Сегодня 30 октября 2025
18+
MWC 2018 2018 Computex IFA 2018
реклама
Звук и акустика

Steinberg WaveLab для делающих самые первые шаги. Урок 3

⇣ Содержание
Ну, как вам, уважаемые, кажется: сложна звукорежиссура или нет? Судя по той почте, которая пришла после двух первых уроков, все, что там изложено вы освоили легко и быстро, молодцы. Допустим, что так… Продолжим. Причем в рамках данного урока мы перейдем от вопросов общих к примерам решения конкретно поставленных задач.

Intro

Профессия звукорежиссера имеет множество граней, и в ряде случаев она напоминает ту же работу портретиста, где не обязательно нужно отображать правду, а необходимо качественно передать некий образ. Для этого уже существует множество шаблонных подходов и наработок. Например, в прошлом уроке мы обсуждали такие устройства как компрессоры и эквалайзеры. С их помощью можно сделать ярким невзрачный вокал, а та же скрипка именно в записи будет иметь другие краски и отличаться от того, что мы слышим вживую. В звуковом ПО есть множество уже готовых и настроенных программных пресетов, в школе портретного искусства — наработанных штампов. Похоже? Да. Помимо этого, профессия звукорежиссера похожа и на работу пейзажиста, который может комбинировать целые массивы данных, объединять их в рамках некоей общей концепции и так далее. Это практически «высший пилотаж», и тут уж не обойтись знанием только основ цифрового звука, частотной и динамической обработки. Стартовав практически сразу с аналоговых и цифровых сигналов, мы проскочили через акустическую часть, и, в принципе, она нам и не очень до этого момента была нужна. А сейчас восполним данный пробел, после поймете почему.

Акустика

Почему мы говорим не о физике звуковых волн, а об акустике? Дело в том, что «akustikos» в переводе с греческого означает «слышимый», таким образом мы разграничиваем понятия, подразумевая только лично наши человеческие ощущения и все, что к ним относится, не более того. Например, звуковые волны могут переноситься в любых средах, обладающих упругими свойствами, в т.ч. твердых и жидких. Но, лично для человека единственно возможной такой передающей средой является воздух, то есть газ.
 звуковые волны
В чем проявляются эти самые упругие свойства среды? Сообщив воздуху даже очень кратковременное возмущение, мы тем самым формируем в нем две зоны с разным давлением — сжатия и разряжения. При этом воздушная среда, стремясь вернуться в состояние покоя, начинает «раскачивать» соседние ранее спокойные незадействованные участки, рождаются колебания, которые начинают распространяться с определенной скоростью (скоростью звука), и, в конце концов, затухают. А внешне все выглядит так, как будто через среду прошла определенная волна. Так и есть. Человеческий слух способен воспринимать волны только в определенном частотном диапазоне, называемом слышимым, который, судя по разным источникам, находится между значениями 16-20 Гц и 16-20 КГц. Тут следует отметить тот факт, что слуховое восприятие каждого человека в отдельности имеет индивидуальный характер, это касается и самих границ восприятия. Наша слуховая система стереофонична. То есть, мы имеем два органа слуха, за счет чего можем определить месторасположение источника возмущения. Как же происходит такая локализация? Давайте посмотрим.
  • Волны с частотами ниже 200-300 Гц. Человек не может определить месторасположение источника (волны обладают большими длинами). Именно поэтому в современных акустических системах для воспроизведения в этом диапазоне используется только одна колонка — сабвуфер. Для того чтобы вам представлять себе все более иллюстративно, просто делите скорость звука (около 330 м/с) на значение частоты. То есть, волна в 20 Гц имеет длину около 16,5 метров (!), 200 Гц — 1,65 м, 2000 Гц — 16,5 см, 20000 Гц — 16,5 мм.
  • Волны с частотами в диапазоне 300 Гц — 1 КГц. Человек определяет месторасположение источника по разности фаз. То есть, другими словами, улавливает разницу между тем, как звуковая волна достигла одного уха, а потом другого.
  • Волны от 1 КГц и выше. Они быстро затухают, поэтому человек ориентируется по разнице амплитуд (громкостей).
На самом деле, указанные частотные границы приведены не совсем точно, а примерно, поскольку серьезных научных исследований в этом деле не проводилось, да и зачем, ведь каждый человек имеет свои индивидуальные параметры, и даже расстояние между правым и левым ухом у каждого различно, следовательно, будут различными и результаты анализа. За сам анализ отвечает мозг. Все окружающие нас звуковые волны в природе являются сложными по структуре и содержат частоты на широких спектрах. Например, любой музыкант вам расскажет, что в тот момент, когда вы дергаете за струну, начинает колебаться как вся ее длина, так и отдельные части (1/2, 1/3 и т.п.), и такие дополнительные частоты называются гармониками или обертонами. То есть, сразу же в источнике образуется не простая звуковая волна, а сложная, то есть совокупность простых. Причем то, что мы слышим в итоге — это не только то, что «сообщил» сам источник звука. Очень многое зависит от характеристик воздушной среды (плотность, температура, давление), и от того акустического пространства, в котором находится слушатель.

