Опрос
|
реклама
Быстрый переход
Мозг человека способен испускать запутанные фотоны, доказали учёные
09.08.2024 [13:23],
Геннадий Детинич
Учёные давно подозревают, что с высшей умственной деятельностью что-то нечисто, что она может опираться не только на обычную биохимию, но также на квантовые явления. Интуиция, спонтанность принятия решений и другие малопонятные умственные процессы оставляют простор для спекуляций на тему квантовой природы человеческого сознания. Новая работа китайских учёных показывает, что нервная ткань человеческого мозга совместима с квантовыми явлениями. Исследователи из Шанхайского университета в журнале Physical Review E опубликовали статью, в которой изучили возможности протекания квантовых химических реакций в нервных клетках человеческого мозга. Подчеркнём, учёные не открыли и не зафиксировали квантовых процессов в мозге. Они лишь определили физическую осуществимость квантовых явлений в живой нервной ткани. Как поясняют учёные: «Сознание в мозге зависит от синхронизированной активности миллионов нейронов, но механизм, ответственный за организацию такой синхронизации, остаётся неуловимым. В этом исследовании мы используем квантовую электродинамику резонатора для изучения генерации запутанных двойных фотонов посредством каскадного излучения в спектре колебаний С-Н-связей в хвостах липидных молекул». Углерод-водородные связи, о которых говорят исследователи, находятся в изолирующей оболочке аксонов (в «хвостах» нейронов, передающих нервный импульс другим нейронам). Эта миелиновая оболочка может быть представлена в виде условного полого цилиндра. Цилиндр может служить резонатором, который способен усиливать рождённые в нейронах инфракрасные фотоны. Этим учёные обосновывают возможность перехода от квантового микроуровня (от молекул и атомов) до макроуровня живых клеток и клеточных процессов (биохимии). Импровизированные резонаторы в виде миелиновых оболочек способны не только усиливать, но также запутывать пары фотонов — придавать им одну и туже волновую функцию. Затем плазма и протекающие в мозге биохимические реакции разносят связанные фотоны по всему мозгу, что может создавать механизм глобальной синхронизации мыслительных процессов. Это ещё не открытие этого неуловимого механизма, но вполне объясняющая его работу концепция. Разгадав тайну сознания, человек шагнёт на путь к его бессмертию. Пугающая и бесконечно привлекательная перспектива. Вполне в духе квантовых явлений. В поисках идеального поглотителя физики создали самый сложный в мире лабиринт
06.07.2024 [10:38],
Геннадий Детинич
Одна из экзотических форм материи — это квазикристаллы. Они сохраняют упорядоченную структуру, но она неидеальная и не является своей точной копией. Перспективным направлением для применения квазикристаллов считаются абсорбирующие вещества и синтез (сворачиваемость) белков. Команда физиков из Великобритании и Швейцарии взялась кардинально решить вопрос с проектированием таких структур, которые представляют собой также самые сложные в мире лабиринты. Этой задаче, очевидно, намного больше лет, чем нам известно. По крайней мере, частный случай квазикристаллов был поднят учёными около 300 лет назад в задаче о ходе коня. Эта шахматная фигура должна была посетить каждое поле доски без повтора и вернуться в исходное положение. В общем случае подобное поведение называется гамильтоновым циклом (или путём, если не нужно возвращаться в точку старта). Если смотреть на проблему ещё шире, то речь идёт о создании фракталов — геометрических узоров на основе повторяющихся мелких элементов, подобных общей структуре. В своём исследовании учёные использовали непериодическую мозаику (плитку) Амманна-Бенкера. Не менее известна мозаика Пенроуза. Этому графическому феномену уделил место и время современный американский писатель-фантаст Нил Стивенсон, используя его в произведении «Анафем», которое просто обязан прочесть каждый, кто интересуется естествознанием. Учёные использовали идею для моделирования циклов, в ходе которых каждый атом в кристаллической решётке квазикристалла мог быть посещён только один раз, что соединяет все атомы от начала до конца в одну и никогда не пересекающуюся линию. Более того, подобную структуру можно бесконечно масштабировать подобно фракталам. Целью проделанной работы не было создание головоломок-лабиринтов для развлечения скучающих граждан. Во-первых, новая модель может помочь с оптимизацией логистических задач. Также с её помощью может решаться проблема получения новых пространственных форм (сворачивания) белков. Наконец, поглощение углекислого газа или других молекул будет намного эффективнее, если использовать подобные лабиринтообразные кристаллические структуры. Фрактальность в таком случае умножит эффект за счёт потенциальной возможности дробления на более мелкие части. Тёмную материю можно обнаружить в лаборатории на Земле — в этом помогут переохлаждённые квантовые детекторы
04.07.2024 [15:09],
Геннадий Детинич
