⇡#Тестовый стенд, методика тестирования
Конфигурация тестового стенда |
CPU |
Intel Core i9-9900K (4,9 ГГц) |
Материнская плата |
ASUS MAXIMUS XI APEX |
Оперативная память |
G.Skill Trident Z RGB F4-3200C14D-16GTZR, 2 x 8 Гбайт (3200 МГц, CL14) |
ПЗУ |
Intel SSD 760p, 1024 Гбайт |
Блок питания |
Corsair AX1200i, 1200 Вт |
Система охлаждения CPU |
Thermaltake Water 3.0 Ultimate |
Корпус |
CoolerMaster Test Bench V1.0 |
Монитор |
NEC EA244UHD |
Операционная система |
Windows 10 Pro x64 |
ПО для GPU AMD |
Все видеокарты |
25.20.15015.2003 Press |
ПО для GPU NVIDIA |
Все видеокарты |
NVIDIA GeForce Game Ready Driver 418.81 |
Синтетические тесты 3D-графики |
Тест |
API |
Разрешение |
Полноэкранное сглаживание |
3DMark Fire Strike 1.1 |
DirectX 11 (feature level 11_0) |
1920 × 1080 |
Выкл. |
3DMark Fire Strike 1.1 Extreme |
2560 × 1440 |
3DMark Fire Strike 1.1 Ultra |
3840 × 2160 |
3DMark Time Spy 1.1 |
DirectX 12 (feature level 11_0) |
2560 × 1440 |
3DMark Time Spy Extreme 1.1 |
3840 × 2160 |
Игровые тесты |
Игра (в порядке даты выхода) |
API |
Настройки, метод тестирования |
Полноэкранное сглаживание |
1920 × 1080 / 2560 × 1440 |
3840 × 2160 |
GTA V |
DirectX 11 |
Встроенный бенчмарк. Макс. качество графики |
MSAA 4x + FXAA + Reflection MSAA 4x |
Выкл. |
Ashes of the Singularity: Escalation |
Vulkan |
Встроенный бенчмарк. Макс. качество графики |
MSAA 4x + TAA 4x |
Total War: WARHAMMER II, встроенный бенчмарк |
DirectX 12 |
Встроенный бенчмарк (Battle Benchmark). Макс. качество графики |
MSAA 4x |
Wolfenstein II: The New Colossus |
Vulkan |
OCAT, миссия Roswell. Макс. качество графики. Deferred Rendering Off, GPU Culling Off, Adaptive Shading Off. |
TSSAA (8TX) |
Final Fantasy XV |
DirectX 11 |
Встроенный бенчмарк + OCAT. Макс. качество графики. GameWorks Off, DLSS Off |
TAA |
Far Cry 5 |
DirectX 11 |
Встроенный бенчмарк. Макс. качество графики |
TAA |
F1 2018 |
DirectX 11 |
Встроенный бенчмарк. Макс. качество графики |
TAA |
Strange Brigade |
Vulkan |
Встроенный бенчмарк. Макс. качество графики |
AA Ultra |
Shadow of the Tomb Raider |
DirectX 12 |
Встроенный бенчмарк. Макс. качество графики |
SMAA 4x |
Assassin's Creed Odyssey |
DirectX 11 |
Встроенный бенчмарк. Макс. качество графики |
TAA High |
Battlefield V |
DirectX 12 |
OCAT, миссия Liberte. Макс. качество графики. DXR Off |
TAA High |
TAA High |
Вычисления общего назначения, кодирование/декодирование видео |
Программа |
Настройки |
AMD |
NVIDIA |
Adobe Premier CC 2019 |
Рендеринг и кодирование 8К-видео |
Экспорт в H.265 (HEVC) 8K@24p |
Blender 2.8 Beta, Cycles |
BMW Demo |
— |
CompuBench 2.0 |
Ocean Surface Simulation |
— |
N-Body Simulation 1024K |
— |
DXVA Checker 4.1.2, Decode Benchmark |
H.264 |
1920 × 1080 (High Profile, L4.1), 3840 × 2160 (High Profile, L5.1). Microsoft H264 Video Decoder |
H.265 |
1920 × 1080 (Main Profile, L4.0), 3840 × 2160 (Main Profile, L5.0), 7680 × 4320 (Main Profile, L6.0). Microsoft HEVC Video Extensions |
VP9 |
1920 × 1080, 3840 × 2160, 7680 × 4320. Microsoft WebM MF VP8 Decoder |
Ffmpeg 4.0.2, кодирование H.264 |
1920 × 1080 |
-c:v h264_amf -quality speed -coder cabac -level 4.1 -refs 1 -b:v 3M |
-c:v h264_nvenc -preset fast -coder cabac -level 4.1 -refs 1 -b:v 3M |
3840 × 2160 |
-c:v h264_amf -quality speed -coder cabac -level 5.1 -refs 1 -b:v 7.5M |
-c:v h264_nvenc -preset fast -coder cabac -level 5.1 -refs 1 -b:v 7.5M |
Ffmpeg 4.0.2, кодирование H.265 |
1920 × 1080 |
-c:v hevc_amf -quality speed -level 4 -b:v 3M |
-c:v hevc_nvenc -preset fast -level 4 -b:v 3M |
3840 × 2160 |
-c:v hevc_amf -quality speed -level 5 -b:v 7.5M |
-c:v hevc_nvenc -preset fast -level 5 -b:v 7.5M |
7680 × 4320 |
— |
