Сегодня 27 июля 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → реакторы
Быстрый переход

В Китае построят первую в мире атомную электростанцию на расплаве солей тория

Три года назад в Китае был построен первый в мире атомный реактор на расплаве солей тория. Его тепловая мощность составила 2 МВт. Электричество он не производил. Эксперимент оказался удачным, что создало основу для строительства в Китае первой в мире АЭС на расплаве солей тория. Строительство АЭС и реактора тепловой мощностью 60 МВт стартует в 2025 году. Он сможет вырабатывать 10 МВт электрической мощности, что станет первым таким решением в мире.

 Источник изображения: Chinese Academy of Sciences

Источник изображения: Chinese Academy of Sciences

Первый экспериментальный реактор на жидкосолевом расплаве тория был построен в США около 60 лет назад. Решение было интересным, но сложным в эксплуатации по причине высочайшей коррозии труб для транспорта солевого расплава. В США нашли это решение невыгодным и вскоре демонтировали реактор. Но выгодные стороны жидкосолевых реакторов тоже никуда не делись.

Топливо в реакторы на расплаве солей подаётся в смеси с хладагентом, которым являются сами расплавы. Такой реактор не сможет взорваться во время аварийной остановки подобно реактору на воде. Соль просто остынет без значительного выброса радиоактивного вещества, даже если возникнет прорыв первого контура. До сих пор массовое производство подобных реакторов останавливало отсутствие устойчивых к окислению при высокой температуре материалов. Построив и начав эксплуатацию 2-МВт реактора в пустыне Гоби (примерно в 120 км к северо-западу от города Увэй, провинция Ганьсу), Китай доказал, что на этом направлении возможен прорыв.

На практике были испытаны некоторые революционные технологии, включая жаропрочные сплавы, способные противостоять высоким температурам, радиации и химической коррозии. Этот небольшой реактор получил разрешение на эксплуатацию от Управления ядерной безопасности Китая в июне прошлого года и в октябре достиг критической (устойчивой) цепной ядерной реакции.

Новый и более мощный ториевый реактор тепловой мощностью 60 МВт и электрической 10 МВт будет построен недалеко от первого реактора на площадке размерами меньше футбольного поля. Расплав с топливом после прохождения активной зоны реактора будет нагревать второй контур тоже с солевым расплавом. Второй контур будет приводить в действие турбину, используя для этого углекислый газ.

Завершение строительства объекта и его сдача в эксплуатацию ожидается в 2029 году. Для Китая будет иметь немаловажное значение использование тория в качестве основного компонента топлива (туда всё равно придётся добавлять уран или другие радиоактивные материалы) — его запасов в стране хватит на 20 тыс. лет эксплуатации атомных станций на расплавах солей, тогда как своего урана у Китая на всё не хватает.

В США, кстати, тоже пытаются на новом уровне возродить тот древний проект. Этим занята компания TerraPower Билла Гейтса, которая строит реактор на расплаве солей натрия.

Запуск термоядерного реактора ИТЭР отодвинули на 2039 год — бюджет раздуется ещё на $5,4 млрд

Испытания международного термоядерного экспериментального реактора (ИТЭР) будут отложены на годы, а затраты возрастут на $5,4 млрд. Это нанесёт новый удар по и без того невероятно дорогому крупнейшему в мире эксперименту по термоядерной энергетике. Согласно первоначальному плану, первую плазму на ИТЭР, который строится во Франции с участием 33 стран, включая Россию, должны были получить в 2025 году. Теперь это официально признано невозможным.

Сектора вакуумной камеры, где должна циркулировать плазма, оказались изготовленными с несоблюдением размеров, также выявлены дефекты сварки в трубах системы охлаждения. Эти проблемы вынуждают усомниться, что термоядерный синтез, как источник безграничной чистой энергии, будет запущен на ИТЭР в обозримом будущем.

Новый глава ИТЭР — Пьетро Барабаски (Pietro Barabaschi) — подчеркнул, что даже без выявления брака прежние сроки выдержать было нельзя, настолько затянулось строительство. «Конечно, задержка ИТЭР идёт не в правильном направлении, — заявил Барабаски во время сегодняшнего брифинга. — Что касается влияния ядерного синтеза на проблемы, с которыми сейчас сталкивается человечество, нам не следует ждать, пока ядерный синтез решит их. Это неразумно».

Ранее Барабаски уже сообщил, что начальная фаза операций, которая заключается в запуске дейтерий-дейтериевых реакций для синтеза трития, перенесена на 2035 год, а полноценные испытания реактора теперь начнутся не раньше 2039 года, что на четыре года отстаёт прежних прогнозов.

 Источник изображения: ITER

Источник изображения: ITER

Уже второй раз за восемь лет ИТЭР приходится пересматривать свой бюджет и сроки. Первоначально планировалось, что стоимость проекта составит около $5 млрд, а испытания начнутся в 2020 году. На сегодняшний день бюджет превысил $22 млрд, а дата испытаний не установлена. Дополнительные расходы, по словам Барабаски, составят около $5,4 млрд.

Задержка ИТЭР может привести к тому, что на первый план выйдут термоядерные проекты, финансируемыми из частных источников. Компании Commonwealth Fusion Systems и Tokamak Energy используют меньшие версии такого же реактора и планируют начать испытания прототипов в этом десятилетии.