Группа британских учёных обосновала возможность обнаружения частиц тёмной материи на Земле в лабораторных условиях. Для этого они рассмотрели модель квантового детектора и усилителя, охлаждённых жидким гелием-3. До сих пор частицы тёмной материи искали в диапазоне от 5 до 1000 масс атомов водорода. Британская установка поможет обнаружить кандидатов в тёмную материю в диапазоне от 0,01 до нескольких масс атома водорода. Искать невидимую и не обнаруживаемую в электромагнитном спектре частицу тёмной материи можно по её взаимодействию с обычной материей. Но это будет крайне слабое взаимодействие, которое, как показывает моделирование, доступно для детектирования датчиками с квантовыми состояниями. Чрезвычайная чувствительность установки будет достигнута за счёт трёх факторов: охлаждения гелием-3 в сверхтекучем состоянии, самого датчика и квантового усилителя сигнала. Расчёты показывают, что установка сможет обнаружить частицы-кандидаты в тёмную материю вплоть до 0,01 масс атома водорода. Более того, предложенная схема эксперимента может позволить найти ещё более лёгкого кандидата в частицы тёмной материи — аксион. Аксионы должны быть в миллиард раз легче атомов водорода и поэтому их поиск ведётся по иной программе. Предполагается, что в сильном электромагнитном поле аксионы распадаются на фотоны, которые можно детектировать привычными средствами и затем усиливать этот сигнал. С учётом теоретической плотности расположения тёмной материи во Вселенной и вокруг нас, через наши тела ежесекундно пролетают триллионы частиц этой невидимой субстанции. Не нужно лететь в глубины Вселенной для поиска тёмной материи. Просто подождём, и она сама попадёт в сети учёных. С «сетями» пока проблема. Возможно, в этом поможет создаваемая в Великобритании установка с охлаждёнными квантовыми детекторами. В ЦЕРНе научились имитировать джеты сверхмассивных чёрных дыр — получились как настоящие
15.06.2024 [21:29],
Геннадий Детинич
Джеты — струи плазмы — сверхмассивных чёрных дыр хорошо различимы во многих спектрах от гамма-диапазона до видимого. Но это не означает, что учёные в полной мере представляют микрофизику струй. Что на самом деле происходит в облаке летящей с околосветовой скоростью плазмы — это всё ещё загадка, ответ на которую пытаются дать теория и моделирование. Попытку воспроизвести плазменную струю чёрной дыры на Земле совершили физики ЦЕРНа. И у них получилось. Для эксперимента учёные воспользовались установкой HiRadMat для бомбардировки материалов высокоэнергетическими пучками протонов. С её помощью обычно исследуются перспективные материалы или компоненты ускорителя. На этот раз учёные были намерены получить струю плазмы в виде электрон-позитронных пар. Считается, что именно такая плазма преобладает в джетах сверхмассивных чёрных дыр. Для этого пучок протонов в количестве 300 млрд частиц с синхротрона направили на мишени из графита и тантала. Удар по мишеням запустил каскад взаимодействий частиц, в результате которого возникло достаточное количество электрон-позитронных пар для поддержания стабильного состояния плазмы. Энергии протонов было достаточно, чтобы из ядер углерода в графите были высвобождены субатомные частицы пионы. Пионы в свою очередь быстро распадались на гамма-лучи высокой энергии. Затем эти гамма-лучи взаимодействовали с электрическим полем тантала, которое производило пары электронов и позитронов. В ходе тестового запуска было произведено 10 трлн электрон-позитронных пар — этого более чем достаточно, чтобы искусственно созданное облако частиц начало вести себя как настоящая плазма. «Основная идея этих экспериментов заключается в воспроизведении в лаборатории микрофизики астрофизических явлений, таких как струи из чёрных дыр и нейтронных звезд, — рассказали исследователи. — То, что мы знаем об этих явлениях, получено почти исключительно из астрономических наблюдений и компьютерного моделирования, но телескопы не могут по-настоящему исследовать микрофизику, а моделирование требует приближений. Лабораторные эксперименты, подобные этим, являются связующим звеном между этими двумя подходами». На роль тёмной материи предложены сферические аналоги космических струн — топологических дефектов пространства-времени
12.06.2024 [20:43],
Геннадий Детинич
Тёмная материя — гипотетическая частица, обладающая только гравитационным взаимодействием, — призвана заполнить пробелы в наблюдениях Вселенной, когда звёзды и материя в целом ведут себя неправильно с позиций измеряемых масс: ускоряются на периферии галактик и преломляют свет без видимого присутствия вещества. Альтернатив у тёмной материи тоже немало, но новая гипотеза может удивить — она отвязывает массу от гравитации, объясняя всё дефектами в пространстве-времени. Некоторое время назад в престижном астрономическом журнале Monthly Notices of the Royal Astronomical Society вышла работа доктора Ричарда Лью (Richard Lieu) из Университета Алабамы в Хантсвилле (США), в которой он предложил достаточно свежую гипотезу наблюдаемых несоответствий. Учёный представил не до конца проработанный математический аппарат, который, как он пояснил, выдвигает на роль тёмной материи топологические дефекты или складки пространства-времени, возникшие из-за неоднородностей Вселенной во время фазового перехода топологии пространства-времени при разделении фундаментальных взаимодействий. В частности, на этом этапе могли образоваться такие одномерные линейные