Реверберация

 Реверберация
Звуковые волны имеют полный набор свойств, подпадающих под физическое понятие «волны», включая отражение, поглощение, интерференцию, дифракцию и т.п. Находясь в реальных условиях, слушатель получает весь спектр результатов таких взаимодействий. То есть, помимо основной волны он начинает слышать множество дополнительных, дошедших до него различными путями, частично поглощенных, а частично и отразившихся. Причем, не секрет, что любой материал в природе обладает поглощающими свойствами, которые в каждом из случаев являются избирательными по отношению к самим частотам. Например, есть разница между тем, находитесь ли вы в мраморном зале либо комнате из дерева.
Если говорить о первых устройствах-ревербераторах, то в их конструкциях изобретатели использовали самый простой принцип из природы этого эффекта, а именно задержку, то есть учитывали только отражение, но не поглощение. Если вы откроете корпус какого-нибудь старого ленточного ревербератора, то увидите там весьма занимательное ноу-хау, а именно, «закольцованную» магнитную ленту и множество головок, первая из которых является записывающей, а все остальные считывающие.
То есть, при подаче сигнала на вход прибора производится запись на магнитную ленту, которая движется с определенной постоянной скоростью. Через некоторые интервалы эта лента многократно считывается, в результате мы и получаем основной плюс - множество других идентичных сигналов, воспроизведенных с задержкой. И, кстати, в период создания этих устройств был найден один из ключевых алгоритмов, а именно, как задавать размеры помещения. По существу, именно от них зависит та временная разбежка, между тем как к слушателю придет основная звуковая волна, а потом первые из отраженных.
На самом деле в природе это далеко не так, как в ленточном ревербераторе, поскольку отражений очень много, и как мы успели заметить, материалы препятствий стен, потолка и пола обладают выборочным (избирательным) поглощением к некоторым частотам. В профессиональной индустрии очень часто этот эффект создавали искусственно, сооружая целые реверберационные помещения со специально расставленными реверберационными контурами.
Так же были популярны и так называемые эхо-камеры — помещения, в которых стояла колонка, воспроизводящая инструмент и множество микрофонов, которые записывали обработанный естественным образом звук в разных точках пространства. Конечно, это требовало определенных условий и приводило к потерям в качестве, а чтобы их избежать, нужно было очень потратиться. Поэтому позволить себе такие ноу-хау могли только очень дорогие студии. Все гораздо упростилось с внедрением цифровых технологий. Что касается программной обработки, какую вы можете увидеть в современных программных плагинах реверберации, то сейчас она может быть сделана несколькими путями, основные из которых:
  • Использование множества задержек. Этот алгоритм схож с ленточными ревербераторами, даже идентичен их работе по сути. От основного сигнала образуется множество с задержками. Главные параметры, которые вы указываете в этом случае, являются: время реверберации, балансное соотношение чистого и реверберационного сигналов.