 Источник изображения: Culham Centre for Fusion Energy

Источник изображения: Culham Centre for Fusion Energy

Барабаски «очень скептически относится» к тому, что любые стартапы, обещающие коммерческую эксплуатацию к 2040 году, смогут достигнуть своих целей. «Даже если бы сегодня нам удалось запустить термоядерный синтез, я не верю, что мы сможем осуществить его коммерческое внедрение к 2040 году, — сказал он. — Нам придётся решить ряд других технических проблем, чтобы сделать его коммерчески жизнеспособным».

Rolls-Royce рассказала о разработке мобильного микрореактора — до 10 МВт в любой точке Земли и не только

Британская компания Rolls-Royce представила первые детали о своём микрореакторе следующего поколения, который будет сочетать инновационные технологии и урановое ядро, окружённое множественными защитными слоями. Разработка может кардинально изменить подход к производству энергии.

 Источник изображений: Ralls-Royse

Источник изображений: Rolls-Royse

Согласно информации, предоставленной компанией на своём веб-сайте, микрореакторы, как и малые модульные реакторы (SMR), используют передовые ядерные технологии, являясь частью «ядерного портфеля» Rolls-Royce. Однако предназначены эти системы для разных задач.

Как сообщает издание Tweak Town, микрореактор Rolls-Royce сможет генерировать от 1 до 10 МВт энергии, а благодаря своей компактности станет мобильным источником питания. Система поместится всего в нескольких транспортных контейнерах, так что, по сути, можно говорить о передвижном современном ядерном генераторе. Компания сравнивает его с малым модульным реактором, который вырабатывает 0,5 ГВт мощности и работает со стационарной площадки размером примерно с два футбольных поля.

Подчёркивается, что микрореактор предложит высокую удельную мощность, которая позволит ему эффективно, гибко и устойчиво обеспечивать широкий спектр операционных потребностей. Он сможет обеспечивать подачу электроэнергии и тепла по требованию. При этом ключевым преимуществом является его масштабируемость, благодаря которой агрегат легко можно транспортировать по железной дороге, морем и даже отправить в космос, делая его универсальным и надёжным источником энергии. В нём будет применяться безопасное топливо, а внутри ядра каждая порция урана окружена несколькими защитными слоями, что позволяет выдерживать даже самые экстремальные условия.

Rolls-Royce предлагает четыре сценария применения своей разработки: для обороны, для обеспечения энергетической безопасности в отдалённых гражданских районах, для промышленных зон и в космосе. Любой из этих сценариев может стать «переломным для нашей цивилизации», считает компания.

Также микрореактор может быть использован для центров обработки данных искусственного интеллекта, которые потребляют невообразимое количество энергии. Те же полупроводниковые компании, такие как TSMC и Intel, смогут использовать реактор для решения массы проблем, связанных с электроэнергией и подачей воды для охлаждения оборудования, что, в целом, открывает новые возможности для развития технологий.

В Китае создали первый в мире термоядерный реактор на высокотемпературной сверхпроводимости

Молодая китайская компания Energy Singularity, основанная в 2021 году, завершила создание и приняла в эксплуатацию первый в мире термоядерный реактор типа токамак на катушках с высокотемпературной сверхпроводимостью. Новое решение позволяет создавать крайне компактные и поэтому недорогие коммерческие термоядерные реакторы и электростанции.

 Источник изображений: Energy Singularity

Источник изображений: Energy Singularity

Утверждается, что размеры инновационного реактора составляют всего 2 % от установок на обычных сверхпроводящих катушках. На новом реакторе под названием HH70, размещённом в восточном районе Шанхая, будут проверены основные наработки, что позволит создать к 2027 году опытный реактор следующего поколения, а к 2030 году демонстратор термоядерной электростанции.

В качестве материала для сверхпроводящих катушек используется относительно дешёвое соединение ReBCO (редкоземельный оксид бария-меди). В Китае научились выпускать ленту из ReBCO в массовых количествах. Она востребована для маглевов будущего и не только. Токамаки, как видим, тоже выиграют от перехода на сверхпроводящие магниты.

Следующее поколение опытного реактора Energy Singularity должно выйти на показатель эффективности 1:10, выработав в 10 раз больше энергии, чем пошло на разогрев плазмы. Если этот показатель будет достигнут, то первый демонстратор термоядерной электростанции в исполнении Energy Singularity появится через каких-то пять лет, что пока воспринимается как фантастика.

Запуск «искусственного Солнца» официально отложен — первые операции на термоядерном реакторе ИТЭР перенесли на 2035 год

Вчера был последний день заседания Совета ИТЭР, в ходе которого были определены новые временные рамки ключевых этапов реализации проекта по строительству масштабного термоядерного реактора. Задержки могут составить до 10 лет. Это сделает проект дороже, но в целом не повлияет на достижение поставленных десять лет назад задач — зажечь на Земле «искусственное Солнце» и получить почти бесконечный источник чистой энергии.