топологические дефекты пространства-времени, которые известны как космические струны, которые достаточно давно и обоснованно поддержаны серьёзными математическими выкладками. Американский физик предположил существование других 2D-структур-дефектов — в виде сфер с нулевой гравитацией. «Топологические дефекты представляют собой очень компактные области пространства с очень высокой плотностью вещества, обычно в виде линейных структур, известных как космические струны, хотя также возможны 2D-структуры, такие как сферические оболочки, — пояснил автор работы. — Оболочки в моей статье состоят из тонкого внутреннего слоя с положительной массой и тонкого внешнего слоя с отрицательной массой; общая масса обоих слоев — это всё, что можно оценить с точки зрения массы — в точности равна нулю, но когда звезда лежит на этой оболочке, она испытывает большую гравитационную силу, притягивающую её к центру оболочки». Учёный представляет сферические топологические дефекты как вложенные друг в друга сферы. Они не имеют массы, но гравитационно воздействуют как на видимую материю, так и на свет. Не исключено, что предложенная концепция не может полностью исключить присутствие тёмной материи, но она значительно умаляет её роль. Мы наблюдаем во Вселенной круги и арки протяжённостью в тысячи и сотни тысяч световых лет, поясняет автор, это может служить зримым доказательством присутствия в пространстве топологических дефектов сферической формы. В то же время учёный не сделал попытки объяснить в своей статье, как формируются складки пространства-времени сферической формы. Он также не предложил способ попытаться обнаружить их во Вселенной. Всё, что на сегодня есть — это сырой математический аппарат, который можно критиковать и развивать, что, на самом деле, уже немало. Учёные придумали, как заставить левитировать воду при 130 °C — это пригодится для СЖО
08.06.2024 [11:31],
Геннадий Детинич
Физики из Вирджинского политехнического института и университета штата (Virginia Polytechnic Institute and State University) открыли новый способ левитации воды, детально изученный ещё около 300 лет назад Иоганном Готлобом Лейденфростом. Предложенное решение резко снижает температуру, при которых капельки воды в жидкости начинают летать над охлаждаемой поверхностью. Открытие способно повысить эффективность теплоотвода в системах водяного охлаждения, например, в атомных реакторах. Так называемый эффект Лейденфроста заключается в том, что прослойка пара между каплей жидкости и перегретой поверхностью служит изолятором для тепла, что также заставляет каплю летать над поверхностью. В критических случаях это может приводить к взрывам пара, что недопустимо в случае эксплуатации ядерных реакторов и, в принципе, в целом в сфере охлаждения (сюрпризы при эксплуатации оборудования никому не нужны). Исследователи из Вирджинии поставили перед собой задачу создать более мягкие условия для передачи тепла от охлаждаемой поверхности жидкости, чтобы снизить риск взрывного парообразования, который растёт по мере нагрева среды. «Мы полагали, что микропилляры изменят поведение этого хорошо известного явления [эффект Лейденфроста], но наши результаты превзошли даже наше собственное воображение, — рассказал инженер-механик Цзинтао Ченг (Jingtao Cheng) из Вирджинского политехнического института и университета штата. — Наблюдаемые взаимодействия пузырьков [пара] и капель являются большим открытием в области теплопередачи при кипении». Предложенная учёными охлаждаемая поверхность состоит из сотен крошечных столбиков высотой около 0,08 мм. Они расположены в виде сетки с шагом ячейки около 0,12 мм. При размещении на такой поверхности капля воды покрывает около 100 столбиков. Вдавленные внутрь капли, эти столбики заставляют её быстрее закипать. В результате, эффект левитации проявляется значительно быстрее и при температуре всего 130 °C вместо примерно 230 °C для обычных плоских поверхностей. Открытие наверняка можно использовать в массе областей, где используется жидкостное охлаждение, включая область компьютеров и особенно суперкомпьютеров, размещать которые всё чаще и чаще начинают на атомных электростанциях — настолько быстро растёт их потребление. Загадку тёмной материи учёные объяснили рождением экзотических чёрных дыр
06.06.2024 [10:17],
Геннадий Детинич
Группа физиков из Массачусетского технологического института подвела основу под теорию идентичности тёмной материи и первичных чёрных дыр. Сделано это оригинальным образом — за счёт внедрения в процесс новых элементов — экстремально маленьких экзотических чёрных дыр с цветовым зарядом. Исследователи доказали, что влияние этих экзотических дыр на первичные чёрные дыры было достаточным для последующего обнаружения. Осталось найти эти следы. Полвека назад физик Стивен Хокинг (Stephen Hawking) предположил, что тёмная материя — это проявление влияния рассеянных по Вселенной первичных чёрных дыр — объектов «размером с атом и массой астероида». Они невидимы, но их гравитация искажает пространство-время и притягивает к себе обычное вещество, порождая в процессе звёзды, галактики и всё-всё-всё. Тем самым вместо поиска экзотического тёмного вещества (тёмной материи), нам следовало