-c:v hevc_nvenc -preset fast -level 6 -refs 1 -b:v 20M |
LuxMark 3.1 |
Hotel Lobby (Complex Benchmark) |
— |
SiSoftware Sandra Titanium (2018) 2018.8.28.26 |
GPGPU Scientific Analysis |
OpenCL, FP16/FP32 |
Мы регистрируем мощность видеокарт отдельно от CPU и прочих компонентов ПК с помощью амперметра MingHe VAC-1050A. Чтобы одновременно измерить ток, проходящий по разъемам дополнительного питания и слоту материнской платы, используется райзер PCI Express x16, в котором линии питания разорваны и выведены на отдельный кабель.
В качестве тестовой нагрузки используется FurMark с наиболее агрессивными настройками (разрешение 3840 × 2160, MSAA 8x) и Crysis 3 (максимальное качество графики, разрешение 3840 × 2160, MSAA 4x). Замеры мощности выполняются после прогрева видеокарты, когда температура GPU и тактовые частоты стабилизируются. Также во время теста мы регистрируем ряд других переменных с помощью ПО MSI Afterburner: тактовую частоту, напряжение питания и температуру графического процессора, скорость вращения вентиляторов системы охлаждения.
⇡#Участники тестирования
В тестировании производительности приняли участие следующие видеокарты:
⇡#Тактовые частоты, энергопотребление, температура, разгон
Возможности для разгона Radeon VII и анализа его рабочих показателей на данный момент весьма ограничены. Утилита AMD WattMan позволяет регистрировать только только частоту GPU, оперативной памяти, температуру графического процессора и скорость вращения вентиляторов. А оверклокерское ПО — такое как MSI Afterburner или GPU-Z — пока вообще нет имеет доступа к этой видеокарте. Но даже в таких условиях поэкспериментировать с Radeon VII все же можно, и довольно-таки плодотворно.
Кривая, связывающая напряжение питания графического ядра и его тактовую частоту, заканчивается на значениях 1802 МГц и 1,08 В (в то время как максимальное напряжение, которое можно выставить вручную, составляет 1,218 В) — Radeon VII работает довольно близко к этим параметрам. Так, под нагрузкой в стресс-тесте 3DMark Time Spy после того, как температура GPU стабилизируется, частота GPU колеблется вокруг отметки 1765 и достигает 1788 МГц. Что касается энергопотребления, то в этой области у Radeon VII дела совсем не так плохи, как мы боялись. Мощность видеокарты оказалась на 29 Вт меньше сравнительно с Radeon RX Vega 64, хотя энергоэффективность новейших чипов NVIDIA продуктам AMD все еще не светит, несмотря на преимущество по «нанометрам».
В алгоритмах PowerTune у нового флагмана AMD есть одна особенность, которая в корне меняет поведение системы охлаждения и реакцию GPU на перегрев: наряду с температурой GPU по краевому датчику, которую API прошлых видеокарт AMD отдает программам мониторинга, WattMan сообщает еще одно значение — Junction Temperature. Этот параметр формируется за счет 64 датчиков, разбросанных по площади графического процессора, и отражает температуру в самой горячей зоне. Замеры температуры в разных участках кристалла — не новшество Vega 20. GPU предыдущего поколения тоже имеют эту функцию, но прежде она была нужна только для аварийного отключения чипа в случае катастрофического перегрева. Теперь именно Junction Temperature сигнализирует GPU о том, что пора снизить тактовую частоту или ускорить вращение вентиляторов. Система охлаждения стремится удержать Junction Temperature в пределах 100 °C, разгоняя вентиляторы вплоть до 2725 об/мин, а при нагреве до 110 °С уже происходит «троттлинг» — падают тактовые частоты GPU. На графиках хорошо видно, что между Junction Temperature и показаниями краевого датчика всегда есть большая разница: при штатных настройках Radeon VII краевой датчик сообщает о 74 °С, Junction Temperature в то же время достигает 106 °C.
