Сегодня 26 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Процессоры и память

Обзор процессора Intel Core i9-10900K: Skylake пошёл на пятый срок

⇣ Содержание

Меньше чем через четыре месяца микроархитектура Skylake отметит своё пятилетие, и это – весьма внушительный возраст для процессорного дизайна, предлагающегося для массовых и высокопроизводительных чипов. Тем не менее компания Intel раз за разом продолжает выпускать основанные на ней чипы: подумать только, новейшие Comet Lake-S, о которых сегодня пойдёт речь, – это прямые аналоги процессоров Core i7-6700K.

Как получилось, что для настольных систем компания Intel до сих пор не смогла предложить ничего принципиально более нового, мы говорили уже не один раз. Вывод новых микроархитектур у микропроцессорного гиганта был всегда привязан к сменам производственных норм, а после запуска 14-нм технологии с дальнейшими техпроцессами дело не заладилось. Производственный процесс с разрешением 10 нм, согласно изначальному плану, должен был быть освоен ещё в далёком 2017 году, и, если бы всё сложилось, как задумывалось, сейчас в ходу были бы совсем другие процессоры. Однако внедрение 10-нм норм обернулось для Intel настоящей катастрофой, и даже сейчас, когда речь идёт о запуске уже второй версии этой проблемной технологии, использовать её при выпуске крупных и высокочастотных полупроводниковых кристаллов компания всё ещё не решается. Поэтому актуальные массовые процессоры до сих пор продолжают основываться на 14-нм технологии и снова и снова получают одну и ту же микроархитектуру Skylake, наращивая лишь количество вычислительных ядер, частоты и число знаков «плюс» в официальном обозначении производственных норм.

Тем не менее, как бы нам ни надоели очередные воплощения Skylake в кремнии, нельзя отрицать, что это – безусловно удачное решение, которое имеет право на такое долгожительство. Сомнения в её актуальности могут возникать лишь в свете использования техпроцесса с крупными допусками, но серьёзные претензии к ней предъявить непросто. Во-первых, несмотря на ежегодное появление новых итераций AMD Ryzen, процессоры c микроархитектурой Skylake всё ещё выглядят вполне конкурентоспособно по удельной производительности на такт, то есть по показателю IPC. Во-вторых, Skylake оказалась легко масштабируемой микроархитектурой. Не меняя ничего в принципах её внутреннего устройства, Intel сумела в два с половиной раза нарастить число процессорных ядер и не потерять при этом в эффективности их взаимодействия. Более того, очень неплохо выглядят и достигаемые современными процессорами Intel тактовые частоты. Актуальные 14-нм последователи Skylake уверенно преодолели отметку в 5 ГГц, в то время как конкурирующим решениям, выпускаемым по 7-нм техпроцессу, таких же вершин достичь так и не удалось.

К тому же сегодня мы сокрушаемся по поводу использования в новых процессорах Intel архитектуры пятилетней давности, вероятно, в последний раз. Последователи Comet Lake-S для массового сегмента смогут отказаться от этого наследия уже достаточно скоро. В следующем поколении чипов, которое фигурирует под кодовым именем Rocket Lake-S, компания Intel планирует использовать прогрессивную микроархитектуру Willow Cove из мобильных процессоров Tiger Lake, переложенную на 14-нм техпроцесс. Принципиальное обновление микроархитектуры попутно должно произойти и в сегменте HEDT, где через несколько месяцев появятся процессоры с дизайном Ice Lake-X, производимые по 10-нм технологии.

Но не будем забегать вперёд: пока нам предстоит жить ещё с одной реинкарнацией Skylake. И главный вопрос, который стоит перед сегодняшним тестированием, заключается в том, сможет ли Intel, опираясь исключительно на старый технологический фундамент, дать достойный ответ на процессоры Ryzen третьего поколения, которые довольно агрессивно стали теснить Coffee Lake-S на всех фронтах. Отстаивать свои позиции микропроцессорный гигант планирует очень простыми средствами: добавлением флагманским процессорам пары вычислительных ядер, а в процессорах среднего и младшего звена – включением технологии Hyper-Threading.