бы уделить всё внимание поискам первичных чёрных дыр. Предполагается, что первичные чёрные дыры образовались через одну квинтиллионную долю секунды (10-18) после Большого взрыва. Они коллапсировали из сверхплотного в те мгновения вещества и затем рассеялись во Вселенной. Как теперь установили физики из MIT, за доли мгновений до зарождения первичных чёрных дыр и отчасти одновременно с их формированием родились ещё более экзотические и микроскопические чёрные дыры «размером с протон и массой носорога». Эти экзотические дыры испарились также быстро после своего рождения, но они могли воздействовать на образование первичных чёрных дыр и этот след, теоретически, можно будет обнаружить, доказали учёные. Поскольку микроскопические чёрные дыры могли образоваться лишь из кварк-глюонной плазмы, то они приобрели бы свойственный этим субэлементарным частицам экзотический цветовой заряд. Именно влияние этого заряда, который не мог появиться у обычных чёрных дыр даже первичных, поскольку в процессе «сборки» обычные чёрные дыры приобрели бы нейтральный заряд, должно было оставить память о появлении ещё более экзотических чёрных дыр сразу после Большого взрыва. Обнаружение этих следов, существование которых физики доказали лишь теоретически, поможет доказать происхождение тёмной материи, как следствие влияния на мир первичных чёрных дыр. Фактически, учёные заменили одну экзотику другой. Осталось только определить, какая из версий соответствует реальному положению дел. «Несмотря на то, что этих короткоживущих экзотических объектов сегодня поблизости нет, они могли повлиять на космическую историю способами, которые могут проявляться в малозаметных сигналах сегодня, — пояснил Дэвид Кайзер (David Kaiser), профессор физики Массачусетского технологического института. — В рамках идеи о том, что вся тёмная материя может быть образована чёрными дырами, это дает нам новые возможности для поиска». Учёные нашли простой способ резко удешевить криогенное охлаждение, что серьёзно повлияет на науку и технику
31.05.2024 [10:51],
Геннадий Детинич
Около полувека для охлаждения до сверхнизких температур используется так называемый охладитель на пульсирующих трубках. Как установили учёные из США, его можно легко модернизировать, чтобы получить огромную экономию на охлаждении. В мировых объёмах ежегодная экономия составит $30 млн, 27 МВт электричества и воды на 5000 олимпийских бассейнов. Всё, что для этого нужно, — это поставить в систему охлаждения один регулирующий вентиль. Как рассказали в своей работе исследователи из Национального института стандартов и технологий США (NIST), опубликованной в журнале Nature Communications, классическая холодильная установка на пульсирующих трубках в самом начале процесса охлаждения при комнатной температуре работает крайне неэффективно. На этом этапе гелий в системе находится в газообразном состоянии под очень высоким давлением. Система предохранительного сброса давления постоянно стравливает газ до его серьёзного охлаждения, что ведёт к потерям газа и перерасходу ресурсов на его охлаждение. Чтобы избежать этого, учёные предложили ввести в систему регулируемую заслонку, которая постепенно перекрывала бы канал циркуляции газа. В таком случае охлаждение можно было бы ускорить до двух раз со значительной экономией ресурсов и времени. Расчёты показывают, что для охлаждения до температуры вблизи абсолютного нуля (до 4 K или -269 °C) модернизированной установке потребуется на 71 % меньше энергии, чем классической. Чем быстрее модернизированные установки начнут появляться в промышленности, медицине и научных учреждениях, тем скорее и мощнее будет отдача от экономии. Сегодня криогенное охлаждение необходимо для работы сканеров МРТ, ускорителей, квантовых платформ и во многих других областях. Простая модернизация охлаждающих установок способна изменить правила игры во всех этих сферах, уверены учёные. «Неправильная» вода формирует странные магнитные поля Нептуна и Урана, выяснили учёные из России и Китая
30.05.2024 [15:43],
Геннадий Детинич
Учёные из Сколтеха и их китайские коллеги опубликовали в престижном журнале Physical Review B работу, в которой обосновали существование в недрах Урана и Нептуна экзотической молекулы акводия (aquodiium). Это молекула воды с двумя «лишними» протонами, которая стабильна лишь при высочайших температурах и давлении. Наличие акводия в недрах далёких планет теоретически объясняет их странные магнитные поля, отличающиеся от магнитного поля Земли. Магнитные поля Земли, Сатурна и Юпитера порождаются электропроводящими слоями в недрах планет. В случае Земли это циркуляция железоникелевого сплава, а у газовых гигантов — циркуляция металлического водорода на больших глубинах. Во всех трёх случаях присутствует электронная проводимость, порождающая магнетизм. Что касается магнитных полей Урана и Нептуна, то в их случае, подозревают учёные, работает ионная проводимость или, проще говоря, электрический заряд переносят атомы или даже молекулы. Всё это может быть частью ответа на загадку, почему магнитные поля у ледяных гигантов сильно отклонены от их осей вращения и исходят не из их центров. Один из авторов исследования, профессор