    Нажмите для увеличения
  • Использование множества задержек плюс сложная обработка фильтрами. Это было следующим витком развития технологий. Благодарить за него мы должны знаменитую лабораторию MIT Media Lab, которая проводила достаточно много исследований в этой области, и, кстати, из ее недр выросла такая известная компания как WaveArts. Так вот, в данном случае каждая линия отраженного сигнала проходит через дополнительную последовательность фильтров, в результате чего стало возможно «программировать» материалы стен, потолка, пола, препятствий. Одной из первых качественных реализаций этого метода стал плагин WaveArts MasterVerb (наследник HMI InMotion), популярный и поныне. Если вы посмотрите на него внимательно, то заметите, что там реализовано и интересное разбиение, а именно отдельное управление ранними реверберационными откликами (Early Reflection) и последующим реверберационным эффектом (Late Reverb). Конечно, многие могут сказать, что реверберация с фильтрацией использовалась и ранее в некоторых дорогих студийных аппаратных эффект-процессорах. Да, она была, но не на таком сложном уровне, как это реализовала WaveArts. Просто в программах гораздо проще сделать сложные каскады.
  • И, наконец, самый современный метод — использование сверточных функций (функций математической свертки). Его родоначальниками можно по праву считать старые специализированные программы для измерения акустических свойств помещений, использовавшихся специалистами в этом вопросе. Правда, есть и различие в подходах. Ведь в том случае воспроизводился некий сигнал (например, тон на определенной частоте), делалась запись, и из полученного материала исходный сигнал просто вычитался, а потом производился анализ. В современных сверточных ревербераторах используется несколько другой метод — воспроизводится короткий громкий щелчок, а полученный звуковой файл является ничем иным как готовой функцией обработки или «шаблоном помещения».
Первые два метода вы можете без труда сделать вручную в WaveLab, для чего нужно открыть любую звуковую волну, скопировать ее, а потом наложить на исходную (Shift+V) через очень малые временные интервалы с различными параметрами баланса микса. Именно второй метод вы можете создать, дополнительно используя эквалайзер.

Почему так много внимания уделяется реверберации?

На самом деле это первый эффект в индустрии, который позволял даже в моно создать пространственные ощущения. Человек-слушатель, еще не зная такой науки, как психоакустика, самостоятельно за счет своего ассоциативного ряда достраивал картину до нужного объема. Потом, когда слово «качество» стало синонимичным с «прозрачность» от эффекта реверберации в его классическом техническом исполнении с одними повторами стали постепенно отказываться либо искать новые его формы. Так начали использоваться спектральные процессоры и т.п. Ведь на самом деле, если вы всю реверберационную часть обработаете эквалайзером, оставив лишь намек на присутствие эффекта, слушатель все равно достроит все до нужного объема. И при этом мы имеем прозрачность на определенных частотах. Реверберация точно так же как и эквалайзер, и компрессор помогает создать образ, что для звукорежиссуры немаловажно.

Другие эффекты задержки

К ним относятся обычный дилэй (что в переводе и означает задержку), флэнджер, хорус, эхо. Структура у всех практически одинакова, то есть используется только временная задержка и ничего более.


