Сегодня 23 декабря 2024
18+
MWC 2018 2018 Computex IFA 2018
реклама
Теги → детектор

Российские учёные помогли создать детекторы нейтрино для мегапроекта DUNE в США

На днях шведское издательство MDPI опубликовало статью, посвящённую разработке детекторов нейтрино для научного мегапроекта DUNE (Deep Underground Neutrino Experiment) в США. Хотя в коллективе учёных были представители нескольких стран, существенный вклад в разработку непосредственно датчиков внесли российские исследователи из Московского физико-технического института (МФТИ).

 Источник изображения: techspot.com

Источник изображения: techspot.com

Два месяца назад в США завершилась выемка грунта для подземных лабораторий проекта DUNE. До установки датчиков пройдёт ещё от четырёх до семи лет. Но в целом, если судить по статье, основа для производства этих приборов уже создана. У сотрудников МФТИ богатейший опыт в разработке детекторов элементарных частиц и он был востребован в новой работе.

Нейтрино остаются не до конца изученными частицами. Они слабо взаимодействуют с веществом, поэтому их крайне сложно обнаружить. В двух лабораториях DUNE будут установлены огромные резервуары с жидким аргоном (до 17 тыс. тонн), стенки которых оснастят детекторами фотонов. Эти датчики должны выдерживать частые перепады температур от криогенных до комнатных и обратно, оставаясь при этом высокочувствительными.

 Схема эксперимента. Источник изображения: Wikipedia

Схема эксперимента. Источник изображения: Wikipedia

«При разработке [детектора] ArCLight самым сложным этапом для нас оказалось подобрать материалы так, чтобы детектор выдерживал многократные охлаждения до температуры жидкого аргона (~187 К) и нагревы обратно до комнатной. При низкой температуре полимерные материалы становятся хрупкими, и, если коэффициенты теплового расширения не соответствуют, детектор может разрушиться — треснуть», — пояснил Игорь Кресло, ведущий научный сотрудник лаборатории фундаментальных взаимодействий МФТИ.

Задача фотонного детектора ArCLight — регистрировать сцинтилляционный свет, возникающий при взаимодействии нейтрино со средой время-проекционной камеры, в данном случае с жидким аргоном. Особенность прибора ArCLight заключается в том, что его можно разместить на стенках аргоновой камеры, так как он не искажает направляющее электрическое поле.

 Слева фотография прототипа ArgonCube Light (ArCLight) размером 10 × 10 см2 с четырьмя кремниевыеми фотоумножителями (SiPM). Справа принципиальная схема работы ArCLight на примере детектирования излучения вакуумного ультрафиолета. Источник: Instruments.

Слева — прототип ArgonCube Light (ArCLight) размером 10 × 10 см с четырьмя кремниевыми фотоумножителями (SiPM). Справа —принципиальная схема работы ArCLight на примере детектирования излучения вакуумного ультрафиолета. Источник: Instruments.

Физики сконструировали ряд прототипов фотодетекторов разных размеров: от небольших, 5 × 5 см, до необходимых для ближнего детектора DUNE — 30 × 50 см. Фотонная эффективность приборов варьируется в диапазоне от 0,8 % до 2,2 %. Чем выше эффективность, тем слабее энергии фотонов сможет регистрировать датчик, что напрямую влияет на сбор статистически значимых данных. Чем больше регистраций, тем полнее информация о свойствах нейтрино.

Учёные из МФТИ испытали различные способы нанесения рабочих слоёв на датчики и разработали систему контроля качества приборов. Для полного покрытия стенок двух огромных резервуаров потребуется огромное количество детекторов, включая запасные модули. Для этого уже создан необходимый задел.

Учёные придумали, как увеличить на несколько порядков чувствительность детекторов гравитационных волн

Детектирование гравитационных волн стало важным открытием прошлого десятилетия. Сделала это в 2015 году наземная обсерватория-интерферометр LIGO. Тем самым у учёных появился новый инструмент для изучения объектов во Вселенной кроме традиционных оптики и радио. Следующим шагом на этом пути должен стать космический детектор гравитационных волн LISA. Однако группа европейских учёных предложила на порядки более чувствительный прибор LISAmax.