Сколтеха Артём Оганов, пояснил различие между двумя типами проводимости и вовлечение в процесс нового иона: «В условиях, которые существуют в недрах Юпитера, водород становится жидким металлом, его электропроводность обусловлена наличием свободных электронов, которые все атомы водорода сбрасывают „в общий котёл“ при столь сильном сжатии. А в Уране, как мы предполагаем, сами ионы водорода, то есть протоны, переносят заряд. При этом совершенно не обязательно в форме свободных ионов H+, а, например, в виде гидроксония H3O+, аммония NH4+ и ряда других ионов. Наше исследование дополняет этот ряд ионом H4O2+, химия которого представляет большой интерес». Вода в обычных условиях — это атом кислорода, у которого на внешней электронной оболочке есть две укомплектованные электронные пары в добавок к двум одиночным валентным электронам, к которым присоединены по одному атому водорода (H2O). Когда к одной из электронных пар присоединяется протон водорода (атом водорода без собственного электрона), возникает ион гидроксония (H3O+). В самых экстремальных условиях, когда температура и давление запредельные, вторая электронная пара кислорода также может присоединить протон, что даёт экзотический ион акводий (H4O2+). Авторы исследования использовали самые современные методы моделирования, чтобы понять, как вода и плавиковая кислота поведут себя в экстремальных условиях. При давлении порядка 1,5 млн атмосфер и температуре 3 тыс. градусов Цельсия в симуляции стали чётко различимы ионы акводия H4O2+. Открытый таким образом новый ион способен влиять на поведение и свойства водных сред, а именно кислых сред под большим давлением. Это примерно те условия, которых можно было бы ожидать от Урана и Нептуна, где немыслимая толща водного океана оказывает колоссальное давление на глубинные слои вещества в присутствии кислот. А значит, там должен образовываться акводий, который будет циркулировать вместе с другими ионами и делать свой вклад в магнитные поля этих планет. Более того, в присутствии этого иона там могут формироваться неизвестные на Земле минералы с невообразимыми свойствами. «Варп-двигатели больше не научная фантастика»: учёные предложили двигатель для полётов к звёздам, возможный в рамках известной физики
18.05.2024 [11:31],
Геннадий Детинич
Как ни печально, даже создание субсветовых звездолётов не приблизит человечество к звёздам. Скорость света в вакууме ограничена, а наличие массы у корабля не позволит подойти к её границе вплотную. В мечтах остаются кротовые норы или червоточины — проколы в пространстве-времени, через которые гипотетические звездолёты смогут мгновенно проникать в далёкие уголки Вселенной. А ещё варп-двигатели, которые сами искривляют пространство-время. На основе гипотез Эйнштейна-Розена о возможности подобных проколов в пространстве-времени, мексиканский физик-теоретик Мигель Алькубьерре в 1994 году предложил идею варп-двигателя для межзвёздного корабля, которая также получила название метрика Алькубьерре. Вместо того, чтобы искать неизвестно где расположенные червоточины, учёный обосновал теоретическую возможность построить двигатель, который бы создавал вокруг корабля пузырь с особыми свойствами. Пространство-время по курсу корабля должно было бы сжиматься, а за кормой — расширяться, что позволило бы ему двигаться быстрее скорости света. Вариант пузыря или метрика Алькубьерре обладал одним существенным недостатком, если так можно сказать. Для реализации предложенного варп-двигателя необходима была новая физика — частица или тёмная энергия. Подобное требование отодвигало разработку двигателя для межзвёздных путешествий в очень и очень отдалённое будущее, если такое вообще было бы возможно. Группа учёных из объединения Applied Physics взялась создать теорию варп-двигателя, изготовить который можно было бы в пределах известной физики без экзотических веществ или явлений. В свежей статье в рецензируемом журнале Classical and Quantum Gravity они поделились первыми обнадёживающими результатами. Новое решение физики назвали варп–двигателем с постоянной скоростью (constant velocity warp drive). «Это исследование меняет разговор о варп-двигателях, — заявил физик Джаред Фукс (Jared Fuchs) из Applied Physics, защитивший докторскую диссертацию в Университете Алабамы в Хантсвилле. — Продемонстрировав первую в своем роде модель, мы показали, что варп-двигатели больше не научная фантастика». Предложенный физиками двигатель состоит из стабильной оболочки вещества с «изменённым вектором сдвига внутри». Такое решение не сможет разогнать корабль до световой скорости, но обеспечит ему значительное приближение к этой заветной отметке без экзотических источников энергии. В теории варп-двигатель Applied Physics полностью соответствует метрике Алькубьерре и обещает работать с существенно меньшим потреблением энергии, чем предполагал автор оригинальной гипотезы. Это ещё не решение проблемы, но существенный шаг в правильном направлении, резюмируют исследователи. В Великобритании протестировали основу для квантовой навигационной системы — она станет подстраховкой для GPS
16.05.2024 [18:18],
Павел Котов