#Что нового в Comet Lake-S

Казалось бы, мы знаем Skylake вдоль и поперёк, но Intel вновь нашла, как можно улучшить продукты прошлого поколения, не прибегая ни к новым производственным технологиям, ни к изменениям в микроархитектуре. И главное добавление такого рода – это два дополнительных вычислительных ядра, которые получили старшие модели процессоров Core i9, относящихся к семейству Comet Lake-S. Таким образом, теперь массовая платформа Intel может быть укомплектована процессором, обладающим сразу десятью вычислительными ядрами.

Пару дополнительных ядер прибавили в Comet Lake-S по уже отработанной схеме. Их фактически присоединили к имеющемуся кристаллу сбоку, подключив всё к той же кольцевой шине, которая, кстати говоря, способна «вытянуть» и 12 ядер (такие конфигурации использовались в серверных процессорах Broadwell-E). Естественно, дополнительные ядра укомплектованы и положенными им сегментами кеш-памяти третьего уровня объёмом по 2 Мбайт. Соответственно, получившийся десятиядерник оснащён в общей сложности 20 Мбайт L3-кеша.

Всё это хорошо видно по снимку полупроводникового кристалла 10-ядерной версии Comet Lake-S: он очень похож на Coffee Lake-S, а разница лишь в числе ядер.

В конечном итоге площадь 10-ядерного кристалла Comet Lake-S составляет порядка 198 мм2, и это на 14 % (ожидаемо) больше площади восьмиядерного кристалла Coffee Lake-S. Для сравнения стоит напомнить, что восьмиядерный 7-нм чиплет CCD процессоров Zen 2 имеет площадь всего 74 мм2, но площадь 12-нм I/O-чиплета достигает 125 мм2. То есть, как это ни странно, по суммарным размерам кремния между 10-ядерным Comet Lake-S и 8-ядерным Zen 2 можно поставить знак примерного равенства.

Сплотку из десятка ядер, выполненных по 14-нм техпроцессу, трудно сделать экономичной, не прибегая к существенному урезанию тактовых частот. Поэтому старшие процессоры поколения Comet Lake-S заметно нарастили свои энергетические аппетиты и, соответственно, тепловыделение. Рамки теплового пакета, заявленные в спецификациях, отодвинулись с 95 до 125 Вт, а предел потребления при кратковременных нагрузках теперь может доходить (у флагманской модели) до 250 Вт даже с официальной точки зрения. Столь значительный рост аппетитов не мог не отразиться на дизайне платформы в целом: совместимые с Comet Lake-S модели материнских плат с новым процессорным гнездом LGA1200, как правило, обладают заметно более мощным, чем раньше, конвертером питания.

Но есть и другая сторона: инженерам Intel пришлось предпринять специальные усилия к тому, чтобы всё выделяемое кристаллом Comet Lake-S тепло было отведено с должной эффективностью. В прошлом поколении процессоров, Coffee Lake-S, Intel прибегла к увеличению теплопроводности применяемого термоинтерфейсного материала под процессорной крышкой и перешла с полимерной термопасты на индиевый припой. Сейчас же сделан ещё один шаг – с 800 до 500 мкм уменьшена толщина процессорного кристалла. Дело в том, что вся полупроводниковая начинка расположена на кристалле со стороны процессорной платы, а сам кремний имеет довольно низкую теплопроводность, поэтому уменьшение его слоя действительно способствует улучшению теплоотвода.

Как видно по иллюстрации, утончение кристалла сопровождается утолщением медной теплораспределительной крышки. Это сделано для того, чтобы сохранить толщину процессоров неизменной и чтобы системы охлаждения, разработанные для прошлых поколений CPU, остались совместимыми и с представителями семейства Comet Lake-S.

Рост потребляемой новыми процессорами мощности связан не только с увеличением размера полупроводникового кристалла и с дополнительными ядрами. Он вызван ещё и тем, что Intel дополнительно нарастила тактовые частоты и снабдила новые чипы более хитрыми механизмами их регулировки.

Например, если сравнить старший 10-ядерник нового поколения со старшим 8-ядерником прошлого поколения, то окажется, что новинка выигрывает у предшественника в ширине диапазона частот. Сейчас рабочие частоты флагмана задаются интервалом 3,7-5,3 ГГц, в то время как для Core i9-9900K этот интервал выглядел как 3,6-5,0 ГГц. Одновременно с этим реальные рабочие частоты новых процессоров сильнее приблизились к верхней границе диапазона благодаря тому, что к стандартной и привычной технологии Turbo Boost 2.0 добавились два новых «усилителя» – Turbo Boost Max 3.0 и Thermal Velocity Boost.