 Площадка ИТЭР в сентябре 2023 года. Источник изображения: ITER/EJF Riche

Площадка ИТЭР в сентябре 2023 года. Источник изображения: ITER/EJF Riche

Согласно первоначальному плану, первую плазму на реакторе ИТЭР (ITER), который строится во Франции с участием 33 стран, включая Россию, должны были получить в 2025 году. Теперь это официально признано невозможным. Сектора вакуумной камеры, где должна циркулировать плазма, оказались изготовленными с несоблюдением размеров, что теперь приходится исправлять, а также выявлены дефекты сварки в охлаждающих трубах кожуха вакуумной камеры, что вынудило менять десятки километров труб.

Новый глава ИТЭР — Пьетро Барабаски (Pietro Barabaschi) — подчеркнул, что даже без выявления брака прежние сроки выдержать было нельзя, настолько затянулось строительство. Более подробный отчёт и новые даты этапов ввода реактора в строй гендиректор проекта озвучит в июле на брифинге. Пока же он заявляет, что начальная фаза операций, которая заключается в запуске дейтерий-дейтериевых реакций для синтеза трития, перенесена на 2035 год. Ранее на этот год были запланированы первые полноценные термоядерные реакции на установке на дейтерий-тритиевом топливе.

Новые сроки не означают, что все научные операции на проекте сдвинуты на десять лет. Эксперименты с малыми токами плазмы начнутся раньше по мере сборки реактора. Вероятно также, что первая плазма начнёт генерироваться раньше 2035 года. В конечном итоге задача ИТЭР — набить как можно больше шишек, чтобы на его примере постройка всех последующих коммерческих реакторов шла как можно глаже. Все страны-участницы проекта, представленные на Совете ИТЭР, с этим безоговорочно согласились.

Реактор ИТЭР не предназначен для генерации электрического тока. Эта задача будет возложена на другой международный проект — DEMO, который подразумевает постройку уже электростанции на термоядерном реакторе типа токамак. В задачи ИТЭР входит доказательство концепции — работы масштабного термоядерного реактора по схеме токамака. В идеале реактор должен выдавать мощность 500 МВт не менее 400 с без перерыва при потреблении 50 МВт непосредственно на нагрев плазмы. Вспомогательные структуры реактора при этом могут дополнительно потреблять 300 МВт, но для опытной установки это мелочи. Выход энергии всё равно будет положительным. Жаль только, что он опять откладывается.

В США начали строить первую в мире АЭС на малом реакторе TerraPower — проект финансирует Билл Гейтс

На днях в штате Вайоминг начались работы по перестройке старой угольной электростанции в АЭС на малом реакторе на расплаве солей. Это первый в мире проект такого рода: малый и модульный реактор, который заменит собой угольную электростанцию. Проект реализует компания TerraPower, главным инвестором которой является Билл Гейтс (Bill Gates). Лицензия на строительство АЭС пока не выдана, но это не помешало начать работы по проекту.

 Источник изображений: TerraPower

Источник изображений: TerraPower

Национальный регулятор США близок в выдаче лицензии на реактор Natrium. В компании TerraPower не стали дожидаться окончательного решения и приступили к работе над инфраструктурой объекта и к некоторым базовым «неядерным» работам. На пике строительства объект обеспечит до 1600 рабочих мест. После ввода АЭС в строй, что ожидается к концу этого или в начале следующего десятилетия, около сотни сотрудников угольной электростанции будут приняты на работу на новом объекте. Всего обслуживание реактора и АЭС потребует около 250 человек персонала.

 Энергетический блок (остров) начнут строить в 2025 году

Энергетический блок (остров) начнут строить в 2025 году

В своём блоге Билл Гейтс пояснил, что реактор на расплаве солей натрия (проект Natrium) намного безопаснее и эффективнее традиционных водных реакторов. Расплав солей может без последствий поглотить любые излишки тепла от распада радиоактивного топлива, тогда как вода в данных условиях привела бы к взрыву пара. В случае аварии расплав солей просто остынет, к тому же, его не нужно перекачивать, он течёт практически сам. Наконец, буферная ёмкость для расплава соли позволяет держать в резерве излишки мощности, а это поможет компенсировать, например, колебания поставок солнечной и ветряной энергии.

Проект в штате Вайоминг подразумевает создание установки мощностью 345 МВтэ (электрической мощности). Буфер будет содержать расплав, достаточный для выработки 500 МВтэ. Температура солевого теплоносителя достигнет 900 °C. Во всём этом есть только одна проблема. Топливо HALEU для реактора Natrium и других перспективных установок приходится закупать в России. К запуску Natrium США надеется уйти от этой зависимости. По крайне мере, TerraPower с партнёрами начала процессы по созданию в США производства топлива для своих и подобных реакторов. О производстве самого сырья HALEU в США в достаточных объёмах пока не сообщается.

Топливо для ядерных реакторов США нового поколения легко превратить в оружие, предупредили учёные

Американская некоммерческая организация «Союз заинтересованных ученых» (UCS) провела анализ топлива HALEU или металлического высокопробного низкообогащённого уранового топлива, которое рассматривается в США в качестве основного для реакторов АЭС нового поколения. Как выяснилось, топливо HALEU легко превращается в оружие — атомные бомбы, эквивалентные по мощности боеприпасам, сброшенным на Хиросиму и Нагасаки. Это должно заставить ещё раз всё взвесить.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Перспективные реакторы в США должны быть значительно меньше современных вплоть до внедрения компактных решений. Это означает, что в качестве топлива должны использоваться радиоактивные материалы с большим процентом обогащения. Сегодня топливо для АЭС обогащается до 5 %. Перспективное топливо HALEU обогащается до 20 % и более. Анализ UCS показал, что для создания атомной бомбы «уровня Хиросимы» достаточно топлива HALEU с обогащением 12 %. Вся необходимая для создания бомбы литература есть в свободном доступе (откуда её также брали аналитики UCS). На изготовление уйдёт от 7 до 10 дней.