Великобритания первой в мире провела серию испытательных полётов, в которых протестировали основу для технологий перспективной квантовой навигационной системы. Она поможет предотвратить одну из наиболее потенциально опасных, но недостаточно широко освещаемых угроз — глушение и подмену сигнала GPS. Система глобального позиционирования (GPS) настолько глубоко проникла в жизнь современного человека, что стала восприниматься как нечто само собой разумеющееся, но лишь до тех пор, пока спутниковый сигнал по какой-то причине не теряется или «перепрыгивает» в другую точку. Для обычного человека это неприятно, но с кораблями и самолётами дело обстоит куда более критично, особенно если речь идёт о подмене сигнала. Только в 2022 году зафиксированы 49 605 случаев, когда гражданские самолёты стали жертвами подмены сигнала GPS, гласит статистика Европейской ассоциации бизнес-авиации. Часто это происходит вблизи зон конфликта для неверной навигации вражеских самолётов или БПЛА. Но результат таких действий также может повлиять на работу авиадиспетчеров, которые полагаются на данные, поступающие напрямую от приборов на самолётах. Один из способов борьбы с этим — подключение резервных систем навигации, например, инерциальных. Это электронный просчёт пути по данным гироскопов и акселерометров, который является вполне рабочим методом. Но со временем в таких системах накапливаются ошибки, которые в случае с подводными лодками могут исчисляться милями — поэтому им приходится всплывать и сверяться с координатами по GPS. Самолёты движутся намного быстрее, и ошибки в их системах также накапливаются быстрее. Для решения этой проблемы британские компании Infleqtion, BAE Systems и QinetiQ, а также агентство по науке и инновациям UKRI решили создать собственную навигационную систему на основе квантовой механики. Квантовые навигационные системы получают данные, используя такие явления как квантовая запутанность, квантовая интерференция и сжатие квантового состояния. В сочетании с высокоточными атомными часами и специальным программным анализом для фильтрации помех они способны заменять GPS в течение длительного времени. Недавно на объекте британского Министерства обороны в графстве Уилтшир прошли испытания квантовой системы позиционирования, навигации и синхронизации (PNT) на основе компактных оптических атомных часов Tiqker и установкой на основе ультрахолодных атомов — они работали на самолёте QinetiQ RJ100. Как ожидается, PNT впоследствии будет интегрирована в полномасштабную квантовую инерциальную навигационную систему (Q-INS). Физики на шаг приблизились к пониманию молний — у восходящих молний засекли рентгеновские вспышки
02.05.2024 [10:17],
Геннадий Детинич
Это может прозвучать странно, но учёные до сих пор не имеют стройной теории, описывающей физические процессы в молниях. Представление древних греков о молниях в некотором смысле было полным — это орудие Зевса. Выглядит известно как, действует тоже понятным образом. Но физиков молнии всё ещё ставят в тупик. Сделанное астрофизиками открытие — обнаружение рентгеновских вспышек в особо опасных восходящих молниях — поможет лучше понять физику явления. Да, молнии могут бить не только сверху вниз, но также снизу вверх. Происходит это обычно на высотных и высоких объектах. На уровне моря восходящие молнии обычно не наблюдаются. Например, около 90 % бьющих в Останкинскую телебашню молний восходящие. Таких случается не менее 30 в год. И если нисходящая молния ударила и рассеялась, то восходящая ощутимо дольше держится на верху конструкции, что ведёт к повышению нагрузки на сооружение и молниеотводы. Массовая установка ветряных турбин с высоким содержанием композитных материалов ведёт к повышению риска разрушения восходящими молниями. И это проблема. Группа астрофизиков под руководством Тома Орегель-Шомона (Toma Oregel-Chaumont) из Швейцарского федерального технологического института (EPFL) провела серию наблюдений за восходящими молниями, возникающими на вышке Санти (Säntis Tower) в Швейцарии. Башня высотой 124 м расположена на вершине горы Санти высотой 2502 м в Аппенцелльских Альпах — идеальное место для возникновения и наблюдения восходящих молний. Традиционно молнии наблюдались и оценивались по двум измеряемым параметрам. Во-первых, по внешнему виду, что благодаря скоростной съёмке открыло новый уровень оценки этого явления. Во-вторых, с помощью измерения токов разряда. Наблюдения в рентгеновском диапазоне добавляют новые ценные данные, по которым можно судить о физических процессах на разных отрезках прохождения заряда (энергия, направление, ионизация каналов и так далее). Для нисходящих молний вспышки в рентгене не новость, однако для восходящих молний ещё ни разу не удавалось их обнаружить. «Фактический механизм, с помощью которого возникает и распространяется молния, всё ещё остается загадкой, — пояснили исследователи. — Наблюдение восходящих молний с высотных сооружений, таких как башня Санти, позволяет соотнести измерения рентгеновского излучения с другими одновременно измеряемыми величинами, такими как высокоскоростные видеозаписи и электрические токи». Впервые увидеть рентгеновские лучи во вспышках восходящих молний смогла группа Орегель-Шомона. Скоростные камеры засняли четыре восходящих