Технология Turbo Boost 3.0 уже знакома нам по процессорам для HEDT-систем: она добавляет к стандартному турборежиму понятие «удачных» ядер, которые определяются Intel индивидуально для каждого процессора на этапе производства. Смысл этого в том, что при изолированной нагрузке на эти ядра они умеют ускоряться на 100 МГц сильнее по сравнению с остальными ядрами. Предполагается, что диспетчер задач операционной системы будет переносить на такие ядра малопоточные нагрузки, позволяя получать дополнительное улучшение производительности по сравнению с Turbo Boost 2.0. И данный механизм действительно работает в версиях Windows 10, начиная со сборки 1609. В семействе процессоров Comet Lake-S «удачных» ядер обычно два, но в целом технология Turbo Boost 3.0 доступна исключительно для десяти- и восьмиядерных процессоров.

Другая реализованная в Comet Lake-S технология – Thermal Velocity Boost – в процессорах для настольных систем встречается впервые и пока доступна лишь в старших моделях семейства, относящихся к серии Core i9. Она отвечает за дополнительный динамический рост частоты на 100 МГц – за пределы заданных турборежимом границ. Как предполагается, такой «последний рывок» процессор может сделать при соблюдении двух условий: если его потребление не выходит за определённые спецификацией рамки и если его температура не превышает 70 градусов.

В сумме всё это приводит к тому, что старшие десятиядерники могут работать на поразительно высоких частотах, особенно при снятых пределах потребления и при использовании качественных систем охлаждения, способных удерживать их от перегрева.

В качестве примера можно посмотреть на таблицы частот представителей семейства Comet Lake-S, относящихся к классу Core i9 и Core i7, и сопоставить их с частотами восьмиядерных Coffee Lake-S.

Ядра/ потоки Частоты, ГГц TDP, Вт
База Turbo 2.0, все ядра TVB, все ядра Turbo 2.0, 1-2 ядра Turbo 3.0, 1-2 ядра TVB, 1-2 ядра
Core i9-10900K 10/20 3,7 4,8 4,9 5,1 5,2 5,3 125
Core i9-10900 10/20 2,8 4,5 4,6 5,0 5,1 5,2 65
Core i7-10700K 8/16 3,8 4,7 - 5,0 5,1 - 125
Core i7-10700 8/16 2,9 4,6 - 4,7 4,8 - 65
Core i9-9900KS 8/16 4,0 5,0 - 5,0 - - 127
Core i9-9900K 8/16 3,6 4,7 - 5,0 - - 95
Core i9-9900 8/16 3,1 4,6 - 5,0 - - 65

По таблице отлично видно, что благодаря этим ухищрениям новые процессоры получили более высокие частоты, чем были у восьмиядерных предшественников. Причём более высокие частоты по сравнению с прошлым флагманом Core i9-9900K потенциально могут обеспечить даже 10-ядерные процессоры нового поколения, не говоря уже о восьмиядерниках. Но есть и исключения, например Core i9-9900 выглядит по частотной формуле всё-таки интереснее, чем новый Core i7-10700 с восемью ядрами, а выпущенный лимитированной серией Core i9-9900KS так и остаётся единственным CPU, способным держать частоту 5 ГГц при нагрузке сразу на все ядра.

#Новая платформа LGA1200 и набор системной логики Z490

Как уже было сказано, процессоры Comet Lake-S получили новое исполнение корпуса LGA1200 с увеличенным числом контактов. И это значит, что они не совместимы со старыми материнскими платами. В целом это полностью отвечает стратегии Intel – менять платформу каждые два поколения CPU, но в данном случае переход на обновлённые материнские платы действительно не лишён смысла.

Во-первых, между Comet Lake-S и их предшественниками существует заметная разница в энергопотреблении, и для новых CPU действительно нужны более мощные схемы питания, поскольку, даже согласно официальным данным, в номинальном режиме они могут демонстрировать потребление вплоть до 250 Вт, а в реальности и того выше, особенно при разгоне. Поэтому неудивительно, что среди LGA1200-плат встречаются и такие, которые оснащены 16-канальным конвертером питания и силовыми элементами, рассчитанными на ток в 90 А. Также закономерно, что платы нового поколения щеголяют более продвинутыми системами охлаждения VRM, которые в некоторых случаях могут даже снабжаться вентилятором.

