⇣ Содержание
Опрос
|
реклама
Улучшаем Core i7-6700K: скальпирование и разгон
⇡#Описание тестовых систем и методики тестированияБлагодаря скальпированию Core i7-6700K и замене штатного термоинтерфейса жидким металлом Coollaboratory Liquid Pro мы получили в своё распоряжение флагманский десктопный Skylake-S, способный разгоняться до частоты 4,8 ГГц. Обойти стороной тестирование производительности такого CPU было бы преступлением. Поэтому вторую часть материала мы посвятили анализу масштабируемости быстродействия Core i7-6700K в том случае, когда он разогнан до 4,4, 4,6 или 4,8 ГГц. Первый вариант соответствует типичному разгону Skylake без повышения напряжения питания, второй – типичный оверклокерский режим для нескальпированного CPU, и третий вариант – это тот разгон, на который могут рассчитывать энтузиасты, решившиеся на удаление крышки и замену штатной интеловской термопасты. Список задействованных в тестовой системе комплектующих выглядит следующим образом:
Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:
Измерение производительности тестовой системы было проведено четырежды – при работе Intel Core i7-6700K в номинальном режиме и при его различном разгоне:
Описание использовавшихся для измерения производительности инструментов:
⇡#Производительность в комплексных тестахТест SYSmark 2014, в котором моделируется типичная работа пользователя в приложениях различного характера, указывает на явную масштабируемость производительности с частотой. За счёт разгона Core i7-6700K до 4,8 ГГц можно получить почти 20-процентный прирост быстродействия относительно номинального режима. 3DMark оценивает эффект от разгона не столь оптимистично. На результат в этом тесте влияние оказывает производительность графической подсистемы, а увеличение тактовой частоты процессора ей безразлично. ⇡#Производительность в приложенияхСкорость работы ресурсоёмких приложений вполне ожидаемо зависит от частоты процессора. При разгоне процессора до 4,4 ГГц производительность возрастает примерно на 8 процентов, увеличение частоты до 4,6 ГГц даёт в среднем 12-процентный выигрыш в скорости, а осуществлённый благодаря скальпированию разгон до 4,8 ГГц делает Core i7-6700K быстрее почти на 17 процентов. Особенно же значительное увеличение быстродействия в разогнанных системах наблюдается при финальном 3D-рендеринге и при обработке и перекодировании видеоконтента. ⇡#Производительность в играхТесты в Full HD-разрешении Частота кадров в играх в высоком разрешении от разгона процессора почти не зависит. Мощности работающего в номинальном режиме Core i7-6700K вполне хватает для того, чтобы полностью загрузить флагманскую видеокарту GeForce GTX 980 Ti, следовательно, в игровых системах разгон высокопроизводительных процессоров себя не оправдывает. Тесты в уменьшенном разрешении Однако если перераспределить игровую нагрузку в сторону процессора, уменьшив разрешение, то хорошо осязаемая масштабируемость возвращается и в 3D-игры. 20-процентное увеличение частоты Core i7-6700K позволяет получить прирост в частоте кадров, который может достигать 15-процентной отметки. ⇡#ЭнергопотреблениеНа графиках ниже приводится полное потребление систем (без монитора), измеренное на выходе из розетки, в которую подключен блок питания тестовой системы, и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. В суммарный показатель автоматически включается и КПД самого блока питания, однако с учетом того, что используемая нами модель БП, Seasonic Platinum SS-760XP2, имеет сертификат 80 Plus Platinum, его влияние должно быть минимальным. Skylake – очень экономичные процессоры в состоянии простоя. В них, например, даже появилось новое энергосберегающее состоянии C8, которого в десктопных CPU до сих пор не было. Однако разгон, при котором увеличивается напряжение питания, повышает потребление системы в том числе и в состоянии покоя. Скажем, платформа, использующая Core i7-6700K на частоте 4,8 ГГц при напряжении питания 1,56 В, требует на 13 Вт больше, чем она же, но с процессором, использующим номинальные параметры. Гораздо серьёзнее возрастает потребление разогнанных процессоров при высокой вычислительной нагрузке, что вряд ли вызовет удивление у наших читателей, знакомых с основами физики. Примечателен же здесь не столько сам факт зависимости роста потребления от частоты и напряжения при разгоне, а её частные производные. Так, разогнанный по частоте на 20 процентов процессор увеличивает свои энергетические аппетиты на 60-70 процентов. И это ещё раз должно напомнить о том, что в оверклокерских системах нужно не только качественное охлаждение, но и мощный блок питания. ⇡#ВыводыНа фоне общего спада, наблюдаемого на глобальном компьютерном рынке, энтузиасты продолжают демонстрировать свою приверженность платформе ПК и — вопреки общим настроениям — отнюдь не сокращают расходы на приобретение и обновление персональной компьютерной техники. Поэтому