Корпуса, БП и охлаждение

Обзор и тестирование процессорного кулера CRYORIG C1: мал золотник...

⇣ Содержание

#Тестовая конфигурация, инструментарий и методика тестирования

Сравнение эффективности систем охлаждения было проведено в закрытом корпусе системного блока следующей конфигурации:

  • системная плата: ASUS Sabertooth X79 (Intel X79 Express, LGA2011, BIOS 4801 от 28.07.2014);
  • центральный процессор: Intel Core i7-3970X Extreme Edition 3,5–4,0 ГГц (Sandy Bridge-E, C2, 1,1 В, 6 × 256 Kбайт L2, 15 Мбайт L3);
  • термоинтерфейс: ARCTIC MX-4;
  • оперативная память: DDR3 4 × 8 Гбайт G.SKILL TridentX F3-2133C9Q-32GTX (2133 МГц, 9-11-11-31_CR2, 1,6125 В);
  • видеокарта: Gigabyte GeForce GTX 750 Ti 2 Гбайт 1215-1294/5400 МГц;
  • системный диск: Intel SSD 730 480GB (SATA-III, BIOS vL2010400);
  • диск для программ и игр: Western Digital VelociRaptor (SATA-II, 300 Гбайт, 10000 об/мин, 16 Мбайт, NCQ) в коробке Scythe Quiet Drive 3,5";
  • архивный диск: Samsung Ecogreen F4 HD204UI (SATA-II, 2 Тбайт, 5400 об/мин, 32 Мбайт, NCQ);
  • корпус: Antec Twelve Hundred (передняя стенка – три Noiseblocker NB-Multiframe S-Series MF12-S2 на 1020 об/мин; задняя – два Noiseblocker NB-BlackSilentPRO PL-1 на 1020 об/мин; верхняя – штатный 200-мм вентилятор на 400 об/мин);
  • панель управления и мониторинга: Zalman ZM-MFC3;
  • блок питания: Corsair AX1500i Digital ATX (1500 Вт, 80 Plus Titanium), 140-мм вентилятор.

Для проведения базовых тестов шестиядерный процессор на опорной частоте 100 МГц при фиксированном в значении 42 множителе и активированной функции Load-Line Calibration был разогнан до 4,0 ГГц с повышением напряжения в BIOS материнской платы до 1,170 В. Технология Turbo Boost во время тестирования была выключена, а вот Hyper-Threading для повышения тепловыделения активирована. Напряжение модулей оперативной памяти было зафиксировано на отметке 1,6125 В, а её частота составляла 2,133 ГГц с таймингами 9-11-11-20_CR1. Прочие параметры BIOS, относящиеся к разгону процессора или оперативной памяти, не изменялись.
Тестирование проведено в операционной системе Microsoft Windows 7 Ultimate x64 SP1. Программное обеспечение, использованное для теста:

  • LinX AVX Edition v0.6.4 – для создания нагрузки на процессор (объём выделенной памяти – 4500 Мбайт, Problem Size – 24234, два цикла по 11 минут);
  • HWiNFO64 v4.64-2530 – для мониторинга температуры ядер процессора и прочих параметров.

Полный снимок экрана во время проведения одного из циклов тестирования выглядит примерно так.

Нагрузка на процессор создавалась двумя последовательными циклами LinX AVX с указанными выше настройками. На стабилизацию температуры процессора между циклами отводилось 8–10 минут. За окончательный результат, который вы увидите на диаграмме, принята максимальная температура самого горячего из шести ядер центрального процессора в пике нагрузки и в режиме простоя. Кроме того, в отдельной таблице будут приведены температуры всех ядер процессора и их усреднённые значения. Комнатная температура контролировалась установленным рядом с системным блоком электронным термометром с точностью измерений 0,1 °C и с возможностью почасового мониторинга изменения температуры в помещении за последние 6 часов. Во время данного тестирования температура окружения колебалась в диапазоне 24,3–24,7 °C.

Измерение уровня шума систем охлаждения проводилось электронным шумомером «ОКТАВА-110А» в период от одного до трёх часов ночи в полностью закрытой комнате площадью около 20 м2 со стеклопакетами. Уровень шума измерялся вне корпуса системного блока, когда источником шума в комнате являлся только сам кулер и его вентилятор. Шумомер, зафиксированный на штативе, всегда располагался строго в одной точке на расстоянии ровно 150 мм от ротора вентилятора. Системы охлаждения размещались на самом углу стола на пенополиуретановой подложке. Нижняя граница измерений шумомера составляет 22,0 дБА, а субъективно комфортный (просьба не путать с низким!) уровень шума кулеров при измерениях с такого расстояния находится около отметки 36 дБА. Условно тихий уровень шума принят нами у границы 33 дБА. Скорость вращения вентиляторов изменялась во всём диапазоне их работы с помощью специального контроллера путём изменения питающего напряжения с шагом 0,5 В.