 ASUS Maximus XII Hero (Wi-Fi) на базе Z490

ASUS Maximus XII Hero (Wi-Fi) на базе Z490

Во-вторых, хотя об этом пока не говорится официально, в новой платформе Intel намеревается внедрить поддержку PCI Express 4.0. Произойдёт это лишь тогда, когда на рынке появится следующее поколение процессоров, Rocket Lake-S, но подготовить всю необходимую инфраструктуру Intel решила заранее. Иными словами, в платформе LGA1200 сразу заложена возможность перевода шины PCI Express в более быстрые режимы, хотя на данный момент в новой платформе все слоты PCIе и M.2, как и раньше, будут максимально поддерживать лишь режим PCI Express 3.0.

Для платформы LGA1200 компания Intel подготовила наборы логики четырёхсотой серии, включая старший чипсет Z490, который в контексте этой статьи нам наиболее интересен. С точки зрения характеристик материнские платы на базе этого чипсета не слишком сильно отличаются от привычных плат на Z390, но главное – они оборудуются новым процессорным разъёмом LGA1200 и совместимы с Comet Lake-S, но не совместимы с Coffee Lake-S, как и с другими процессорами предшествующих поколений.

В то же время немаловажно, что все сегодняшние LGA1200-платы гарантированно смогут принять на борт и следующее поколение процессоров Rocket Lake-S, где найдёт применение новая микроархитектура, PCI Express 4.0 и интегрированная графика Intel Xe. Выйдут эти любопытные CPU, как ожидается, в конце текущего или, скорее, в начале следующего года. Хотя конкретные реализации могут несколько различаться, общий подход производителей плат заключается в том, чтобы использовать в LGA1200-платах элементную базу (усилители и коммутаторы), совместимую с четвёртым поколением PCI Express. Поддержка нового протокола, по всей видимости, будет в будущем активирована для первого слота PCIe x16, который логически подключен к внутрипроцессорному контроллеру.

Если же говорить о самом наборе логики Z490, то в его спецификациях вы вряд ли сможете найти какие-то отличия от Z390: чипсеты идентичны. Тем не менее с точки зрения возможностей расширения материнские платы, построенные вокруг микросхемы Z490, могут иметь новые характерные признаки. Первейшим из них следует признать наличие 2,5-гигабитного сетевого интерфейса – его можно обнаружить у большинства платформ верхней и средней ценовых категорий. Также в список стандартного оснащения для добротных LGA1200-плат входит беспроводной адаптер Wi-Fi 6 и увеличенное количество портов USB 3.2 Gen 2 (10 Гбит/с).

Стоит упомянуть, что вместе с Z490 на рынок приходят и два более простых набора логики: B460 и H410. Они не имеют функций разгона процессора, беднее по оснащению, а платы на их основе уже не смогут похвастать такими же мощными стабилизаторами питания. Однако подробнее о них мы поговорим позднее, когда будем заниматься тестами недорогих представителей семейства Comet Lake-S.

#Подробности о Core i9-10900K

Для тестирования нам удалось получить старший процессор в семействе Comet Lake-S, десятиядерник Core i9-10900K. Сразу же нужно сказать, что полученный нами образец – это серийный экземпляр актуального степпига Q0, и именно его ожидание задержало данный обзор. За некоторое время до анонса Intel предлагала для тестов процессоры более раннего степпинга P1, но он в конечном итоге в серийные изделия не пошёл. Поэтому мы решили не тестировать предварительный образец и дождаться правильного, тем более что, как потом выяснилось, процессоры предварительного степпинга действительно отличаются от финальных: они используют завышенное напряжение, сильнее греются и не достигают максимальных частот в турборежиме.

Характеристики Core i9-10900K можно посмотреть на скриншоте CPU-Z, приведённом ниже. Главное, что нужно знать про этот процессор: в нём есть 10 ядер с поддержкой технологии Hyper-Threading, 20 Мбайт L3-кеша, а рабочие частоты находятся в окрестности 5,0 ГГц. При этом тепловой пакет увеличен до 125 Вт при разрешённом пиковом потреблении вплоть до 250 Вт. То есть это – быстрый, но и горячий процессор.

