Теперь приходится вглядываться в каждую мелочь. Одной из таких «мелочей» считается внутричиповая обвязка, которая соединяет кристалл с упаковкой и контактами для распайки.

Пример сварки обвязки шариком (TJ Green Associates LLC)

Пример сварки обвязки шариком (TJ Green Associates LLC)

В производстве чипов для обвязки кристаллов наиболее широко используется золото и сплав золота с добавками бериллия. Как альтернатива золоту может применяться медь, рабочие характеристики которой не намного хуже. Гораздо реже и только для больших токов используются алюминиевые проводники с диаметром проводника от сотни и больше микрон. Диаметр золотых проводников, к примеру, начинается от 12 мкм. Это немаленькая статья расхода, сократить которую были бы не прочь многие производители. Можно не сомневаться, что в этом направлении работают многие исследователи. Свой вариант технологии перехода на алюминиевые проводники для обвязки, к примеру, предложил Тайваньский национальный институт NCKU (National Cheng Kung University).

Fлюминиевые проводники, которые могут стать альтернативой золоым в чипах (National Cheng Kung University)

Алюминиевые проводники, которые могут стать альтернативой золотым в чипах (National Cheng Kung University)

Подробный доклад о технологии будет представлен в июле этого года. Пока сообщается, что технология позволяет создать для обвязки кристаллов алюминиевые проводники диаметром 18 мкм — это на порядок меньше, чем обычно. Хитрость разработки заключается в том, что алюминиевая проволока покрывается «нанослоем» цинка. Полученная таким образом проволока имеет все необходимые качества для обвязки кристаллов методом сварки шарика (ball bonding) — она характеризуется необходимой ковкостью и вязкостью и не разрушается в процессе изготовления и упаковки микросхемы. Метод сварки шариком, добавим, использует лазерную (прямой нагрев) или ультразвуковую сварку, когда из проволоки формируется шарик и происходит точечная сварка с контактами на кристалле и в упаковке.

Российские учёные получили материал на основе оксида гафния для памяти нового типа

Исследователи из Московского физико-технического института (МФТИ) впервые вырастили сверхтонкие (2,5 нанометра) сегнетоэлектрические плёнки на основе оксида гафния, которые могут стать основой для элементов энергонезависимой памяти нового типа.

Речь идёт о запоминающих устройствах на так называемых сегнетоэлектрических туннельных переходах. Сегнетоэлектрик — вещество способное «запоминать» направление приложенного внешнего электрического поля путём остаточной поляризации зарядов.

МФТИ

МФТИ

На основе тонкоплёночных сегнетоэлектриков уже давно изготавливают устройства энергонезависимой памяти, однако возможность их миниатюризации крайне ограничена. Около десяти лет назад, после того, как были продемонстрированы сегнетоэлектрические свойства в сверхтонких монокристаллических плёнках перовскитов, была предложена альтернативная концепция устройств памяти, основанная на использовании туннельного эффекта.

Сегнетоэлектрики являются изоляторами и не проводят электрический ток. Однако при очень малых толщинах сегнетоэлектрического слоя электроны с некоторой вероятностью всё же могут «проскочить» сквозь него благодаря туннельному эффекту, имеющему квантовую природу. Вероятность туннелирования зависит от размера и формы потенциального барьера (энергетической характеристики структуры), а «проскочившие» электроны образуют туннельный ток.

Движение электронов в этом случае напоминает бег с препятствиями, а величина этого препятствия определяется направлением вектора поляризации, который меняет форму потенциального барьера (см. рисунок выше). Таким образом, запись информации производится подачей напряжения на электроды, примыкающие к сверхтонкому сегнетоэлектрику, а считывание — измерением туннельного тока.

Теоретически такая память может обладать очень высокими показателями плотности, скоростей записи и считывания, а также низким энергопотреблением. Но есть проблема. До сих пор все изготовленные прототипы устройств на основе традиционных сегнетоэлектриков были несовместимы с кремниевой технологией. Теперь же российские учёные совместно с американскими и швейцарскими коллегами впервые экспериментально продемонстрировали, что сплавные поликристаллические плёнки оксидов гафния и циркония толщиной всего 2,5 нм сохраняют сегнетоэлектрические свойства.