Нажмите для увеличения
Хотя в последнее время по аналогии с ревербераторами стали модными спектральные дилэи (например, Native Instruments Spektral Delay), где частотным наполнением линий задержки можно управлять. Помимо этого в линиях задержки может использоваться питч (изменение тона), в результате чего генерация самого эффекта начинает напоминать создание мелодических партий. По этому же принципу сейчас построены некоторые современные хорусы, которые программируются по типу аккорда. Но это не все.
Задержка используется и в других целях — расширение стереопространства, управление дальностью объектов. Если объяснить простыми словами, то вы это можете проделать и на уровне опыта, сначала послушав колонки при их обычном, привычном для вас месторасположении, а потом разнеся их на гораздо большее расстояние. Тем самым вы увеличили временную задержку между каналами. Попробуйте сделать это же программно, например, откройте в WaveLab любой стереофайл. Вырежьте (Ctrl+X) один из каналов, а потом вставьте его с учетом небольшого промежутка времени. В результате, таким нехитрым способом вы расширите стереопространство. Такие методы известны очень давно, и некогда были очень популярными в бытовой аудиоаппаратуре в виде технологий «Звук вокруг» и т.п., а в нашей старой технике была одна кнопка «РСБ — расширение стереобазы». Причем, что интересно, в той технике, о которой я говорю, и, кстати, потом на вооружение данный метод взяли и китайские производители недорогих устройств в целях удешевления своей продукции, стерео как такового вообще не было. То есть был обычный моно-тракт, а для создания объемного эффекта один и тот же сигнал раздваивался с помощью задержки и подавался на разные каналы. Мало того, очень многие еще больше удешевляли технологии и вместо задержки ставили… противофазу. При воспроизведении это не так заметно, но вот при использовании в производстве музыки такой подход часто имел плачевное развитие (например, многие стереозаписи 70-80-х даже очень известных музыкантов были с противофазой между каналами), а поскольку радио тогда было в основном моно, при сложении двух сигналов получалась… тишина. Ну, это дела давно минувших дней, хотя именно сейчас вы часто можете встретить другой вариант использования временной задержки. В основном в записях рок-групп… Звукорежиссер должен сделать прозрачную панорамную картину, поэтому, поставив в панорамном центре сразу и вокал, и гитару, он сразу же столкнется с проблемой, выраженной не только в отсутствии объема, но и в «каше», от которой придется избавляться. Сколько искалось методов… вам не передать словами. Это и специальная эквализация, и разделение по дальности с помощью реверберации и т.п. Но, как показало время, все оказалось проще. Гитара размещается в крайних положениях правого и левого каналов, причем в одном из них с небольшой задержкой. Получается и объем, и прозрачность. Кстати, это дешевый вариант более дорогой реализации, а именно, где гитара в каждый из каналов с одной и той же партией пишется отдельно, то есть два раза или «даблом». Человек не может сыграть абсолютно одинаково, поэтому всегда есть определенные задержки, опять же, получается и объем, и панорамному центру ничего не мешает. О данном методе знают все профессионалы, а начинающим просто рекомендую послушать любую современную запись.

Следующая страница →
 
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

window-new
Soft
Hard
Тренды 🔥
«Жидкое стекло» Apple можно будет заматировать: представлена нова бета iOS 26.1 12 мин.
Сервисы AWS упали второй раз за день — тысячи сайтов по всему миру снова недоступны 8 ч.
Fujitsu влила £280 млн в британское подразделение в преддверии выплат компенсаций жертвам багов в её ПО Horizon 8 ч.
Календарь релизов 20 – 26 октября: Ninja Gaiden 4, Painkiller, Dispatch и VTM – Bloodlines 2 8 ч.
В Windows сломалась аутентификация по смарт-картам после октябрьских обновлений — у Microsoft есть временное решение 9 ч.
Вместо Majesty 3: российские разработчики выпустили в Steam амбициозную фэнтезийную стратегию Lessaria: Fantasy Kingdom Sim 9 ч.
Слухи: Лана Дель Рей исполнит заглавную песню для «Джеймса Бонда», но не в кино, а в игре от создателей Hitman 10 ч.
Зов сердца: разработчики Dead Cells объяснили, почему вместо Dead Cells 2 выпустили Windblown 11 ч.
Adobe запустила фабрику ИИ-моделей, заточенных под конкретный бизнес 11 ч.
Китай обвинил США в кибератаках на Национальный центр службы времени — это угроза сетям связи, финансовым системам и не только 12 ч.
Президент США подписал соглашение с Австралией на поставку критически важных минералов на сумму $8,5 млрд 18 мин.
Новая статья: Обзор смартфона realme 15 Pro: светит, но не греется 5 ч.
Ещё одна альтернатива платформам NVIDIA — IBM объединила усилия с Groq 5 ч.
Учёные создали кибер-глаз, частично возвращающий зрение слепым людям 6 ч.
Samsung выпустила недорогой 27-дюймовый геймерский монитор Odyssey OLED G50SF c QD-OLED, 1440p и 180 Гц 6 ч.
Акции Apple обновили исторический максимум на новостях об отличных продажах iPhone 17 8 ч.
Представлен флагман iQOO 15 с чипом Snapdragon 8 Elite Gen 5 и батареей на 7000 мА·ч по цене меньше $600 9 ч.
Нечто из космоса врезалось в лобовое стекло самолёта Boeing 737 MAX компании United Airlines 10 ч.
Умные кольца Oura научатся выявлять признаки гипертонии, как последние Apple Watch 11 ч.
Дешёвая корейская термопаста оказалась вредна для процессоров и здоровья пользователей 11 ч.