Формально максимальные частоты, разрешённые турборежимом в зависимости от нагрузки на разное число вычислительных ядер, превышают 4,8 ГГц:

Максимальная тактовая частота, ГГц
База 1-2 ядра 3 ядра 4-5 ядер 6-10 ядер
Core i9-10900K 3,7 5,3 5,1 5,0 4,9

Но нужно понимать, что в реальной жизни частоты будут, скорее всего, ограничиваться не этими показателями, а пределами энергопотребления: 125 Вт для долговременных нагрузок (PL1) и 250 Вт – для кратковременных (PL2). Имейте в виду, что объявленная в спецификации величина TDP в 125 Вт – это, согласно определению Intel, среднее значение тепловыделения при сложной нагрузке на все ядра, когда процессор работает на базовой частоте 3,7 ГГц. Поэтому в реальности частоты будут сильно не дотягивать до тех, что указаны выше. Кроме того, табличные значения указаны с учётом Thermal Velocity Boost, то есть в предположении, что температура процессора не превышает 70 градусов. В противном случае они будут на 100 МГц ниже.

Проиллюстрировать сказанное можно следующим графиком, на котором отображены практически наблюдаемые частоты Core i9-10900K при прохождении теста рендеринга Cinebench R20 с различным числом используемых потоков. На нём приведены сразу две кривые – для ограничений потребления стандартными величинами PL1 и PL2, то есть 125 и 250 Вт. Таким образом, при работе в номинальном режиме первые несколько секунд после запуска процесса частота Core i9-10900K соответствует точкам на верхней кривой, а затем спускается на нижнюю кривую.

Получается, что если не нарушать спецификаций Intel по энергопотреблению, то при длительных многопоточных нагрузках Core i9-10900K должен работать на частотах в окрестности 4,0 ГГц. А заявленные 4,9 ГГц он может взять лишь при кратковременных многопоточных нагрузках, когда для энергопотребления действует удвоенный относительно паспортного TDP предел. Кроме того, максимальное значение частоты для однопоточной нагрузки – 5,3 ГГц – на практике достигается совсем не часто. Оно возможно лишь при сложении усилий технологий Turbo Boost Max 3.0 и Thermal Velocity Boost и потому наблюдается эпизодически. Средняя же частота Core i9-10900K при нагрузке на одно-два ядра, которая наблюдается на практике, ближе к 5,2 ГГц. Но даже несмотря на некоторый разрыв между теоретическими и наблюдаемыми показателями, частоты Core i9-10900K не разочаровывают: в целом они повыше значений, которые мы наблюдали у Core i9-9900K с включёнными пределами потребления.

Вдобавок к добавившимся ядрам и повышенным частотам в процессорах Comet Lake-S появилась официальная поддержка DDR4-2933 SDRAM. Это имеет значение для тех пользователей, которые захотят воспользоваться материнскими платами на базе младших чипсетов – теперь там память сможет работать на более высоких скоростях. Что же касается Z490, то в платах на его основе разгон памяти неограничен и возможен до очень высоких значений.

Рекомендованная цена Core i9-10900K составляет $488, версия этого же процессора с заблокированным GPU (Core i9-10900KF) обойдётся в $472. Это значит, что Intel решила противопоставить свой новый десятиядерник двенадцатиядерному процессору AMD Ryzen 9 3900X с официальной ценой $499. Если сопоставить характеристики этих двух CPU, то картина получается следующей (для наглядности мы добавили в таблицу и прошлый флагманский восьмиядерник):

Core i9-9900KCore i9-10900KRyzen 9 3900K
Платформа LGA 1151v2 LGA1200 Socket AM4
Техпроцесс, мм 14 14 7/12
Ядра/потоки 8/16 10/20 12/24
Частота (номинал/турбо), ГГц 3,6-5,0 3,7-5,3 3,8-4,6
L3-кеш, Мбайт 16 20 64
TDP, Вт 95 125 105
Память DDR4-2666 DDR4-2933 DDR4-3200
Линии PCIe 16 × Gen3 16 × Gen3 24 × Gen4
Встроенная графика Есть Есть Нет
Цена $488 $488 $499