 Источник изображений: ЕКА

Проект LISA. Источник изображений: ЕКА

Каждое из двух плеч наземных обсерваторий LIGO (США) и VIRGO (Италия) имеет длину примерно 3 км. Это накладывает ограничение на регистрируемые гравитационные волны — детекторы могут определить события от слияния объектов в несколько десятков солнечных масс. Ограничение обусловлено тем, что длина плеча интерферометра — это чувствительность к определённой длине волны (частоте). Для регистрации событий с участием сверхмассивных чёрных дыр от миллиона солнечных масс и больше требуется длина плеча интерферометра в несколько миллионов километров. Это проект не для Земли.

Такой космический проект под названием LISA разрабатывается Европейским космическим агентством в рамках многоэтапной программы космических исследований Voyage 2050. Проект утверждён в 2017 году и находится в стадии проектирования с целью запустить комплекс LISA в космос где-то в середине 30-х годов. Каждое из плеч космического интерферометра будет длиной 2,5 млн км. Это станет настоящим рывком вперёд по изучению Вселенной с помощью нового типа детекторов. Но всё можно сделать ещё лучше, считает группа учёных, подготовивших статью для журнала Classical and Quantum Gravity (она пока вышла на arxiv.org), если интерферометры развести на удаление до 295 млн км и такая возможность потенциально есть.

Учёные рассказали, что развитием проекта LISA может стать проект LISAmax. Для этого космические интерферометры необходимо подвесить в точках Лагранжа в системе Солнце-Земля. Это даст плечо длиною 295 млн км, что позволит детектировать события в диапазоне волн менее 1 мГц. Это сделает детекторы на два порядка чувствительнее почти за те же ресурсы и приведёт к настоящему цунами открытий от детектирования слияний чёрных дыр, нейтронных звёзд в широком диапазоне масс до поиска «реликтовых» гравитационных волн, образовавшихся в процессе Большого взрыва.

 Отдельный интерферометр. Таких будет три — по одному в вершинах равносторонненго треугольника в космосе

Отдельный интерферометр. Таких будет три — по одному в вершинах равносторонненго треугольника в космосе

Также такой большой детектор позволит с невероятной точностью обнаруживать на небе гравитационные события, которые он регистрирует. Будет ли этот проект серьёзно воспринят европейским научным сообществом, нам ещё предстоит узнать. А пока Индия взяла на себя обязательство построить к 2030 году близнеца детектора LIGO. Это приведёт к появлению ещё одной точки детектирования гравитационных волн на Земле и вместе с другими детекторами на порядок увеличит чувствительность сети детекторов.


window-new
Soft
Hard
Тренды 🔥
Министр торговли США признала, что санкции против Китая неэффективны 4 ч.
Apple запустила разработку умного дверного звонка с Face ID 4 ч.
AirPods научатся измерять пульс, температуру и «множество физиологических показателей» 5 ч.
Облако Vultr привлекло на развитие $333 млн при оценке $3,5 млрд 10 ч.
Разработчик керамических накопителей Cerabyte получил поддержку от Европейского совета по инновациям 10 ч.
Вышел первый настольный компьютер Copilot+PC — Asus NUC 14 Pro AI на чипе Intel Core Ultra 9 12 ч.
Foxconn немного охладела к покупке Nissan, но вернётся к этой теме, если слияние с Honda не состоится 17 ч.
В следующем году выйдет умная колонка Apple HomePod с 7-дюймовым дисплеем и поддержкой ИИ 17 ч.
Продажи AirPods превысили выручку Nintendo, они могут стать третьим по прибыльности продуктом Apple 18 ч.
Прорывы в науке, сделанные ИИ в 2024 году: археологические находки, разговоры с кашалотами и сворачивание белков 21-12 22:55