Топливо HALEU как-то само собой попало в перечень исключений в руководства и правила по ограничению ядерных вооружений. Сегодня оно не подлежит такому же строгому контролю, как оружейный плутоний или высокообогащённый уран. Между тем, всего-то надо взять в 10–15 раз больше HALEU, чтобы получить ядерный оружейный компонент не хуже, чем в случае использования оружейного. Если будет достаточно линий по переработке HALEU в оружейный компонент, то за неделю вполне можно управиться.

Организация рекомендует пересмотреть правила контроля и информирования надзорных органов в случае краж или иных потерь топлива HALEU. Также рекомендуется пересмотреть проекты перспективных атомных реакторов, чтобы снизить требования к уровню обогащения топлива HALEU ниже 12 %. Сегодня топливо HALEU в США поставляет в основном Россия (по разным оценкам не менее 95 %). В США пытаются за счёт субсидий развернуть производство собственного топлива такого типа. Оно достаточно скоро потребуется, например, для реактора Terra Power, субсидируемого Биллом Гейтсом. Его постройка начнётся в этом месяце и продлится до конца 2030 года. Регулировать обращение опасного топлива необходимо начинать уже сейчас.

США больше не будут покупать уран в России, но есть исключения

В понедельник 13 мая 2024 года президент США Джозеф Байден (Joseph Biden) подписал закон, который запрещает импортировать в США обогащённый уран из России. Сделано это, чтобы ускорить добычу урана на территории США с созданием всех необходимых цепочек поставок. На эти цели из бюджета будет направлено $2,7 млрд — сумма, ранее утверждённая Конгрессом. Россия поставляет в США до 25 % низкообогащённого урана и почти весь высокообогащённый.

 Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Источник изображения: ИИ-генерация Кандинский 3.0/3DNews

Во вчерашнем сообщении Белого дома, который цитирует агентство Интерфакс, сказано следующее: «В понедельник, 13 мая 2024 года, президент подписал (...) "Закон о запрете импорта российского урана", который запрещает импорт необлученного низкообогащенного урана, произведенного в Российской Федерации или российским предприятием».

По данным Министерства торговли США, поставки «Росатома» закрывают до 25 % потребностей страны в этом виде топлива для АЭС. Что касается урана, обогащённого до 20 % и более (высокообогащённого), то альтернатив российскому топливу практически нет. Потребность в топливе HALEU или металлическом высокопробном низкообогащённом урановом топливе пока не очень большая, в отличие от обычного низкообогащённого урана, который регулярно требуется почти сотне реакторов в США на АЭС и в научных учреждениях. Но без топлива HALEU никакие реакторы новых поколений работать не будут. Возможно поэтому высокообогащённый уран выведен из под санкций.

Что касается низкообогащённого урана, то в США с 2020 года остановлена всякая его добыча. В последние месяцы возобновлена работа трёх шахт в Аризоне и Юте. Только стране нужны сотни таких рудников и это проблема. Множество шахт и мест захоронений отходов находятся на землях индейцев. В прошлом они сильно пострадали от последствий, связанных с загрязнением вод и облучением. Поэтому сегодня общественность настроена крайне насторожено к попыткам властей и бизнеса возобновить добычу.

Сторонники ядерной энергетики уверены, что современные технологии помогут создать защищённые и безопасные техпроцессы по разработке урановых шахт, а законодатели на всех уровнях работают, чтобы процесс, наконец-то, пошёл. В частности, разрешена работа рудника, находящегося в районе национального мемориального парка недалеко от Большого Каньона. Местные власти пытаются добиться разрешения открыть там множество новых разработок, хотя сотни старых шахт ещё не очищены от радиации и загрязнений.

«Будущее чистой энергетики нашей страны не будет зависеть от российского импорта, — заявила министр энергетики Дженнифер Гранхолм (Jennifer Granholm). — Мы инвестируем в создание безопасной цепочки поставок ядерного топлива здесь, в Соединённых Штатах».

«Росатом» считает закон о запрете импорта российского обогащённого урана «дискриминационным и нерыночным», как сообщило в своём телеграмм-канале РИА Новости со ссылкой на госкорпорацию. По факту США продолжат покупать у России урановое топливо. По крайней мере, для перспективных реакторов. Но будут делать всё возможное, чтобы рано или поздно уйти от такой зависимости.

Корейский термоядерный реактор на рекордные 48 секунд зажёг плазму, которая в семь раз горячее ядра Солнца

Южнокорейский институт термоядерной энергетики (KFE) сообщил о достижении нового рекорда по времени удержания плазмы реактором KSTAR. К декабрю 2023 года реактор подвергся частичной модернизации, что позволило поднять планку его возможностей. Первые три месяца его работы в новой конфигурации позволили превзойти предыдущий рекорд удержания плазмы с температурой 100 млн °C и приблизиться к новому целевому показателю.