Ryzen 9 3900X по сравнению с Core i9-10900K предлагает более развитую многопоточность, у него на 20 % больше вычислительных ядер, и это отражает парадигму AMD, которая делает упор на постоянное увеличение возможностей параллельной обработки. Подход Intel иной: «синяя» компания всё ещё продолжает уделять существенную часть своего внимания пиковым однопоточным скоростям. И хотя Intel в какой-то мере следует примеру AMD и ее флагман в очередной раз получил дополнительные ядра, главное его преимущество – в максимальной тактовой частоте, которая выше, чем у конкурирующего процессора AMD, на 15 %. Правда, не стоит забывать, что в пользу AMD здесь может сыграть некоторое преимущество в IPC: микроархитектура Zen 2 по этому показателю немного обошла Skylake. Но суммарно, глядя на характеристики, вполне можно утверждать, что процессоры Ryzen 9 3900X и Core i9-10900K заслуживают того, чтобы выступать в одной весовой категории. Хотя нельзя отрицать, что у Ryzen 9 3900X есть небольшое формальное преимущество благодаря поддержке PCI Express 4.0 и лучшей экономичности.

#Температура и потребление

Потребление и нагрев для Core i9-10900K – это, очевидно, больной вопрос. До сих пор у Intel не было таких многоядерных и высокочастотных процессоров, но уже по прошлому поколению массовых CPU было понятно, что микроархитектура Skylake при приближении к 5 ГГц теряет всякие намёки на энергоэффективность. Масла в огонь подливают многочисленные публикации, в которых говорится о реальном потреблении нового десятиядерника на уровне 250, а то и 300 Вт. И на этом этапе у многих возникает недопонимание, почему Intel говорит о показателе TDP 125 Вт, и нет ли здесь явного обмана.

Но на самом деле всё честно. Дело в том, что существует два базовых варианта настройки любого процессора Intel: с прицелом на соблюдение заявленных параметров энергопотребления и тепловыделения и с прицелом на максимальную производительность. В случае с Core i9-10900K первый вариант предусматривает, что путём динамической подстройки частоты фактическое потребление процессора удерживается в рамках величины PL1, установленной для него в 125 Вт, и выходить за эту границу и повышать потребление до PL2, равной 250 Вт, ему разрешается лишь кратковременно. Второй вариант предполагает, что никакие пределы потребления PL1 и PL2 не действуют, и процессор всегда функционирует на максимальной частоте, определённой турборежимом для данного количества загруженных работой ядер. Переключение между этими вариантами выполняется в BIOS материнских плат.

В существовании этих двух подходов нет никакой новости – так было и раньше. Просто с процессорами Intel прошлых поколений производители материнских плат особо не задумывались о соблюдении каких-то там ограничений и по умолчанию врубали режим максимальных частот (за данной функцией закрепилось название MCE – Multi-Core Enhancements). Но теперь так уже не получится: тепловыделение Core i9-10900K со снятыми ограничениями может оказаться столь высоким, что процессор будет перегреваться даже с довольно мощными серийными системами охлаждения. К тому же Intel отняла у производителей материнских плат возможность отодвигать границу максимально разрешённого нагрева кристалла, и теперь она снова жёстко установлена в 100 градусов, тогда как для процессоров Coffee-Lake-S её почти всегда принудительно отодвигали до 115 градусов.

В результате платы для процессоров Comet Lake-S, скорее всего, будут предлагать какие-то компромиссы в части динамического управления частотами. По крайней мере, мы надеемся, что здравый смысл возобладает и производители не будут без предупреждения отправлять частоты новых процессоров в стратосферу, обрекая пользователей на встречу с перегревом, троттлингом и тому подобными вещами, которые легко могут испортить впечатление о платформе LGA1200. Например, тестируя Core i9-10900K на плате ASUS Maximus XII Hero (Wi-Fi), мы увидели такую реализацию: при первом старте системы после установки нового процессора BIOS предлагает выбор: либо использовать в дальнейшем максимальные частоты, либо всё-таки следовать спецификациям Intel.

И это – разумный подход: пользователь должен понимать, что отмена пределов потребления PL1 и PL2 сродни разгону, и стабильно работать в этом случае процессор всё-таки не обязан.