разряда со скоростью съёмки до 24 тыс. кадров в секунду. Некоторые из разрядов сопровождались вспышками в рентгене, а некоторые нет. Это позволило выявить разницу между одними и другими, что важно для понимания физики молний. Рентгеновское излучение очень короткое — оно исчезало в течение первой миллисекунды после формирования лидера и, как оказалось, оно коррелирует с очень быстрыми изменениями электрического поля, а также скоростью изменения тока. «Как физику, мне нравится иметь возможность понимать теорию, лежащую в основе наблюдений, но эта информация также важна для понимания молнии с инженерной точки зрения, — сказал Орегель-Шомон. — Всё больше и больше высотных конструкций, таких как ветряные турбины и самолёты, строятся из композитных материалов. Они менее электропроводны, чем металлы, такие как алюминий, поэтому они сильнее нагреваются, что делает их уязвимыми для повреждений от восходящих молний». Корейские учёные научились быстро и просто выращивать искусственные алмазы — алмазные чипы уже рядом
25.04.2024 [16:42],
Геннадий Детинич
Чипы из алмазов станут следующим поколением решений для датчиков и силовых элементов, которые не боятся перегрева. Но для массового внедрения необходим малозатратный и эффективный техпроцесс получения алмазных плёнок и подложек. Похоже, учёные из Южной Кореи нашли решение. Сообщается, что они научились синтезировать искусственные алмазы при обычном атмосферном давлении и на достаточно простом оборудовании, причём за считанные минуты. Впервые искусственные алмазы почти 50 лет назад вырастили в лаборатории компании General Electric. Для этого потребовалось имитировать условия в мантии Земли, где алмазы образуются естественным образом. Учёные поместили в искусственную среду с давлением 10 тыс. атмосфер и температурой 1400 °C сульфид железа, который в таких условиях в присутствии углерода синтезировал алмаз из затравки. Также синтетические алмазы можно изготавливать методом химического осаждения из паровой фазы. Тоже в присутствии затравки и с использованием сложного оборудования. Учёные из Ульсанского национального института науки и технологий (UNIST) предложили нечто совершенно иное и простое. Ещё раньше один из авторов новой работы заметил, что атомы углерода можно связывать в присутствии жидкого галлия. Его температура плавления составляет всего лишь 29,76 °C. В среде газообразного метана в присутствии галлия углерод превращался в графен. Следовательно, данный метод можно было попытаться использовать для синтеза алмазов. К открытию привела случайность: капля жидкого галлия попала на кремниевую пластинку и растворила его. В этом месте учёные обнаружили вкрапления крошечных алмазов. Дальнейший поиск привёл к разработке процесса, в котором смесь жидкого галлия, кремния, железа и никеля нагревалась в небольшом тигле до температуры 1025 °C и подвергалась воздействию газов метана и водорода. В небольшой по объёму рабочей камере алмазы возникали уже через 15 минут без необходимости в затравке. Учёные уверены, что благодаря их открытию можно будет запустить синтез алмазных подложек и плёнок для нужд полупроводниковой промышленности и не только. Испарение воды от света уже стало научным шоком, а теперь учёные выяснили, как лучше светить на воду
25.04.2024 [13:23],
Геннадий Детинич
В конце 2023 года учёные из Массачусетского технологического института (MIT) буквально огорошили научный мир, открыв явление испарения воды без нагрева. Бесчисленные века человечество видело туманы, облака, дымку и прочее, что позже учёные связали с процессами испарения при нагреве воды. Но оказалось, что при испарении важна не только температура, но и сам свет (фотоны), который способен испарять воду и даже эффективнее, чем нагрев. И это оказалось важным. На днях в журнале PNAS вышла статья исследователей из MIT, которые продолжили эксперименты с «фотомолекулярным эффектом», как они назвали открытое явление. Учёные провели 14 опытов, доказывающих и проясняющих ряд моментов воздействия света на воду, в ходе которого молекулы воды отрывались от её поверхности и превращались в пар. Например, ещё в прошлом году было замечено, что наиболее сильное воздействие на эти процессы — на отрыв кластеров молекул воды от её жидкой поверхности — оказывал зелёный свет. В новых опытах учёные изменяли наклон освещения и поляризацию света. Исследования показали, что сильнее всего испарение шло при освещении под углом 45°. Поляризация также оказывала влияние на интенсивность испарения, но этот момент ещё предстоит уточнить. Самое забавное, что учёные пока не понимают до конца, как объяснить данное явление, при котором зелёный свет под углом 45° начинает интенсивно поглощаться водой в состоянии пара и приводить к ощутимому эффекту испарения жидкой воды. Лабораторные установки исключали всякую передачу тепла пару или воде, обеспечивая освещение светодиодами. Тем не менее, испарение при освещении воды светом начиналось и продолжалось, пока был свет. В темноте явление отсутствовало. Собственно говоря, климатологи давно ломали копья в спорах о степени поглощения света облачной массой Земли и о влиянии всего этого на климат планеты. Данные были противоречивы и демонстрировали