 Источник изображения: Korea Institute of Fusion Energy (KFE)

Источник изображения: Korea Institute of Fusion Energy (KFE)

В ходе предыдущей серии экспериментов термоядерный реактор KSTAR смог удерживать ионную плазму с температурой 100 млн °C в течение 30 секунд. Это в семь раз жарче, чем в ядре нашего Солнца. В звёздах термоядерную реакцию синтеза в основном запускает не температура, а высочайшая гравитация (и квантовая неопределённость). На Земле мы не может создать подобного гравитационного сжатия в реакторах, поэтому приходится компенсировать эту нехватку запредельными температурами.

Важно подчеркнуть, что корейцы практически всегда говорят о нагреве ионной плазмы — о нагреве атомов водорода или его изотопов, тогда как китайские учёные сообщают о достижении рекордного времени удержания обычно электронной плазмы, которая в рабочей зоне может быть в два раза горячее ионной. Для термоядерной реакции ключевым является нагрев атомов, а не электронов. Поэтому «корейские 100 млн» — это правильные 100 млн, которые, в итоге, определят работоспособность будущих коммерческих реакторов.

По плану в этом году модернизированный реактор KSTAR должен удержать стабильную ионную плазму с температурой 100 млн °C в течение 50 секунд. В ходе первого пробного запуска плазма оставалась стабильной 48 с. Также учёные смогли 100 секунд удерживать плазму в «высокоплотном режиме», что также поможет выйти со временем на коммерческие параметры. Повысить длительность удержания плазмы на максимальной температуре помогла модернизация реактора.

В частности, углеродные плитки температурной защиты дивертов на дне рабочей камеры были заменены на вольфрамовые. Сообщается, что благодаря этому плитки диверторов нагрелись всего до 25 % от прежнего уровня, что позволит ещё дольше удерживать непрерывный цикл плазмы. Так что впереди новые рекорды и планы зажечь плазму на 300 секунд в 2026 году.

В Китае испытали ранний прототип ядерного ракетного двигателя для полётов на Марс

В рецензируемом журнале Scientia Sinica Technology Китайской академии наук вышла статья, в которой сообщается об успешном испытании раннего прототипа ядерного ракетного двигателя мощностью 1,5 МВт. Двигательная установка размерами с транспортный контейнер испытана без ядерного топлива с подачей тепла от внешнего источника. Целью испытаний была проверка системы теплоотвода от реактора на основе лития. Готовятся испытания с ядерным топливом.

 Источник изображений: Chinese Academy of Sciences

Источник изображений: Chinese Academy of Sciences

Очевидно, что ракету для полёта на Марс необходимо будет собирать на орбите Земли или на орбите Луны. В космос она будет подниматься по частям, что также касается ядерного реактора. При этом вопрос безопасности будет наиважнейшим, чтобы в случае аварии это не закончилось засорением земной поверхности радиоактивными материалами или чем похуже.

Создаваемый в Китае ядерный ракетный двигатель в данном исполнении (не факт, что проект будет воплощён в текущей версии) будет весить менее восьми тонн, и окажется достаточно компактным, чтобы поместиться под стандартный обтекатель штатных ракет-носителей. В космосе реактор будет развёрнут и дооснащён радиаторами охлаждения и необходимой обвязкой. В развёрнутом виде, если верить статье, он будет высотой с 20-этажный дом.

Система радиаторов из сплава на основе вольфрама будет одновременно служить экраном от радиации, возникающей в реакторе во время распада ядерного топлива. Заявлено, что температура теплоносителя в «ракетном» реакторе будет достигать 1276 °С что намного выше, чем в обычных реакторах. За счёт высокой температуры в газ из жидкой фазы будут превращаться инертные газы гелий и ксенон, которые будут вращать турбину генератора и обеспечивать высокую мощность вкупе с достаточно компактными размерами установки.

Утверждается, что китайская разработка значительно компактнее конкурирующего проекта NASA и в семь раз мощнее его. Более того, китайские учёные прогнозируют, что полёт на Марс на ракете с ядерным двигателем займёт около трёх месяцев, тогда как полёт на корабле типа Starship Илона Маска растянется на семь месяцев. Иными словами, без ракет на ядерных двигателях мечтать о регулярных полётах на Марс и обратно — это утопия, считают в Китае.

 Ядерный реактор с литиевым охлаждением и системой радиаторов-экранов высотой с 20-этажный дом

Ядерный реактор с литиевым охлаждением и системой радиаторов-экранов высотой с 20-этажный дом

Вопрос о создаваемой китайским ядерным двигателем тяге не прояснён. Это могут быть как электрические двигатели, которые разгоняют частицы реактивной массы (нейтральных газов или воды), либо двигатели на осколках деления, когда в качестве реактивной массы используются сами продукты распада. Исходя из контекста новости, речь, скорее всего, о первом случае — об электроракетных двигателях, но это не точно.

Охлаждать сверхразогретый двигатель планируется литием, как наиболее подходящим и теплоёмким для заявленных условий теплоносителем. Система отвода тепла с его помощью как раз прошла испытание на прототипе. Китайские учёные осторожны в прогнозах о создании рабочего двигателя. На это уйдут годы экспериментов и научной работы. Но к середине 30-х годов они надеются справиться. Как раз недавно глава «Роскосмоса» Юрий Борисов обмолвился, что Россия и Китай могут отправить в 2033–2035 годах на Луну ядерный реактор для лунной базы постоянного присутствия. Но это уже другая история.