Но давайте проанализируем, насколько эти два режима настройки процессора (номинальный и безлимитный) различаются по реальным частотам, производительности, температурам и потреблению. Мы провели их практическое сравнение на примере нагрузки Cinebench R20 и Prime 95 AVX2 29.8 с использованием для охлаждения процессора суперкулера Noctua NH-D15.

Если посмотреть на графики частот, то кардинальная разница в двух режимах – с включёнными и отключёнными пределами энергопотребления – становится хорошо понятна. В номинальном режиме при длительных ресурсоёмких расчётах Core i9-10900K работает на частоте в окрестности 4,0 ГГц, разгоняясь до 4,9 ГГц лишь в первые несколько секунд, в течение которых для потребления действует вдвое более либеральное ограничение PL2, а не PL1. Если же пределы потребления отменить, то частота 4,9 ГГц сохраняется на всю продолжительность приложения нагрузки.

Вот что в это время происходит с энергопотреблением процессора.

Реальное долговременное энергопотребление десятиядерного процессора при многопоточной нагрузке, когда он работает на частотах, заявленных в спецификации, но без каких-либо ограничений, может составлять и 230 Вт (в Cinebench R20), и даже 300 Вт (в Prime95). Естественно, включение в частотную формулу отсечки частоты при росте потребления выше 125 Вт меняет всё кардинально.

Можно сказать, что «честный» Core i9-10900K и «безлимитный» Core i9-10900K – это два разных процессора, разница между которыми будет проявляться тем сильнее, чем сложнее и продолжительнее исполняемые ими задачи. В то же время на относительно коротких нагрузках, в течение которых для процессора действует повышенная граница энергопотребления PL2, режим с активированными ограничениями почти не снижает производительность процессора. Максимальное время действия этого предела вместо консервативного PL1 также определено спецификацией и для Core i9-10900K составляет 56 секунд. Однако на практике промежутки высокого потребления не превышают 30-40 секунд, и то при условии, что до этого процессор находился в состоянии простоя. Объясняется это тем, что, помимо контроля моментального уровня потребления, процессор удерживает в 125-ваттных рамках и величину скользящего экспоненциального среднего потребления, которая представляет собой интегральную характеристику потребления за некоторый предшествующий период времени.

Перспектива использовать Core i9-10900K без учёта всех этих многочисленных ограничений выглядит заманчиво. Однако проблема заключается в том, что «безлимитный» режим заставляет пользователя столкнуться с пугающе высокими температурами.

Даже с мощным двухбашенным кулером в Cinebench R20 процессор в «безлимитном» режиме может нагреваться до 83 градусов, а в более тяжелом в вычислительном плане тесте Prime95 температура может доходить до 93 градусов, что довольно близко к предельному значению. Основываясь на этих данных, логично предположить, что среди Core i9-10900K могут найтись такие экземпляры, которые не смогут функционировать без троттлинга в режиме со снятыми ограничениями.

Однако здесь нужно вставить важную ремарку о том, что если Core i9-10900K будет использоваться в системе, нацеленной исключительно на игровое применение, и он никогда не будет сталкиваться с приложениями для обработки контента, то безлимитный режим вполне допустим. Современные игры не создают таких нагрузок, которые были бы способны полностью задействовать все ресурсы десятиядерного CPU под тяжёлые вычислительные алгоритмы, поэтому нагрев и потребление в них заметно ниже.

На примере Shadow Of The Tomb Raider мы видим вдвое более низкое энергопотребление по сравнению с рендерингом и, соответственно, вполне комфортные для процессора температуры на уровне 50-60 градусов как в номинальном, так и в безлимитном режиме.

#Разгон

К этому моменту уже понятно, что на какой-то значимый разгон Core i9-10900K можно не рассчитывать. Чего можно ожидать от процессора, который даже на штатных частотах (при отмене пределов потребления) нагревается до 92-93 градусов при допустимом максимуме в 100?

В том, что Core i9-10900K очень тяжело сдвинуть с номинальных частот вверх, мы легко убедились на практике. Максимальная частота, с которой нам удалось пройти между Сциллой перегрева и Харибдой нестабильности, составила 5,1 ГГц при условии добавления корректирующего коэффициента -2 для процессорного множителя при AVX-нагрузке.