Как рассказали создатели Radeon VII, распределенное измерение, которое лежит в основе понятия Junction Temperature, нужно совсем не для того, чтобы ограничить оверклокинг (как с помощью автоматики, так и вручную), а наоборот, чтобы использовать малейшие возможности для подъема тактовых частот в периоды кратковременного охлаждения чипа. С другой стороны это можно интерпретировать таким образом, что GPU всегда стремится приблизиться к такому значению температуры, при котором утечки тока начинают угрожают стабильной работе. В какой-то степени это похоже на правду, ведь в разгоне силами пользователя карта и вправду оказалась очень чувствительной к охлаждению.
Наш образец Radeon VII позволяет нарастить предельную частоту GPU со штатных 1802 до 2002 МГц, а эффективную частоту оперативной памяти — с 2 до 2,3 ГГц. Для этого пришлось поднять напряжение питания до 1,13 В и расширить запас мощности на 20 %, но главное — стабильная работа возможна только при максимальной скорости вентиляторов охлаждения (3850 об/мин)! «Внешняя» температура GPU в таком случае даже ниже, чем в штатном режиме (67 против 74 °C), но Junction Temperature точно такая же — очевидно, что все зависит именно от нее.
К счастью, при более консервативном разгоне Radeon VII о нагреве думать не обязательно. Не превышая штатного напряжения питания 1,08 В, нам удалось поднять предельную частоту GPU до 1952 МГц, а под нагрузкой она стабилизировалась на уровне 1914 МГц. Именно при таких настройках Radeon VII прошел повторные тесты быстродействия. За исключением 3DMark — в этом тестовом пакете при попытке малейшего оверклокинга происходит не рост, а наоборот, падение тактовых частот в зону около 1600 МГц и потеря итоговых очков (а вот к стресс-тесту Time Spy, в котором мы произвели замеры мощности, это парадоксальным образом не относится). Что и говорить, в разгоне Radeon VII на данный момент ведет себя крайне подозрительно. Наверняка виноват «сырой драйвер», и к этой теме нам еще предстоит вернуться, как только AMD отладит свое программное обеспечение.
Как и видеокартам на чипах Vega первого поколения, Radeon VII идет на пользу андерволтинг графического процессора. Напряжение на GPU в верхней точке кривой авторазгона можно безбоязненно снизить на 100 мВ — от этого совершенно не страдают тактовые частоты, зато по мощности Radeon VII уже сопоставим с GeForce RTX 2080. Скорость вращения вентиляторов СО благодаря андерволтингу падает до 1700–1800 об/мин, и это хорошо заметно по уровню шума.
⇡#3DMark
Результаты Radeon VII, которые мы получили в синтетических тестах пакета 3DMark, соответствуют тем данным, которые просочились в интернет еще до публикации обзора: ускоритель AMD превосходит GeForce RTX 2080 по очкам теста Fire Strike под API Direct3D 11, но в бенчмарке Time Spy под Direct3D 12 с большим отрывом лидирует видеокарта NVIDIA. В среднем преимущество RTX 2080 перед Radeon VII в «синтетике» составляет 5 %. Более того, все три ускорителя NVIDIA — GeForce RTX 2070, RTX 2080 и GTX 1080 Ti — опережают Radeon VII в Time Spy, однако по усредненной оценке новый флагман AMD не уступает GTX 1080 Ti и на 9 % превосходит RTX 2070.
⇡#Игровые тесты (1920 × 1080)
Начиная с этого обзора мы проводим тестирование видеокарт на обновленной платформе с процессором Intel Core i9-9900K, и это помогает более ясно увидеть разницу между различными устройствами в режиме 1080p. Однако графический процессор Vega второго поколения при таком разрешении все равно не может работать в полную силу — уже в силу его собственных архитектурных качеств.
По средней частоте смены кадров в одиннадцати играх Radeon VII на 20 % превосходит Radeon RX Vega 64, что соответствует нижней границе того диапазона, в котором AMD оценила быстродействие новинки. Сравнение с другими участниками теста тоже не демонстрирует Radeon VII в выгодном свете. Его главные соперники — GeForce GTX 1080 Ti и GeForce RTX 2080 — здесь лидируют с преимуществом в 6 и 11 % соответственно. Даже GeForce RTX 2070 отстал от флагманского ускорителя AMD всего лишь на 2 %.
Как и в предыдущих обзорах, когда мы сравнивали устройства AMD и NVIDIA, обладающие сопоставимым потенциалом быстродействия, часть игр склоняется в «зеленую», а другая — в «красную» сторону. Только «зеленых» бенчмарков в этом случае явно больше.
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.