Первую «натриевую» АЭС Билла Гейтса начнут строить в июне даже без разрешения властей

Руководство основанной Биллом Гейтсом (Bill Gates) компании TerraPower сообщило, что перспективную АЭС на расплаве солей натрия начнут строить в июне даже в том случае, если разрешение от регулятора не успеют получить. Станция будет строиться рядом с угольной электростанцией Naughton вблизи города Кеммерер в штате Вайоминг, США. Ещё до постройки реактора необходимы значительные инфраструктурные изменения на площадке, а технически лицензия на такие работы не нужна.

 Источник изображения: TerraPower

Источник изображения: TerraPower

Исполнительный директор TerraPower Крис Левеск (Chris Levesque), сообщил Financial Times, что компания в этом месяце подаст заявку на получение разрешения регулирующих органов США на строительство своего реактора, который охлаждается не водой, а расплавом солей натрия. Подача заявки ожидалась в середине 2023 года, но затем была перенесена, как и сдвинут на два года график ввода объекта в строй. Для TerraPower и других разработчиков инновационных атомных реакторов барьером стало то, что основным поставщиком HALEU-топлива для них была и остаётся Россия.

И всё же, лёд определённо тронулся. По крайней мере, для АЭС TerraPower. Эта компания уже подвергается критике со стороны конкурентов за слишком большую поддержку со стороны федерального бюджета. Так, из бюджета США на строительство объекта будет выделено минимум $2 млрд. Но разве могло быть по-другому, если один из твоих организаторов Билл Гейтс, а партнёр проекта, который будет его эксплуатировать, Уоррен Баффет?

Реактор TerraPower в какой-то мере можно считать малым модульным реактором. Для США важно в этой сфере догнать Россию и Китай, где уже есть работающие объекты, подпадающие под эту категорию. Впереди делёж рынка АЭС в Африке и не только, поэтому проекты перспективных малых реакторов будут конкурировать наиболее остро. В таких обстоятельствах поддержка федеральных властей должна только приветствоваться.

Мощность реактора TerraPower составит 345 МВтэ. Соль натрия будет разогреваться почти до 900 °C, что даст возможность лучше использовать тепло, чем при охлаждении водой. Такой высокий нагрев, кстати, позволит создать буферную зону ёмкостью 500 МВтэ на случай экстренного производства энергии. К тому же, соль не способна создать достаточно энергии для взрыва в случае аварии, что делает солевые реакторы намного безопаснее, а экономия на средствах обеспечения безопасности сделает строительство подобных АЭС в два раза дешевле, чем АЭС с водяным охлаждением.

Если заявленные сроки будут соблюдены, то ввод АЭС на расплаве солей натрия в строй состоится в 2030 году или чуть позже. Это на два года позже первоначальных планов, но такие проекты могут задерживаться и на дольше.

К сожалению, компания не озвучила ожидаемую стоимость электричества, вырабатываемого «натриевым» реактором. Другой перспективный проект малого ядерного реактора компании NuScale в ноябре прошлого года был внезапно свёрнут в США по причине повышения проектной стоимости производимой им энергии на 50 %. Поэтому проекты NuScale будут продвигать в Эстонии, Польше, Румынии, Болгарии и на Украине. Но это уже другая история.

Британская компания создаст лазерную систему контроля плазмы для термоядерных реакторов будущего

Британская компания Tokamak Energy заявила, что разрабатывает новую технологию лазерных измерений, которая имеет решающее значение для контроля экстремальных условий внутри реакторов будущих термоядерных электростанций и доставки чистой энергии в сеть. Для этого плазменный жгут должен оставаться стабильным, что при рабочих температурах свыше 100 млн градусов так просто не проверить.

 Источник изображений: Tokamak Energy

Источник изображений: Tokamak Energy

Контролировать качество плазмы в реакторе — её плотность и температуру — предложено с помощью новой лазерной системы дисперсионного интерферометра. Сейчас она работает на испытательном стенде в штаб-квартире Tokamak Energy в Оксфорде, прежде чем позже в этом году будет установлена на прототипе сферического термоядерного реактора компании — установке ST40.

«Измерение плотности плазмы является ключом к нашему пониманию и контролю термоядерного топлива и эффективной работе будущих электростанций, — сказал физик плазмы сотрудник Tokamak Energy Тадас Пираджиус (Tadas Pyragius). — Лазерный луч, пропускаемый через плазму, взаимодействует с электронами и сообщает нам плотность топлива, что важно для поддержания условий термоядерного синтеза и безопасной подачи энергии в сеть».

«Экстремальные условия, создаваемые процессом термоядерного синтеза, означают, что нам необходимо усовершенствовать технологию лазерной диагностики уже сейчас, чтобы продвигаться вперёд в выполнении нашей миссии по обеспечению чистой, безопасной и доступной термоядерной энергии в 2030-х годах».

В прошлом году компания Tokamak Energy успешно ввела в эксплуатацию на установке ST40 лазерную диагностику на эффекте томсоновского рассеяния для получения подробных показаний температуры и плотности плазмы в определенных местах. В дополнение к этому новая система дисперсионного интерферометра будет определять среднюю плотность по всему плазменному жгуту. Компания утверждает, что это будет простой, надёжный и безотказный способ контроля качества плазмы в реакторе, который обязательно найдёт применение в будущих электростанциях.