Другими словами, процессор смог работать при 5,1 ГГц при обычной вычислительной нагрузке и проходил тесты стабильности, демонстрируя температуры не выше 95 градусов.

Но при AVX-нагрузке частоту приходилось сбрасывать до 4,9 ГГц во избежание перегрева. Однако даже на такой частоте его температура доходила до 96 градусов.

Для достижения описанного результата в BIOS материнской платы ASUS Maximus XII Hero (Wi-Fi) напряжение процессора было снижено на 0,035 В относительно номинала (через настройку Offset) с одновременной активацией функции Load-Line Calibration в режиме Level 5. В результате применения этих настроек реальное напряжение CPU при стрессовой нагрузке устанавливалось на уровне 1,16-1,24 В.

Отвод тепла в нашем случае обеспечивал суперкулер Noctua NH-D15, к эффективности которого трудно предъявить какие-то претензии. А это значит, что радикальным оверклокерам, которые привыкли не удовлетворяться номинальным или близким к номинальному режимом работы процессора, придётся нацеливаться на оснащение своих сборок каким-то существенно более мощным охлаждением, например самостоятельно собранными системами жидкостного охлаждения.

В этом случае им также могут пригодиться новые тонкие оверклокерские инструменты, которые появились в Core i9-10900K и в платформе LGA1200 в целом. В частности, для этого процессора можно не только задавать свой собственный множитель для разного количества нагруженных работой ядер, но и поядерно отключать технологию Hyper-Threading.

Второе интересное нововведение – полный доступ к кривой зависимости между напряжением процессора и его частотой.

Всё это в конечном итоге открывает огромный простор для оптимизации настроек системы, но, к сожалению, не отменяет того факта, что Core i9-10900K работает почти на пределе возможностей 14-нм кремния, и даже для незначительного разгона сначала придётся решить задачу с отводом от чипа более 300 Вт тепла.

Следующая страница →
 
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Вечерний 3DNews
Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы. Две минуты на чтение — и вы в курсе главных событий.

window-new
Soft
Hard
Тренды 🔥
Apple объяснила, почему не хочет создавать собственный поисковик на замену Google 23 мин.
«Не думаю, что Nintendo это стерпит, но я очень рад»: разработчик Star Fox 64 одобрил фанатский порт культовой игры на ПК 11 ч.
Корейцы натравят ИИ на пиратские кинотеатры по всему миру 12 ч.
В Epic Games Store стартовала новая раздача Control — для тех, кто дважды не успел забрать в 2021 году 15 ч.
За 2024 год в Steam вышло на 30 % больше игр, чем за прошлый — это новый рекорд 16 ч.
«Яндекс» закрыл почти все международные стартапы в сфере ИИ 16 ч.
Создатели Escape from Tarkov приступили к тестированию временного решения проблем с подключением у игроков из России — некоторым уже помогло 17 ч.
Веб-поиск ChatGPT оказался беззащитен перед манипуляциями и обманом 18 ч.
Инвесторы готовы потратить $60 млрд на развитие ИИ в Юго-Восточной Азии, но местным стартапам достанутся крохи от общего пирога 19 ч.
Selectel объявил о спецпредложении на бесплатный перенос IT-инфраструктуры в облачные сервисы 19 ч.
Во флагманских смартфонах Huawei Mate 70 нашли память SK hynix, которой там быть не должно 37 мин.
Чтобы решить проблемы с выпуском HBM, компания Samsung занялась перестройкой цепочек поставок материалов и оборудования 3 ч.
Новая статья: Обзор и тест материнской платы Colorful iGame Z790D5 Ultra V20 9 ч.
Новая статья: NGFW по-русски: знакомство с межсетевым экраном UserGate C150 11 ч.
Криптоиндустрия замерла в ожидании от Трампа выполнения предвыборных обещаний 11 ч.
Открыт метастабильный материал для будущих систем хранения данных — он меняет магнитные свойства под действием света 12 ч.
Новый год россияне встретят под «чёрной» Луной — эзотерика ни при чём 16 ч.
ASRock выпустит 14 моделей Socket AM5-материнских плат на чипсете AMD B850 16 ч.
Опубликованы снимки печатной платы Nvidia GeForce RTX 5090 с большим чипом GB202 18 ч.
От дна океана до космоса: проект НАТО HEIST занялся созданием резервного космического интернета 18 ч.