Самым маленьким кулером, оказавшимся в нашем распоряжении, является Thermalright Macho 90, с которым мы сегодня и сравним CRYORIG C1 в режиме с одним штатным вентилятором. Понятно, что, даже несмотря на свои скромные габариты, для mini-ITX-систем Macho 90 не подойдёт (точнее, подойдет, но совсем не для всех), однако выбирать нам, к сожалению, не приходилось. Тем не менее будет интересно оценить, сколь сильно уступает дорогой CRYORIG C1 скромному башенному кулеру стоимостью немногим более 30 долларов США. Отметим, что мы дополнительно протестировали CRYORIG C1 в режиме с альтернативным 140-мм вентилятором Reeven COLDWING 14 (RM1425S17B), а не только с его штатным вентилятором.

Регулировка скорости вращения вентиляторов систем охлаждения осуществлялась с помощью специального контроллера с точностью ±10 об/мин в диапазоне от 800 об/мин до их максимума с шагом 200 или 400 об/мин.

#Результаты тестирования и их анализ

Эффективность охлаждения

Результаты тестирования эффективности систем охлаждения представлены на диаграмме и в таблице.

При максимальных оборотах тонкого штатного вентилятора CRYORIG C1 удалось продемонстрировать такую же эффективность охлаждения процессора, как и у башенного Thermalright Macho 90 при максимальных 1900 об/мин. Это уже неплохое достижение, как и сам факт успешного охлаждения четырёхгигагерцевого процессора таким компактным кулером под невероятно жёстким алгоритмом Linpack. При средних 1000 об/мин и тихих 800 об/мин новинка также уверенно обходит башенного конкурента. Более того, как видно, эффективность CRYORIG C1 можно ещё повысить, установив на него 140-мм вентилятор стандартной, 25-мм толщины. При скорости 1400 об/мин преимущество CRYORIG C1 перед самим собой в штатной комплектации составляет 3 градуса Цельсия, при 1000 об/мин – те же 3 градуса Цельсия, а при минимальных 800 об/мин – сразу 5 градусов Цельсия. Отмечаем уверенный рывок в эффективности всего лишь за счёт установки обычного 140-мм вентилятора и переходим к измерению уровня шума.

#Уровень шума

Уровень шума участников нашего сегодняшнего тестирования был измерен во всём диапазоне работы их вентиляторов по изложенной в соответствующем разделе статьи методике и представлен на графике.

Если по эффективности охлаждения CRYORIG C1 справился с Thermalright Macho 90, то по уровню шума ему ещё очень далеко до такого же достижения. Увы, но тонкий 140-мм вентилятор CRYORIG шумит заметно сильнее 92-мм вентилятора Macho 90 25-мм толщины. Несколько удивляет и тот факт, что на поверку обычный 140-мм вентилятор Reeven COLDWING 14 оказался даже немного тише тонкого вентилятора CRYORIG XT140, причём во всём скоростном диапазоне работы (не считая более высокой верхней границы, разумеется). Данный факт вкупе с результатами тестов эффективности является ещё одним аргументом в пользу оснащения CRYORIG C1 вентилятором стандартной толщины, пусть это и увеличит высоту кулера на 12 мм. В отношении шума штатного вентилятора CRYORIG C1 добавим, что его подшипника, как и электродвигателя, не слышно, а крыльчатка прекрасно отбалансирована и не издаёт дополнительных звуков в работе, кроме гула прокачиваемого воздуха.

#Заключение

В начале подведения итогов отметим недостатки CRYORIG C1. В первую очередь, как это ни странно, главным недостатком данной модели мы назовём серьёзно завышенную стоимость. Быть может, информативная и аккуратная упаковка и высокоэффективная термопаста с комплектом очистки действительно стоят недёшево, но всё же это не повод продавать такой кулер, как CRYORIG C1, за 70 долларов США. Откровенно говоря, он попросту не должен стоить так дорого. Сравнительно шумный вентилятор также является слабой стороной кулера, тем более что его замена 140-мм вентилятором стандартной толщины не только позволит выиграть в эффективности, но и может снизить уровень шума. Наконец, третий недостаток (возможно, особенность нашего экземпляра) – чрезмерно выпуклое основание кулера. Все мы прекрасно знаем, что этим периодически грешат отдельные производители воздушных систем охлаждения, но столь явно выраженная кривизна нами встречена впервые, и надеяться на эффективный теплообмен при столь неудовлетворительном контакте, увы, не приходится.

Тем не менее  у CRYORIG C1не всё так уж мрачно. Прежде всего, даже при столь неудовлетворительном контакте данный кулер смог обеспечить шестиядерному процессору стабильность под Linpack на частоте 4 ГГц, и одновременно ему удалось обойти очень неплохой башенный кулер (кстати, куда более высокий). Для системы охлаждения mini-ITX-класса это, поверьте, выдающееся достижение. При этом CRYORIG C1 оказался совместимым с модулями памяти, которые оснащены невысокими радиаторами (до 42 мм), что идёт в плюс системе охлаждения. Также в числе достоинств CRYORIG C1 бескомпромиссная универсальность, простое и надёжное крепление с высоким усилием прижима, доскональная комплектация и информативность как инструкции, так и страницы на официальном сайте, ну и, конечно же, охлаждение элементов околосокетного пространства и модулей оперативной памяти.

 
← Предыдущая страница
⇣ Содержание
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
Материалы по теме
⇣ Комментарии
window-new
Soft
Hard
Тренды 🔥