 Визуализация нового проекта.

Визуализация проекта ST80-HTS

Добавим, компания Tokamak Energy объявила в феврале 2022 года, что к 2026 году построит новый прототип сферического токамака — ST80-HTS, который будет располагаться в кампусе Управления по атомной энергии Великобритании в Калхэме, недалеко от Оксфорда. Следующим шагом станет создание экспериментальной термоядерной установки ST-E1, которая должна будет в начале 30-х годов продемонстрировать способность вырабатывать до 200 МВт чистой электроэнергии. За этим последует запуск коммерческих термоядерных установок мощностью 500 МВт «в середине 2030-х годов».

Технология запуска термоядерной реакции с помощью кварцевого снаряда прошла испытания на запредельном давлении

Британская компания First Light Fusion стала первым коммерческим клиентом, получившим допуск для экспериментов на установке Z Machine в Сандийских национальных лабораториях (SNL). Компания First Light Fusion разработала уникальный «ускоритель» давления для запуска термоядерных реакций и эксперименты на американской установке позволили испытать платформу на недостижимых ранее уровнях давления.

 Источник изображения: Sandia

Источник изображения: Sandia

Принцип запуска термоядерной реакции на платформе First Light Fusion базируется на создании таких условий вокруг топливной мишени, при которых более лёгкие атомы преодолевают кулоновское отталкивание и сливаются с образованием более тяжёлых, отчего выделяется много энергии. В токамаках, например, для этого создаётся температура свыше 100 млн °C. Но можно пойти другим путём, и в частности обойтись без магнитного удержания. Для этого придумано инерционное удержание, когда вокруг топлива создаётся запредельное давление, к примеру, тем или иным ударным воздействием.

Установка Z Machine (Z-Pinch) в Сандийских лабораториях считается самой мощной импульсной электрической установкой такого типа в мире. В Европе тоже есть подобное устройство — Machine 3, но оно значительно слабее по характеристикам. Британцам нужно было выйти на более высокий уровень, чтобы подтвердить характеристики фирменного «ускорителя» давления. При пиковой мощности в 80 трлн ватт американская установка с помощью электромагнита запускает снаряды с более высокими скоростями, чем любая другая установка в мире.

Компания First Light Fusion получила или купила право на три выстрела. Всего Z Machine в Сандийских лабораториях делает около 200 выстрелов в год. Успешный первый эксперимент First Light установил новый рекорд давления для кварца на сандийской установке, повысив его с 1,5 терапаскаля (ТПа) до 1,85 ТПа, сохранив при этом образцы и обеспечив условия для проведения необходимых измерений. Испытания подтвердили верность используемых теоретических моделей и конструкции прототипа системы поджига.

Интересно, что около года назад компания First Light Fusion подписала с Управлением по атомной энергии Великобритании (UKAEA) соглашение о проектировании и строительстве объекта для размещения нового демонстратора Machine 4. Начало строительства было намечено на 2024 год на территории кампуса Кулхэм в Оксфордшире. Начало эксплуатации установки ожидается в 2027 году. Вряд ли получение допуска к экспериментам на Z Machine в США отменило предыдущий проект. Обуздание термоядерной энергии — это дело муторное и долгое. К этому принято двигаться, выверяя каждый свой шаг.

Добавим, установка Machine 4 компании First Light Fusion будет передавать топливной мишени энергию за счёт удара разогнанного до скорости 60 км/с кварцевого снаряда. При попадании в мишень уникальный «ускоритель скорости» компании разгонит продукты удара до 200 км/с и сфокусирует их на топливной мишени в виде обжимающих мишень сферических волн. Комбинация кинетического и лазерного удара обещает значительно снизить энергопотребление термоядерной установки. Впрочем, Machine 4 тоже станет проверкой концепции, от которой до настоящей термоядерной установки будет очень и очень далеко.

В MIT открыли путь к дешёвой термоядерной энергии, совершив прорыв в производстве сверхпроводящих магнитов

В серии из шести научных статей в мартовском выпуске журнала IEEE Xplore учёные Массачусетского технологического института рассказали о разработке и принципах работы новых электромагнитов на основе высокотемпературной сверхпроводимости. Эта разработка названа крупнейшим за последние 30 лет прорывом в области создания коммерчески выгодных термоядерных реакторов.

 Источник изображений: MIT

Источник изображений: MIT

Первые испытания масштабного прототипа высокотемпературного сверхпроводящего электромагнита состоялись 5 сентября 2021 года в лабораториях Центра науки о плазме и термоядерного синтеза Массачусетского технологического института (PSFC). Изделие массой около 9 тонн создало электромагнитное поле силой 20 тесла. Конструкция электромагнита была создана с нуля с использованием новых принципов и масштабные испытания должны были подтвердить правильность расчётов, моделей и самой идеи, которая на тот момент была крайне новаторской.

До появления этой разработки существующие на тот момент технологии и электромагниты уже могли создавать поля необходимой напряжённости, чтобы удерживать нагретую до 100 млн °C плазму в изоляции от стенок рабочей камеры. Однако эффективность работы подобных систем была далека от требований рентабельности. Учёные из MIT с коллегами из компании Commonwealth Fusion Systems смогли создать намного более компактные и дешёвые в производстве и поддержке электромагниты, которые позволили заявить об их впечатляющей энергоэффективности.