Поперечное сечение изготовленной структуры / МФТИ

Поперечное сечение изготовленной структуры / МФТИ

«Оксид гафния уже используется при производстве современных кремниевых логических микросхем, а несколько лет назад в одной из его модификаций были обнаружены сегнетоэлектрические свойства. Заслуга учёных из МФТИ состоит в том, что им удалось вырастить сверхтонкую, туннельно-прозрачную плёнку этого вещества на кремниевой подложке, сохранив при этом его сегнетоэлектрические свойства», — говорится в сообщении.

Таким образом, в перспективе на кремнии могут быть созданы новые устройства энергонезависимой памяти с использованием сегнетоэлектрических поликристаллических слоёв оксида гафния.

В России представили усовершенствованную «ядерную батарейку» на основе никеля-63

Создание портативного одноразового источника питания, срок службы которого измерялся бы не сутками или месяцами, а годами, прежде покорилось специалистам Корнельского университета. Элемент питания, в качестве базы для которого был выбран радиоактивный изотоп никеля-63, мог похвастаться непрерывным сроком службы до 50 лет. Но, разумеется, не обошлось и без существенных ограничений в номинальных параметрах «ядерной батарейки». Всё дело в том, что принцип, на котором строится работа таких устройств — сопровождающее распад никеля-63 испускание электронов для последующего заряда медной пластины — не позволял добиться серьёзной мощности источника питания. В итоге указанная характеристика для ядерных батареек находилась на уровне нескольких милливатт, что накладывало ряд существенных ограничений при её эксплуатации. 

Решением описанной проблемы активно занялись учёные Национального исследовательского технологического университета «МИСиС», которые вчера рапортовали о достигнутых успехах. Им удалось изготовить прототип уникальной «ядерной батарейки», способной, как и её предшественник родом из США, питать определённую электронику на протяжении 50 лет. 

Как рассказали в «МИСиС», спроектированная ими «ядерная батарейка» обладает огромным потенциалом и имеет широкий спектр потенциально возможного применения, начиная от использования разработки в медицинском оборудовании и миниатюрных приборах для поддержания жизнедеятельности, заканчивая размещением такого источника питания в космических аппаратах. Команде инженеров под руководством профессора Юрия Пархоменко удалось воплотить на практике концепцию преобразования энергии бета-излучения в электрическую на основе монокристаллов пьезоэлектриков. Этот принцип и лёг в основу показанного образца автономной бета-вольтаической батареи переменного напряжения, первичным источником энергии для которой послужил хорошо знакомый изотоп никель-63.

Излучение выбранного в качестве источника электронов изотопа, несмотря на свою радиоактивность, характеризуется периодом полураспада в 100 лет и не несёт какой-либо угрозы для здоровья биологических организмов. Но главной особенностью прототипа отечественного производства стало применение импульсных источников питания для накопления и последующей отдачи заряда. За счёт этого учёные сумели обойти главный недостаток бета-вольтаической «ядерной батарейки» — их крайне малую мощность, сильно сужавшую сферы дальнейшего эффективного применения. 

«В импульсном режиме один бета-вольтаический элемент способен выдавать мощность вплоть до 1 мВт/см3. При низких удельных мощностях энергетического материала батарейка, собранная на их основе, способна обеспечивать непрерывную выходную мощность 10–100 нВт/см3 — достаточную, чтобы обеспечить питание кардиоимплантата», — объяснил технические особенности продемонстрированного решения господин Пархоменко. 

Инновационная российская «ядерная батарейка», ставшая реальностью благодаря усилиям сотрудников «МИСиС», обладает всеми необходимыми для начала серийного производства и скорейшего внедрения технологии преимуществами. Здесь и сверхмалые габариты источника питания, и отсутствие пагубного влияния энергетического материала, и длительный срок эксплуатации в несколько десятков лет. Однако дойдёт ли дело до выпуска коммерческого образца — покажет время.