заметные расхождения между наблюдениями и моделями. С открытием фотомолекулярного эффекта всё может встать на свои места. Модели обретут недостающие контуры и будут соответствовать наблюдениям, а понимать эти процессы не просто важно, а принципиально необходимо, ведь на этом строится климатическая повестка со всеми вытекающими. Наконец, открытие испарения без нагрева — это путь к новым и эффективным опреснителям и технологическим процессам сушки при производстве всего: от продуктов до древесины, бумаги и даже электродов литиевых аккумуляторов. Учёные, кстати, уже начали получать запросы на разработку фотомолекулярных сушилок от тех или иных представителей промышленности. Так что дело может быстро набрать ход. В США разработали материал для солнечных панелей с внешней квантовой эффективностью 190 %
11.04.2024 [11:01],
Геннадий Детинич
На деньги Министерства энергетики США учёные из Лехайского университета (штат Пенсильвания) создали материал для солнечных панелей с невообразимой эффективностью. Благодаря разработке новые панели смогут вырабатывать до двух электронов на каждый поглощённый высокоэнергетический фотон, что намного выше теоретически предсказанного значения. Следует подчеркнуть, что привычное значение КПД панелей и внешняя квантовая эффективность фотоэлектрического материала — это не одно и то же. При падении на панель часть фотонов отражается, а другая часть нагревает панель вместо возбуждения электронов. Тем самым теоретическое значение внешней квантовой эффективности (EQE) не может быть больше 100 %, на что указывает предел Шокли-Квиссера, а КПД панелей ещё меньше. Но что это за наука, если она не может шагнуть за пределы известного? «Эта работа представляет собой значительный скачок вперёд в нашем понимании и разработке решений в области устойчивой энергетики, подчеркивая инновационные подходы, которые могут переопределить эффективность и доступность солнечной энергии в ближайшем будущем», — сказал Чинеду Экума (Chinedu Ekuma), профессор физики, который является ведущим автором статьи в журнале Science Advances. Поиск нужной комбинации материалов сначала был проведён с помощью моделирования на компьютере. Затем, на основе полученных данных, был создан прототип, подтвердивший удивительные свойства материала. Образец в качестве активного слоя в кремниевой фотоэлектрической ячейки продемонстрировал среднее фотоэлектрическое поглощение в 80 %, высокую скорость генерации фотовозбуждённых носителей и внешнюю квантовую эффективность (EQE) на беспрецедентном уровне 190 %. Скачок эффективности материала во многом объясняется его отличительными «состояниями промежуточной зоны», специфическими уровнями энергии, которые расположены в электронной структуре материала таким образом, что делают их идеальными для преобразования солнечной энергии. Эти состояния имеют уровни энергии в пределах оптимальных энергетических диапазонов, в которых материал может эффективно поглощать солнечный свет и производить носители заряда — около 0,78 и 1,26 эВ (электрон-вольт). Кроме того, материал особенно хорошо проявил себя при высоких уровнях поглощения в инфракрасной и видимой областях электромагнитного спектра. В традиционных солнечных элементах максимальное значение EQE составляет 100 %, что соответствует генерации и сбору одного электрона на каждый поглощенный фотон солнечного света. Новый материал, как и ряд других перспективных материалов, продемонстрировал способность генерировать и собирать более одного электрона из фотонов высокой энергии, что обеспечивает увеличение теоретически возможного КПД панелей до двух и более раз. Хотя такие материалы с многократным генерированием экситонов еще не получили широкого коммерческого распространения, они обладают потенциалом для значительного повышения эффективности систем солнечной энергетики. В материале, разработанном исследователями Лехайского университета, состояния промежуточной зоны позволяют улавливать энергию фотонов, которая теряется традиционными солнечными элементами, в том числе за счет отражения и выработки тепла. Исследователи разработали новый материал с использованием «ван-дер-ваальсовых зазоров», атомарно малых промежутков между слоистыми двумерными материалами. Эти промежутки могут удерживать молекулы или ионы, и материаловеды обычно используют их для вставки или «интеркалирования» других элементов для настройки свойств материала. По сути в этих зазорах различные межмолекулярные силы, определяемые как силы Ван-дер-Ваальса, крепко удерживают нужные молекулы или атомы, как в случае нового материала. В частности, учёные поместили между селенидом германия (GeSe) и сульфидом олова (SnS) атомы меди нулевой валентности. «Его быстрый отклик и повышенная эффективность убедительно указывают на потенциал Cu-интеркалированного GeSe/SnS в качестве квантового материала для использования в передовых фотоэлектрических решениях, предлагая возможности для повышения эффективности преобразования солнечной энергии, — говорят разработчики. — Это многообещающий кандидат для разработки высокоэффективных солнечных элементов следующего поколения, которые сыграют решающую роль в удовлетворении глобальных потребностей в энергии». |