«За одну ночь это практически изменило стоимость ватта термоядерного реактора почти в 40 раз», как позже заявили участники эксперимента. «Теперь у термоядерного синтеза есть шанс, — утверждают учёные. — Наиболее широко используемая конструкция для экспериментальных термоядерных устройств, получила шанс стать экономичной, потому что у вас появились скачкообразные изменения в этой области». Это способность значительно уменьшить размер и стоимость объектов, которые сделали бы возможным термоядерный синтез.

Один из секретов успеха новой конструкции электромагнитов стал отказ от изоляции проводов в обмотках катушек. В это трудно поверить, но учёные использовали в обмотке голые провода без опасений пробоев и коротких замыканий. Эффект сверхпроводимости создал в обмотках такие условия, что замыканием между витками можно было пренебречь. Эксперимент подтвердил правильность выбора. Катушка электромагнита осталась надёжной и стала гораздо меньше в размерах, а также по стоимости и с точки зрения общего размера реактора.

В качестве обмотки был выбран высокотемпературный сверхпроводник REBCO — это редкоземельный оксид бария-меди, который позволяет достигать сверхпроводящего эффекта при температуре 20 К — это на 16 К выше обычной сверхпроводимости, что меняет правила игры несмотря на кажущуюся небольшую разницу в глубине охлаждения. На один электромагнит ушло 300 км полосы REBCO. Только представьте, сколько экономии пространства в катушке стало возможным благодаря отказу от изоляции этого провода. Кстати, в MIT не назвали поставщика этого провода, поэтому им вполне может оказаться китайский производитель Shanghai Superconductor, например.

Позже во время испытаний магнита на критических режимах были проверены теоретические модели его поведения вплоть до частичного разрушения (расплавления обмотки). Это было важно для улучшения конструкции и отработки эксплуатационных характеристик электромагнитов для использования в будущих термоядерных реакторах. Выход сегодня статей по разработке стал возможным после получения патентов на конструкцию электромагнитов и принципы их работы. Исследование приближает тот момент, когда на Земле может зажечься рукотворное Солнце, а энергия в электросетях станет бесконечной и практически чистой.

Британцы ускорили изготовление рабочих камер для малых ядерных реакторов с года до суток

Британская компания Sheffield Forgemasters рассказала о технологии ускоренного производства рабочих камер для малых модульных ядерных реакторов. Сегодня на каждое такое изделие необходимо затратить не менее одного года работы. Предложенная Sheffield технология позволяет выполнить работу всего за одни сутки, что обещает сделать выпуск реакторов относительно простым и недорогим мероприятием.

 Источник изображения: Sheffield Forgemasters

Источник изображения: Sheffield Forgemasters

В ближайшие два десятилетия по всему миру и, в том числе, в Великобритании должны быть созданы множество малых ядерных реакторов. Основное преимущество таких решений — это практически полное изготовление рабочих камер и сопутствующего оборудования на заводе, а не на площадке, как это происходит с большими реакторами. Подобный подход делает этап производства реакторов дешевле и быстрее. Также остаётся возможность усовершенствовать технологические процессы на производстве и продолжить снижение цен на изделия.

На примере макета в натуральную величину диаметром 3 м со стенками толщиной 200 мм компания Sheffield Forgemasters показала, как можно сварить рабочую камеру реактора всего за сутки с минимальным контролем качества швов и с полным их соответствием к требованиям в отрасли реакторов.

Компания использовала так называемую локальную электронно-лучевую сварку (LEBW), когда в зоне работы мощного электронного луча создаётся локальное разрежение воздуха. Создание условно вакуума в зоне сварки — это одно из требований технологического процесса для наиболее полного проникновения металла из свариваемых частей один в другой. При использовании традиционных методов эти работы могут занять более года, но компания Sheffield сократила этот процесс до одних суток, что может значительно ускорить внедрение малых модульных реакторов по всей Великобритании и за её пределами.


window-new
Soft
Hard
Тренды 🔥
Дешёвые сканеры штрихкодов помогли в кратчайшие сроки восстановить пострадавшие от CrowdStrike компьютеры 3 ч.
Новая статья: Flintlock: The Siege of Dawn — хорошие идеи в неудачной обёртке. Рецензия 3 ч.
Анонсирован китайский ролевой детектив Kill the Shadow, напоминающий смесь Disco Elysium и The Last Night 4 ч.
Соцсеть X начала без уведомления использовать данные пользователей для обучения Grok 6 ч.
Mirthwood получила новый трейлер и дату выхода — это ролевой симулятор жизни в фэнтезийном мире, вдохновлённый Fable, Stardew Valley и The Sims 6 ч.
Журналисты выяснили, какие игры пострадают от забастовки актёров озвучки — GTA VI в безопасности 8 ч.
Разработчики Gran Turismo 7 извинились за баг, который запускает машины в космос 9 ч.
Хинштейн пояснил, почему в России замедлится YouTube 9 ч.
Windows 11 сможет добавлять синхронизированный с ПК Android-смартфон в «Проводник» 9 ч.
Заказы на ИИ и мейнфреймы z16 помогли IBM увеличить выручку и прибыль 10 ч.