нет ничего удивительного в том, что многие производители комплектующих стали уделять гораздо больше внимания авангарду компьютерного сообщества, и акценты в их флагманской продукции постепенно смещаются в сторону геймерских и оверклокерских возможностей. Не стала игнорировать свежие тенденции и компания Intel: процессоры с развитыми разгонными возможностями составляли важную часть её продуктовой линейки и до этого, но теперь вопросам оверклокинга уделяется куда больше внимания, чем раньше. Собственно, процессоры Skylake во многом отражают заметно потеплевшее отношение Intel к разгону. По сравнению со своими предшественниками они получили лучшие оверклокерские свойства, например внешний конвертер питания и непрерывный диапазон доступных частот BCLK, а также возросший частотный потенциал. Однако при этом Intel оставила нетронутым самый досадный оверклокерский недочёт своих современных CPU – под крышкой, закрывающей полупроводниковый кристалл, продолжает использоваться полимерный термоинтерфейсный материал с откровенно посредственной теплопроводностью. Поэтому полноценному разгону процессоров семейства Skylake препятствует банальный перегрев, устранить который очень трудно даже применением высокопроизводительных воздушных или жидкостных систем охлаждения. Но радикальные оверклокеры давно смогли найти пути решения данной проблемы: процессорную крышку можно демонтировать и заменить интеловскую термопасту материалом с лучшей теплопроводностью, например жидким металлом. Правда, в случае Skylake скальпирование – не такая простая процедура. Чипы нового поколения смонтированы на процессорной плате с очень тонким текстолитом, повредить который при удалении крышки любым из распространённых методов стало проще простого. К счастью, мы можем предложить хороший метод, заметно повышающий шансы на успех. Нагрев процессорной крышки ослабляет соединительные свойства используемого Intel клея, и если в процессе скальпирования задействовать не только тиски, но и мощный технический фен, то крышка снимается совершенно безболезненно и без приложения серьёзных усилий. Достигаемый же за счёт замены внутреннего термоинтерфейса эффект трудно переоценить. Как показывают опыты, интеловская термопаста по своей теплопроводности заметно хуже, даже чем простая Arctic MX-2. А если в качестве внутреннего термоинтерфейса в Skylake использовать жидкий металл, то проблема перегрева вообще перестаёт существовать как таковая. Температуру процессора под нагрузкой сразу удаётся понизить на пару десятков градусов, и это открывает доступ ко всему частотному потенциалу. Более того, снижение рабочих температур позволяет достичь стабильности при несколько меньших напряжениях, что делает разгон и безопаснее для здоровья процессора. В то время как типичными для процессоров Core i5-6600K и Core i7-6700K являются предельные частоты порядка 4,5-4,6 ГГц, при работе на которых под нагрузкой они достигают температур, близких к критическим, замена внутреннего термоинтерфейса отодвигает границу максимального разгона на дополнительные 200-300 МГц – до рубежа в 4,8 ГГц. Причём на столь высокой частоте, превышающей номинальную как минимум на 20 процентов, процессоры Skylake с заменённым внутренним термоинтерфейсом функционируют в благоприятном температурном режиме в том числе и при самой высокой вычислительной нагрузке. И это значит, что доработанные Skylake по своим оверклокерским свойствам вплотную приближаются к легендарным Sandy Bridge, что можно считать очень лестной похвалой, поскольку никакие CPU, выпущенные позднее 2011 года, её до сих пор не удостаивались. Что же касается производительности, то оверклокинг правильно подготовленного Core i7-6700K позволяет улучшить её на 15-20 процентов, что выглядит по сегодняшним меркам очень хорошим вознаграждением за труды по скальпированию. Конечно, процессор с оригинальной интеловской термопастой тоже может быть разогнан, и его отставание от аналога с заменённым на жидкий металл внутренним термоинтерфейсом будет составлять не более 5 процентов, однако нужно понимать, что скальпирование не просто улучшает разгон. Благодаря ему уменьшается также и нагрев процессорного кристалла, что в конечном итоге делает систему стабильнее и долговечнее. Суммируя всё сказанное, остаётся лишь посокрушаться насчёт того, что в Skylake нет нормального термоинтерфейса изначально. Тот же Core i7-6700K с заменённым внутренним термоинтерфейсом, который мы получили и протестировали в рамках этого исследования, производит гораздо лучшее впечатление, нежели обычные серийные Skylake, с которыми мы сталкивались до этого момента. И, честно говоря, если иметь в виду усовершенствованные скальпированием оверклокерские Core i5-6600K и Core i7-6700K, то модернизация старых систем с переходом на платформу LGA1151 действительно обретает реальный практический смысл.
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
|